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Fig. 3. MPRA implementation.

elements, and the axistime is the time dimension. The vectors
represent the data dependencies. For example, the computation of
level 2 in PE0 at time four requires the results of the following
computations at level 1: PE1 at time 1, PE0 at time 2, and PE

�1 at
time 3. Thus, we have three clock cycles to send the result of level
1 from PE1 to PE0 and one clock cycle to send the result of level
1 from PE

�1 to PE0.
For clarity of the drawings, we include only the dependencies at

the first two levels. The dependencies at the following levels have
the same slopes but are longer. It should be clear that the same array
can compute all the successive levels, as well as the output of the
three highpass filters. The nodes with a circle(�) and a bullet(�) are
active at level 1, and the nodes with a bullet(�) are active at level 2.

The wavelet transform is based on a dilation; thus the present (2-D)
example has a decimation along both dimensions. Decimation along
the time dimension means that some variables will travel through
the array at slower speed. Decimation along the space dimension
means that some processing elements will be more active than others.
A real implementation may have to redistribute the load amongst
neighboring processing elements. Notice that the decimation factor
along the time or the space dimension may be different than two.

This implementation requiresW=2 processing elements (W being
the number of lines in the image) and processes an image inO(W )
s. The size of the memory required isO(Wqr). Fig. 3 represents
the interconnection of two adjacent processing elements. The image
is fed from the left, and the wavelet coefficients are produced on
the right. Notice that the design requires only a connection between
neighboring processing elements.

V. CONCLUSION

In this paper, we present a generalization of the Mallat pyramid
for 2-D wavelets. We introduce a transformation to localize the
equations defining the successive levels of the pyramid. We propose
a methodology for implementing these wavelet transforms in parallel
architectures like systolic arrays. Notice that the methodology is valid
whether the wavelet transform is separable or not. We demonstrate
the methodology with an example that is a pure systolic architec-
ture based on our previous research in multiphase multirate arrays
(MPRA, cf., for example, [6]). This implementation requiresW=2
processing elements (W being the number of lines in the image) and
processes an image inO(W ) s. The size of the memory required
is O(Wqr).
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Denoising by Singularity Detection

Tai-Chiu Hsung, Daniel Pak-Kong Lun, and Wan-Chi Siu

Abstract—In this correspondence, a new algorithm for noise reduction
using the wavelet transform is proposed. Similar to Mallat’s wavelet
transform modulus maxima denoising approach, we estimate the regu-
larity of a signal from the evolution of its wavelet transform coefficients
across scales. However, we do not perform maxima detection and pro-
cessing; therefore, complicated reconstruction is avoided. Instead, the
local regularities of a signal are estimated by computing the sum of
the modulus of its wavelet coefficients inside the corresponding “cone
of influence,” and the coefficients that correspond to the regular part
of the signal for reconstruction are selected. The algorithm gives an
improved denoising result, as compared with the previous approaches,
in terms of mean squared error and visual quality. The new denoising
algorithm is also invariant to translation. It does not introduce spurious
oscillations and requires very little a priori information of the signal
or noise. Besides, we extend the method to two dimensions to estimate
the regularity of an image by computing the sum of the modulus of its
wavelet coefficients inside the so-called “directional cone of influence.”
The denoising technique is applied to tomographic image reconstruction,
where the improved performance of the new approach can clearly be
observed.

I. INTRODUCTION

Denoising by wavelet methods has received much attention re-
cently [1]–[3]. In particular, Mallatet al. [1] introduced a denoising
technique that makes use of the wavelet transform modulus maxima
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(WTMM) representation. The WTMM representation of a signal
records the values and locations of local maxima of its wavelet
transform modulus (WTM). They proved that the local Lipschitz
exponent of a signal can be estimated by tracing the evolution of
its WTMM across scales. From the estimated Lipschitz exponent
and with some othera priori information of the signal, an effective
denoising method can be developed. Although the WTMM-based
algorithms give a promising performance in many aspects, the irreg-
ular sampling nature of the WTMM complicates the reconstruction
process. Furthermore, examples were found [4] to show that the
WTMM representation cannot uniquely characterize a signal. It
implies that the reconstruction of signal from its WTMM may not be
consistently stable. Consequently, many researchers suggested other
methods to estimate a signal from its WTMM representation [5],
[6]. The discrete time wavelet extrema representation [7] was also
proposed as an alternative convex representation for the WTMM.
However, the reconstruction method is still iterative, which leads to
the high computational complexity of these kinds of approaches.

On the other hand, Donoho [2], [3] suggested another stream of
denoising technique by performing hard thresholding or shrinkage
on the orthogonal wavelet transform coefficients of a signal. Due
to the vanishing moment property and the compact support of
wavelets, most signal energy, after wavelet transform, is supposed
to be clustered in a few wavelet coefficients, whereas noises do
not. The thresholding or shrinkage on the wavelet coefficients with
a proper threshold [8] can then significantly reduce noise. This
operation guarantees with high probability that the denoised signal
is at least as smooth as the input noisy signal. However, the denoised
signal may contain spurious oscillations due to the translation-
variant property of the decimating wavelet transform. Therefore,
many variants of the wavelet shrinkage techniques were developed.
They include the “cycle spinning” approach [9] and the approaches
using undecimated wavelet basis [10] and near shift-invariant wavelet
bases [11]. Nevertheless, not all of these approaches guarantee that
edges can be preserved in denoising due to the neglect of interscale
information. This artifact becomes important when the denoising
technique is applied to 2-D images since human perception is
sensitive to image edges.

In this correspondence, a new algorithm for noise reduction using
the wavelet transform is proposed. The new algorithm can be viewed
as a combination of Mallat and Donoho’s denoising approaches. As
in the wavelet thresholding approaches, the new algorithm selects
the desired wavelet transform coefficients for reconstruction based
on a threshold. However, the threshold is determined based on
the estimated Lipschitz exponents of the signal, as in the WTMM
approach. Although Mallat’s algorithm has the drawback of high
computational complexity in reconstruction, the new approach has
the advantage in that it avoids the complicated reconstruction process.
The new algorithm performs better than the original wavelet shrink-
age approach [2] in that it preserves the edges of a noisy signal. In
the next section, we state and describe some important theories for
wavelet denoising by singularity detection. Then, we develop a new
denoising algorithm using the sum of the WTM inside the “cone of
influence” to estimate the regularity of a signal. We further develop a
new two-dimensional (2-D) denoising algorithm using the sum of the
WTM inside the so-called “directional cone of influence.” Finally,
we give the performance of the new denoising algorithms.

II. DENOISING ALGORITHM USING THE WTMM

The discrete dyadic wavelet transform [1], [12], [13] of a
one-dimensional (1-D) discrete signalf 2 L2(R) is defined
as fS

2
f; (W

2
f)1�j�Jg. The components are obtained by the

convolutions of f(x) with the scaling function and the dilated

Fig. 1. “Cone of influence,” which is the support of the wavelet function
in different scales.

waveletsS2 f = f � �2 (x); W2 f(x) = f �  2 (x). As indicated
in [1], we can estimate the local Lipschitz exponent for a particular
point of a signal by the following theorem.

Theorem 1: If f(x) is Lipschitz � at x0, then there exists a
constantA such that for all pointsx in the neighborhood ofx0
and any scales

jWsf(x)j � A(s� + jx � x0j
�): (1)

Conversely,f(x) is Lipschitz� at x0 if two conditions hold:

• There exist some� > 0 and a constantA such that for allx in
the neighborhood ofx0 and any scales

jWsf(x)j � As�: (2)

• There exists a constantB such that for allx in the neighborhood
of x0 and any scales

jWsf(x)j � B s� +
jx � x0j

�

j log jx � xojj
: (3)

Equations (1) and (3) imply thatjWsf(x)j � O(s�) inside a cone
jx�x0j � Ks [1], whereK is the support of the mother wavelet. This
cone is the so-called “cone of influence” (COI), as shown in Fig. 1.
Mallat and Hwang furthered [1, Th. 1] and proposed to estimate the
Lipschitz exponent of a singularity by tracing its WTMM curves
across scales inside the COI. They showed that the local regularity
of certain types of nonisolated singularities in the signals can be
characterized by using the WTMM. They also showed that the decay
of the expected WTMM value of a wide sense stationary white noise
across scales is proportional to1=2j , where s = 2j . This means
that the WTMM curves of noises are expected to decay across scales
at least at a rate of1=2j or even not propagate to coarser scales.
This is not the case for regular signals and edges. Since signal
edges possess zero Lipschitz exponents and regular signals possess
positive Lipschitz exponents, the corresponding WTMM will be the
same, if it does not increase, when scale increases. Consequently, in
the application of denoising, we can remove noises of a signal by
removing all the WTMM of which the amplitude decreases when
scale increases.jW2 f(xi�1)j � jW2 f(xi)j, and jW2 f(xi)j �
jW2 f(xi+1)j. We trace the maxima curves inside the COI in scale-
space to estimate the Lipschitz exponents of the signal singularities.
From the estimated Lipschitz exponents, we can process the maxima
curves in scale space to obtain the denoised WTMM. Note that there
may be many errors and ambiguities in tracing the maxima curves in
scale space. They may affect the accuracies of the estimated Lipschitz
exponents. This situation appears more significant if the singularities
are not isolated. That is, the COI’s of these singularities have common
support. In this case, we may falsely remove maxima that correspond
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to the desired singularities or retain maxima that correspond to the
undesired singularities.

Besides the processing of maxima curves, another burden in
WTMM processing is the irregularly located maxima that complicate
the reconstruction process [1], [5]–[7]. Traditionally, the projections
onto convex sets (POCS) method [14] was adopted to reconstruct the
processed WTMM. The iterative nature of this method introduces
much difficulty for the denoising algorithm to be applied to real-time
applications.

A. Wavelet Transform Modulus Sum under the Cone of Influence

In order to look for a simpler approach, we move a step back from
the maxima processing. For the wavelet coefficients of a signal in
each scale, we compute the integral of the modulus of these wavelet
coefficients inside the COI. Let us define an operatorN , dubbed the
wavelet transform modulus sum (WTMS), such that for all pointx0
of a function f

Nsf(x0) =
jx�x j�Ks

jWsf(x)jdx (4)

where s is the scale, andK is the support of the mother wavelet
function, which is a constant. From Theorem 1

Nsf(x0) �
jx�x j�Ks

A(s� + jx � x0j
�) dx

� 2A K +
K�+1

�+ 1
s
�+1 � A

0
s
�+1 (5)

whereA0 is a constant. As shown in (5), we can estimate the Lipschitz
exponent� from the upper bound of the slope oflog(Nsf) instead
of that in the previous approach, where we need to fit� from a set of
neighboring coefficients in scale-space or trace the wavelet maxima
across scales. It avoids the ambiguous operations, such as tracing
of maxima curves in scale space, as in the previous approaches.
Indeed, the main difference of usingNsf(x) instead of the maxima
of Wsf(x), as in [1], is that the processing ofNsf(x) is over
the regularly located wavelet coefficients, whereas the processing of
wavelet maxima is over irregularly located maximum points of the
wavelet coefficients. The current approach reduces the complexity in
realization.

B. Interscale Ratio of WTMS

For a particular pointxo of a functionf , we obtain, by using (4),
the functionNsf(xo), which is the sum of the modulus of wavelet
coefficients of this point in scales inside the COI. It is mentioned
above that the Lipschitz exponent� for a particular pointxo of
the functionf can be estimated based on the functionNsf(xo).
However, in the application of denoising, we need not directly
estimate the Lipschitz exponent. It is known that [1] the Lipschitz
exponent� of Gaussian noise usually possesses negative value when
measuring by using the wavelet transform approach with the wavelet
of one vanishing moment. In the case that� � �1

N2 f(xo) � N2 f(xo) for 1 � j < J

whereJ is the total number of scales. It implies that for a strong
irregular point that has� � �1, we can easily detect it by measuring
the interscale ratio ofNsf(xo) such that

N2 f(xo)

N2 f(xo)
= 2�+1 � 1 for 1 � j < J and � � �1:

That is, the functionNsf(xo) will decrease or remain the same as the
scale increases. If the pointxo corresponds to the edge or the regular
part of the functionf , it is known that [1] by using the same wavelet

as before, the Lipschitz exponent� at this point is greater than or
equal to 0. This point can again be easily detected by measuring the
interscale ratio ofNsf(xo) such that

N2 f(x0)

N2 f(x0)
= 2�+1 � 2 for 1 � j < J and � � 0: (6)

That is, the functionNsf(xo) will increase at least doubly as
scale increases. By selecting the wavelet coefficients that fulfill the
“interscale ratio” condition, as stated in (6), we can effectively remove
noise while the edges and the regular part of the signal can be
preserved.

C. Interscale Difference of WTMS

The use of the interscale ratio method provides a simple means
to select the wavelet coefficients that correspond to the regular parts
of the signal. Furthermore, it has the advantage that it requires no
a priori information about the noise or signal. In other words, its
performance will not be affected due to the variation of noise or
signal levels. Nevertheless, due to the error generated during the
estimation ofNsf(x) as well as the alias that may introduce from the
COI of a nearby singularity, it is observed that some small irregular
signal will have its wavelet coefficients fulfill the criterion defined
in (6). This effect is more obvious for those irregular signals that
have�1 < � < 0. Since, for these signals, the sum of the modulus
of their wavelet coefficients will also increase as the scale increases.
The only difference of them from a regular signal is that they have
slower increasing rates. However, the introduction of the errors, as
mentioned above, can increase their rates of increment across scales
to enable them to falsely fulfill the criterion as stated in (6). To
solve this problem, we consider the interscale difference condition,
as shown in (7)

N2 f(x0)�N2 f(x0) > 
 (7)

where
 is a threshold. The edge and regular part of the signal can
be extracted out by using (7) with appropriately selected threshold

 � A02j since

N2 f(x0)�N2 f(x0) = (2�+1 � 1)A0(2j)�+1 � A
02j (8)

for � � 0. Equation (8) shows that even if the wavelet coefficients
of a signal can fulfill the criterion in (6), their magnitude must
also be great enough to fulfill the criterion in (8). In other words,
small irregular signals will not fulfill the criterion in (8), and their
corresponding wavelet coefficients will be rejected. However, the
constantA0 depends on the amplitude of the signal itself and varies
among signals. If the value of threshold
 is set too high, the wavelet
coefficients atx0 would be rejected even if it is regular. Fortunately,
since the introduction of the interscale difference criterion is to
remove the small irregular signal, the threshold
 should always be
small; hence, the probability of rejecting the regular part of the signal
is also small. For the case that the value of
 is not comparable to
the amplitude of the signal at any location, i.e.,
 � A02j or 
 = 0,
the condition as stated in (7) becomes the original interscale ratio
condition, as stated in (6), since all data that satisfy (6) will satisfy
(7). Therefore, the threshold
 can be considered to be a tuning
parameter to balance the denoising of the irregular signal and the
preservation of the regular signal.

In practice, certain tolerance is allowed in using (6) and (7) to
select the required wavelet coefficients. It is particularly important



3142 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999

Fig. 2. “Directional cone of influence,” which is support of wavelets in
different scales with direction indicated byAsf(xo; y0).

for some classes of signals with known regularity range. The resulted
wavelet coefficients using the above criteria can be considered to
be the ones that correspond to essentially the regular parts of a
signal. The denoised signal is then reconstructed from the selected
wavelet coefficients using the conventional inverse wavelet transform.
It should be noted that the selected wavelet coefficients using the
interscale ratio and the interscale difference conditions, essentially
from a complete set of wavelet coefficients, correspond to the
regular parts of the signal. Hence, we can use a simple inverse
wavelet transform for the reconstruction. However, for the original
approach in [1], only the WTMM, which belongs to an incomplete
set of the required wavelet coefficients, result from the algorithm.
Hence, further computation is required to estimate the missing
wavelet coefficients from that incomplete set, thus requiring a long
computation time.

To summarize, we consider the interscale information of a signal
to select the wavelet coefficients that most likely correspond to the
regular parts of the signal. The process of singularity detection is
local and requires very littlea priori information of the signal to
determine the threshold in using the interscale difference condition.
The threshold
 is supposed to be kept small, and in the case
that 
 = 0, it degenerates to the case of using an interscale ratio
condition. Other merits of the proposed denoising algorithm include
the preservation of signal edges and the translation-invariant property.
Indeed, it is not easy for other wavelet denoising approaches, such
as the wavelet thresholding or shrinkage approach using orthogonal
wavelet bases, to preserve the signal edges when denoising since, in
those cases, it is difficult to explicitly reveal the edges of a signal from
the corresponding wavelet coefficients, especially using translation-
variant wavelet bases. From the above analysis, we propose a new
denoising algorithm, as follows.

Denoising Algorithm:

1) 8j, where1 � j < J , computeW2 f andN2 f ;
2) Select W2 f(x0) if N2 f(x0)=N2 f(x0) > 2 and

N2 f(x0)�N2 f(x0) � 
, where
 is a threshold value;
3) Repeat step 2 until all the coefficients in the selected levels

have been processed.
4) Reconstruct signal from the selected wavelet coefficients using

the inverse wavelet transform.

We show the experimental results in Fig. 3, where the test signal is
corrupted by both the shot noise and the Gaussian noise of different
noise levels introduced to different parts of the signal. The test
signal is divided into ten regions and contaminated by Gaussian noise
with ten different noise variances ranging from 0.1 to 0.2. Besides,
the signal is also contaminated by the shot noise. These results
demonstrate the robustness among different denoising algorithms for

nonstationary noise without oracle. For comparison, we implemented
the wavelet shrinkage [Fig. 3(b)] using Daubechies’ wavelet with
four vanishing moments. The threshold value�� is selected to be
1:860�, as suggested in [2], where� is the noise variance that is
supposed to be known by an oracle. The error measure we used is
MSE =

x
(f̂(x) � fo(x))

2=N , where f̂ is the estimated signal,
and fo is the original signal(

x
fo(x)

2=N = 1:200389). For the
wavelet shrinkage approaches, all wavelet coefficients are shrunk
using the same threshold, and therefore, some regular parts of the
signal are falsely removed by the algorithm. Furthermore, shot noise
with large magnitude cannot be removed (for example, the shot
noise near abscissa 50). However, there is no such problem for the
proposed singularity detection method, as shown in Fig. 3(c). This
is because the proposed method considers the local regularity of the
signal; hence, only the local information is used. Furthermore, the
algorithm requires noa priori information of the signal or noise. Its
performance will not be affected by the variation of noise variance
within the signal.

III. T WO-DIMENSIONAL DENOISING ALGORITHM

The denoising algorithm is extended for two-dimensional (2-D)
signals in this section. The approach is basically similar to the
1-D case. However, we extend the concept of COI to a 2-D form
to be the so-called “directional cone of influence” (DCOI). First,
let us define the discrete dyadic wavelet transform [1], [12] of
a discrete imagef to be fS2 f; (W 1

2 f)1�j�J ; (W
2
2 f)1�j�Jg,

where f 2 L2(R2). The components are obtained by the
convolutions off(x; y) with the scaling function and the dilated
waveletsS2 f = f � �2 (x; y); W 1

2 f(x; y) = f �  1
2 (x; y);

W 2
2 f(x; y) = f �  2

2 (x; y). The wavelets are designed to be
the partial derivatives of a smooth function along thex and y
directions, respectively. That is, 1(x; y) = @�(x; y)=@x and
 2(x; y) = @�(x; y)=@y. In addition, denote the modulus of the

wavelet transformM2 f(x; y) = jW 1
2
f(x; y)j2 + jW 2

2
f(x; y)j2

and the phaseA2 f(x; y) = arctan(W 2
2 f(x; y)=W

1
2 f(x; y)).

They indicate the magnitude and orientation of the gradient vector
of the wavelet coefficient at a particular point(x; y). Since the
orientation of the gradient vector of the wavelet coefficients indicates
the direction where the maximum local variation of a signal is found
[1], we only need to measure the Lipschitz exponent in that direction
in order to identify the singularity off(x; y). The COI derived from
that direction is the so-called DCOI, as illustrated in Fig. 2. In that
direction, the characterization of the Lipschitz exponent in Theorem 1
concerning the asymptotic decay of wavelet coefficients across scales
is also valid. More precisely, the Lipschitz exponent� at a point
(x0; y0) of a 2-D functionf in a particular direction is related to the
modulus of the wavelet coefficients of this function in scaless by

jMsf(x; y)j � Bs�

where B is a constant. Instead of directly fitting the Lipschitz
exponent from a set of neighboring coefficients in scale-space or
tracing the maxima curves across scales as indicated in [1], we
compute the integral of the modulus of the wavelet coefficients inside
the DCOI. We define an operatorN , which is dubbed as the wavelet
transform modulus sum (WTMS) inside the directional COI of a
function such that

Nsf(x0; y0) =
(x;y)2D

Msf(x; y) dx dy (9)

whereDs = f(x; y) : (x�x0)
2+(y� y0)

2 � Ks2; (y� y0)=(x�
x0) = tan(A2 f(x0; y0))g is the DCOI. We implement the line
integral of (9) by linear interpolation since not all wavelet coefficients
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(a)

(b)

(c)

Fig. 3. Comparison of the traditional wavelet denoising approaches and the new denoising algorithm. (a) Noisy and original signal. MSE= 0:036909.
(b) Wavelet shrinkage result and original signal. MSE= 0:023712. (c) Result of singularity detection by using the interscale ratio and the interscale
differences as compared with the original signal. MSE= 0:008133.

lie on the direction indicated byAsf . As the DCOI is just the COI
in a particular direction on a 2-D plane, we can again make use of
Theorem 1 to rewrite (9) as

Nsf(x0; y0) � B0s�+1: (10)

The proof of (10) is similar to that for (5). Therefore, the Lipschitz
exponent� can be estimated from the upper bound of the slope of
log(Nsf), as in the 1-D case. In the application of denoising, we do
not need to directly estimate the Lipschitz exponent�. As in the 1-D
case, we perform the wavelet transform on the noisy signal and select
the wavelet coefficients that give positive Lipschitz exponents. The
wavelet that we used is the first derivative of a smoothing function
that has one vanishing moment. This gives rise to the interscale ratio
condition, as in similar in the 1-D case

N2 f(x0; y0)=N2 f(x0; y0) > 2: (11)

As in the 1-D case, small irregular signals may falsely fulfill the
condition, as stated in (11), due to the error generated in measuring the
directional sum. Therefore, we also introduce the interscale difference
condition to reject the small irregular signal

N2 f(x0; y0)�N2 f(x0; y0) > 
 (12)

where 
 is a threshold. Basically, the applications of the 2-D
interscale ratio condition and the interscale difference condition are
the same as in the 1-D case, but the WTMS in each scale is
obtained only in the direction indicated byAsf(x; y) instead of
the whole three-dimensional (3-D) COI. This significantly reduces
the complexity in computing the WTMS. As mentioned in the
1-D case, one of the major advantages of the proposed singularity

detection denoising algorithm is that it does not require a complicated
reconstruction process for the selected wavelet coefficients. It is
also true for the 2-D case. The proposed approach requires only a
simple inverse wavelet transform to reconstruct the selected wavelet
coefficients. The saving of computation time, as compared with that
in [1], can be up to a few orders of magnitude. To conclude, the
proposed 2-D denoising algorithm can be summarized as follows.

2-D Denoising Algorithm:

1) 8j where1 � j < J , computeW2 f andN2 f as described
in (9).

2) Select W 1

2
f(x0; y0);W

2

2
f(x0; y0) if N2 f(x0; y0)

=N2 f(x0; y0) � 2 andN2 f(x0; y0)�N2 f(x0; y0) � 
,
where
 is a threshold value;

3) Repeat step 2 until all the coefficients in the selected levels
have been processed.

4) Reconstruct the image from the selected wavelet coefficients
using the inverse wavelet transform.

To demonstrate the results of denoising for 2-D images, we
apply the 2-D denoising algorithm to the application of tomographic
image reconstruction. The algorithm is applied to the sinogram [15]
(the projections of an image). For comparison, different denoising
techniques are applied to the noisy sinogram with a 128� 128
projection set. Fig. 4(b) shows the original sinogram and the image
reconstructed from the projections using the filtered back-projection
(FBP) algorithm [15]. The sinogram is then contaminated with zero
mean Gaussian noise of variance 0.5. For the case where the noise
variance is 0.5, Fig. 4(a) shows the noisy sinogram with MSE
equal to 0.25 and the reconstructed image with MSE equal to 1.59.
The signal power for the original sinogram and its reconstruction
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(a)

(b)

(c)

(d)

Fig. 4. Comparision of orthogonal wavelet thresholding and the proposed
denoising algorithm in the reconstruction of image from its sinogram with
Gaussian noise of zero mean and 0.5 variance. (a) MSE= 0:248665

MSE = 1:590063 Noisy sinogram and FBP image. (b) Original sinogram
and FBP image. (c) MSE= 0:021426 MSE = 0:121357 Denoised
sinogram and FBP image using the wavelet shrinkage. (d) MSE= 0:007339

MSE = 0:041172 Denoised sinogram and FBP image using the singularity
detection with interscale difference.

are N�1

x;y=0
�f(x; y)2=N2 = 1:2902 and N�1

x;y=0
f(x; y)2=N2 =

0:5950, respectively, forN = 128. Fig. 4(c) shows the denoised
result using the wavelet shrinkage approach, with universal threshold
��, where � = 1:860, as suggested in [2]. Fig. 4(d) shows the
denoised result using the proposed approach. The reconstructed image
shows that the result using the new algorithm is better than that of the
wavelet shrinkage approach in terms of MSE and visual quality. The
improvement is due to the fact that the proposed approach considers
the information of the wavelet coefficients evolved across scales.

IV. CONCLUSION

In this correspondence, we proposed a new algorithm for noise
reduction using the wavelet transform modulus sum (WTMS). We
suggest the use of both the interscale ratio and the interscale dif-
ference conditions of the WTMS to select the required wavelet
coefficients. Merits of the singularity detection denoising algorithm
include edges preservation and translation invariance. It does not
introduce spurious oscillations and only requires very littlea priori
information of the signal. In addition, we extend the method to two-
dimensions for image denoising. By computing the WTMS of the
noisy image inside the corresponding “directional cone of influence”
and applying the interscale ratio and the interscale difference con-
ditions, the irregular parts of the image are readily identified. The
denoising technique is applied to tomographic image reconstruction,
where the improved performance of the new approach is clearly
shown.
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