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The Discrete Fractional Fourier Transform

Catptay CandanStudent Member, IEEBM. Alper Kutay, Member, IEEEand Haldun M. Ozaktas

Abstract—We propose and consolidate a definition of the A comprehensive introduction to the FRT and historical ref-
discrete fractional Fourier transform that generalizes the discrete erences may be found in [5]. The transform has become pop-
Fourier transform (DFT) in the same sense that the continuous i5r in the optics and signal processing communities following

fractional Fourier transform generalizes the continuous ordinary .
Fourier transform. This definition is based on a particular set of the works of Ozaktas and Mendlovic [6]-{8], Lohmann [9] and

eigenvectors of the DFT matrix, which constitutes the discrete Almeida [12]. Some of the applications explored include op-
counterpart of the set of Hermite—Gaussian functions. The defini- timal filtering in fractional Fourier domains [13]-[16], cost-ef-

tion is exactlyunitary, index additive, and reduces to the DFT for  ficient linear system synthesis and filtering [17]-[21], time-fre-
unit order. The factdth?t :]hlsdqeflnltIOP sa_tlsflelsFaII the de5|r<f51ble quency analysis [11], [12], [22], [23], and Fourier optics and op-
properties expected of the ciscrete fractional Fourier transiorm tical information processing [24]-[26]. Additional recent pub-

supports our confidence that it will be accepted as the definitive ™~ i ]
definition of this transform. lications include [27]-[33]. Further references may be found in

Index Terms—Chirplets, discrete Wigner distributions, Her- [5]-
mite—Gaussian functions, time—frequency analysis. Up to now, the fractional Fourier transform has been digi-

tally computed using a variety of approaches. However, these

approaches are often far from exhibiting the internal consistency

. _ and analytical elegance we take for granted with the ordinary
N RECENT years, the fractional Fourier transform (FRTDFT. Itis the purpose of this paper to offer and consolidate such
has attracted a considerable amount of attention, resultingidefinition of the discrete fractional Fourier transform.

many applications in the areas of optics and signal processinga tast0( NV log V) algorithm for digitally computing the con-

However, a satisfactory definition of the discrete FRT that i, s fractional Fourier transform integral has been given in

fully consistent with the continuous transform has been Iackm@4]' This method maps th& samples of the original function

In this paper, our aim is to propose (following R&ial. [1], {5 the & samples of the transform. Whereas this mapping is

[2]) and consolidate a definition that has the same relation leéry satisfactory in terms of accuracy, the x N matrix un-

the discrete Fou_rier transform (DFT) as the continuou_s F%Erlyingthis mapping is naxactlyunitary and does naxactly

has with the ordinary continuous Fourier transform. This defyisty the index additivity property. This makes it unsuitable for

inition has the following properties, which may be posed agget_consistera priori definition of the discrete transform.
requirements to be satisfied by a legitimate dlscrete-lnput/d|s—SeVeral publications proposing a definition for the discrete

crete—oquu_t F_RT: FRT have appeared, but none of these papers satisfy all the
1) unitarity; _ requirements. Most of these provide a satisfactory approxi-
2) index additivity; , _mation to the continuous transform; however, [34] and [35]
3) reductlpn “? the DFT Wheh the order is equal to unity; do not satisfy requirements 1 and 2, and [36] does not sat-
4) .approxmatlon of the contlnugus FRT. ] isfy requirement 3. Reference [37] satisfies requirement 2 for
The first two are essential properties of the continuous trangsiain discrete orders, and it is not clear to us whether it
form, which we desire to be satisfiekactlyby the discrete gagisfies requirement 4. The definition in [38] and [39] cor-
transform. The third is necessary for the discrete fractionglsyonds to a completely distinct definition of the fractional
Fourier transform to be a consistent generalization of th®) rier transform [40].
ordinary DFT. The last, of course, is the major motivation for
defining the discrete transform in the first place. Beyond these . - .
it would be desirable for the discrete transform to satisfy By Pei and Yeh [1], [2]. They suggest defining the discrete

. . . T in terms of a particular set of eigenvectors (previously
many operational properties of the continuous transform agcussed in [38]), which they claim to be the discrete
possible. analogs of the Hermite—Gaussian functions (which are well
known as the eigenfunctions of the continuous transform).
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Il. PRELIMINARIES It can be shown that the Hermite—Gaussian functions are the
unique finite energy eigensolutions of (4) (see [43, p. 337]). We

_ ) can express the left-hand side of (4) in abstract operator notation
Theath-order continuous FRT can be defineddox |a| <2 ¢

through its integral kernel

A. Continuous Fractional Fourier Transform

(D? + FD2F Y f(t) = Af(2) (5)

Fe) = [ Kt —
oo whereD = d/dt andF denote the differentiation and the or-
Ko(te,t) = K. ¢e”(ti cot $—2t,t csc p+t” cot ¢) 1) dinary Fourier transform operations, respectively. The operator
(D? + FD?F~1) can also be recognized as the Hamiltonian as-

where ¢ = an/2 and K, = exp[—j(nsgn¢)/4 — sociated with 'Fhe quantum-mechanical harmonic os_cillator[44].
$/2)]/|sin(¢)|*5. The kernel K,(t,,t) is defined sepa- Here, we will denote this operator &yand thus write (5) as
rately fora = 0 anda = +2 as Ko(t,,t) = 6(t, — ¢ _
and Kis(t,,t) = 6(t, + t). The ((jefin?tion c;n eas)ily (D* + FD*F ) f(t) = Sf(t) = A (D). ©®)
be extended outside the interval-2,2] by noting that
FHraf(t,) = Fef(t,) for any integed. The kernel is known
to have the following spectral expansion [3]:

A theorem of commuting operators will be used to show that the
Hermite—Gaussian functions, which are eigenfunctiord$ afre
also eigenfunctions of (see [45, p. 52]).

o0 Theorem 1: If two operators4 and/3 commute, i.e. AB =
Ko(ta,t) =Y tu(ta)e™ TRy (t) (2) BA, there exists a common eigenvector set betwéemd .

k=0 The commutation ofF andS can be shown as

wherey,(¢) denotes théth Hermite-Gaussian function, ang FS=FD? 4+ F2D2F~—t — FD2 4 F2D2F2F
denotes the variable in theh-orderfractional Fourier domain 2 2

. . =FD"+D°F=8F. 7
Here,exp(—jmka/2) is theath power of the eigenvalug;, = FDADF 7 (7)

exp(—jnk/2) of the ordinary Fourier transform. When= 1, | passing from the third term to the fourth, we used
the FRT reduces to the ordinary Fourier transfdtff }(t1) =  r2p2r-2 — 7p27 = D2, This, in turn, follows from the
J 772t f(¢) dt, wheret, denotes the frequency-domain varizaet that /2 = 72 — 7 (where 7 f(t) = f(—t)). Thus
able. Asa approaches zero or integer multiplesidf, the kemel ;s hroves that the Hermite—Gaussian functions, which are the
approaches(t, — t) andé(t, + ¢), respectively [4]. The most g efinite energy eigenfunctions af, are also eigenfunc-
important properties of the FRT are tions of .

1) unitarity: (Fo)~! = F=* = (F*), where(-)' denotes

Hermitian conjugation; Ill. DISCRETEFRACTIONAL FOURIER TRANSFORM

2) index additivity: Fo1 Fo2 = Foz For = Faitaz, e , ,
3) reduction to the ordinary Fourier transform whee: 1. We will first show that the first three requirements are au-
tomatically satisfied when the fractional transform is defined

Another important property not discussed here is the relatlot'%_rough a spectral expansion analogous to (2). Assumifg

ship of the fractional Fourier transform to time—frequency re%—) be an arbitranprthonormaleigenvector set of they x N
resentations such as the Wigner distribution [8], [10], [11], [12 FT matrix and); to be the associated eigenvalues, the dis-

We will define the discrete FRT through a discrete analo(‘grete analog of (2) is
of (2). Therefore, we will first discuss the Hermite—Gaussiah 9
functions in some detail. N-1

Folm,n] = > pr[ml(\) pxln] (8)
B. The Hermite—Gaussian Functions k=0

Thekth-order Hermite—Gaussian function is defined/as=  \yhich constitutes a definition of the discrete fractional Fourier

0,1,...) transform matrixt®. This transform matrix is unitary since the
o1/4 eigenvalues\;, = exp(—jnk/2) of the DFT matrix have unit
Pr(t) = Hk(\/%t)e"”z (3) Mmagnitude [38], [41]. Reductionto the DFT wher= 1 follows
V2EE! from the fact that when = 1, (8) reduces to the spectral expan-

. . . . sion of the ordinary DFT matrix. Index additivity can likewise
where Hy IS the kth I—_Ierm|te polynomial having real zeros. be easily demonstrated by multiplying the matrig€s andF*z

_Thz ngml_treh—G: uss!?nstorm a C(;mpl'?te and orthlclnrlzormal t%%h using the orthonormality of the.[n] [48]. Additionally, it

in £ [42]. The Hermite-Gaussian functions are well known tQ easy to show that any definition satisfying these three require-

. . . |
be the eigenfunctions of the Fourier transform operator, as Wrilents can always be expressed in the spectral expansion form.

als\/(\)/ebgsgﬁn p;'?;']vé defining differential equation of the Her- Before we continue, we note that there are two ambiguities
mite—G gl |Wln ) ining di 'al equati that must be resolved in (8). The first concerns the eigenstruc-
e-f>aussians. ture of the DFT. Since the DFT matrix has only four distinct
d2 f(t) eigenvalues )\, = exp(—jnk/2) € {1,-1,5,—4}) [41], the
2z Ar* f(t) = Af(). “4) eigenvalues are in general degenerate so that the eigenvector set
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is not unique. For this reason, it is necessary to specify a partichere we used the fact thefe"? F~+ = /27"t which is
ular eigenvector set to be used in (8). In the continuous case, thighing but a statement of the shift property of the ordinary
ambiguity is resolved by choosing the Hermite—Gaussian furiéeurier transform.

tions as the eigenfunctions or, equivalently, by choosing thatFinally, we replaceD? in (6) with D? to obtain an approxi-
eigenfunction set of the Fourier transform that are also eiganation ofS, which we refer to as

functions ofS. In other words, we choose the common eigen-

function set of the commuting operatd@sndF. Since our aim S=D?4 Fp2F-1

is to obtain a definition of the discrete transform that is com- P 24 e cos(2rht) — 1)

pletely analogous to the continuous transform, we will resolve = 2 + 2

this ambiguity in the same manner by choosing the common B2

eigenvector set of the DFT matrix and the discrete matrix analog =D* —4rt® + E(D4 + 167 ') + O(h*).  (13)
of §, which we define to be the discrete counterparts of the Her-

mite-Gaussian functions. We see that the analogous finite difference operatds an

The second ambiguity arises in taking the fractional power gf(,2) approximation ofS. If we explicitly write the difference
the eigenvalues since the fractional power operation is not singlguations f(¢) = Af(t), we obtain

valued. This ambiguity will again be resolved by analogy with
the continuous case by taking = exp(—inka/2). Distinct
definitions based on other choices are discussed in [40]. The

fE+h)=2f(t)+ f(t—h)

2
particular choice we are concentrating on is the one that has been + 2(cos(2mht) — 1) f(£) = A7AS(2). (14)
most studied and has overwhelmingly found the largest number ) ) ) )
of applications. We will now switch to discrete variables by letting= nh [46]

Denoting the discrete Hermite—Gaussians,gs], the defi- and obtain the second-order difference equation analogous to
nition of the discrete fractional Fourier transform becomes  the defining differential equation of Hermite-Gaussians as

N—-1

Folmyn] = 3 wnfmle FRou o], ©) fox =2/l g =1l
k=0 +2 <COS <Nﬂn> — 1) fn] = Af[n] (15)
Now, we must explicitly define the discrete counterparts of
the Hermite—Gaussian functions. where f[n] = f(nh), andh = 1/v/N. We immediately note

that the coefficients of the above equation are periodic With
implying the existence of periodic solutions with the same pe-
We will define the discrete Hermite—Gaussians as solutiorisd [47]. When (15) is written explicitly by concentrating on a
of a difference equation that is analogous to the defining diffesingle period, say) < n < N — 1, we obtain (16), shown at
ential (4) of the continuous Hermite—Gaussian functions. Firshe bottom of the next page, where the rows of (16) follow from

A. Discrete Hermite—Gaussians

we define the second difference operafr the replacement df < n < N — 1 in (15) and the utilization
of the periodicity relatiory'[n + N] = f[n]. This completes the
D2f(t) = ft+h) - 2f(2t) R AL (10) derivation of the discrete analog &f which we will refer to as
h the S matrix.
which serves as an approximation® = d2/dt2. This can We will show below thaS commutes with the DFT matrix
also be seen by examining and that the common eigenvector setSofas well as the DFT
matrix, isunigueandorthogonal
P2 P — 94 ¢ hP _This unique orthogonal eigenvector set, which we oall
- B2 will be taken as the discrete counterpart of the continuous Her-
5 2h%_, 2kt 4 mite—Gaussians to be used in the defining (9).
=D+ Dt Dt (1) We now demonstrate that tifeand the DFT matrices com-
~ mute.

o) Theorem 2: The matrixS and the DFT matriXF) commute.

where we have expressed the shift operator in hyperdifferential Proof: S can be written a$§ = A + B, whereA is the

form asf(t + h) = " f(t) [46]. circulant matrix corresponding to the system whose impulse re-
Now, we consider the finite difference analog BD?F % sponse isi[n] = d[n + 1] — 26[n] + é[n — 1], andB is the
appearing in (6), which iFD2F 1, diagonal matrix defined aB = FAF~!. It can also be seen
. p that FBF~! = F2AF? = A sinceh[n] is an even function.
Rl _ F [6 —2+e :|f-—1 Then,FSF~! =F(A+B)F ' =B+ A =S. m
h? In the next subsection, we will show that the common
@2t _ 9 4 emi2mht  9(cos(2mht) — 1) eigenvector set is unique, and in the following subsection,
= h2 = B2 we will discuss the issue of ordering (or indexing) of the

P s . eigenvectors in one-to-one correspondence with the continuous
= —4n7t" + 5 (16m717) + O(h) (12) Hermite—Gaussian functions.
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B. Unigueness of the Common Eigenvector S&tarfid DFT  choices could not be an eigenvector of the DFT matrix. This re-
(%Jirement resolves the ambiguity associated with choosing the

The eigenvectors of the DFT matrix are either even or o I envector i nding to the zero eigenvalue wWha
vectors [41]. It follows from this result that the common eigeng genvectors correspo g to the zero eigenvalue unesna

vector set ofS and the DFT matrix, which is known to existm.UItIpIe 2](4 anéd aggltr;lun[;?:lfrely dte.termlnes the common set of
since they commute, should also consist of even or odd vectoer'%(\alnvﬁc ors 0 art]h 1 ?h matrx. ¢ t has to b
For completeness, we present a short proof of this important ‘;e- ¢ have seen (hat the common eigenvector set has 1o be

sult, which will be utilized in developments below (see also [41 rmeg fby tiven and odd vtectoth. Therefo;et,hwe (\;\3” restrict Eped
for an alternative proof). earch for the common set on the even and the odd spaces. To do

Theorem 3: Eigenvectors of the DFT matrix are either eveﬁhat’ we will introduce a matri¥ that decomposes an arbitrary
or odd sequences vector f[r] into its even and odd components. TRenatrix, as
Proof: Letting. F denote the DET matrix. we know thatdeﬁned below, maps the even part of tNedimensional vector

F? = J andF* = I, wherelJ is the coordinate inversion matrix, fln] to the first| (V/2+1)| components and the odd partto the
andI is the identity matrix. Sinc&™* = I, the eigenvalues remaining componentsFor example, thd matrix of dimen-

of F can only be{1, -1, j,—j}. Now, letp be an eigenvector sion 5 is

of F satisfyingFp = Ap; then,F?p = \?p; however, since V2. 00 0 0

A€ {1,4,—j, -1}, F?p = A\?p is equivalent tolp = =+p, 1 0 1 0 0 1

and that completes the proof. [ P= E 0 01 1 0 a7
Itis known that whenV is not a multiple of 4, all of the eigen- 0 01 -1 0

values ofS are distinct [38]. Sinc® is a real symmetric matrix, 0 10 0 -1

itfollows that all of its eigenvectors are orthogonal to each othefpe first three components gf = Pf
and thus, the set of eigenvectorsSfs orthogonal and unique

(within multiplicative constants). Since we have already show 9[0], g[1], g[2]] = 1 V210l FI] + f[-1], F12] + f[-2
thatS has a common eigenvector set with the DFT matrix, thi;[ 0] 91119121 \/5[ 0 711 e =2l
unique set of eigenvectors Bfmust also be a set of eigenvec- _ 1 5101, £[1 A1 f2 311 (18
tors of the DFT matrix. The normalized version of this set of ﬁ[\/_f[ L FQ =+ 7 72l + I (8)

eigenvectors will be defined as the discrete version of the H

mite—Gaussian functions. -
. . . . . the remaining two components represents the odd paffdf
When NV is a multiple of 4, the matriS still has distinct We remember that the arguments are interpreted madulkas

eigenvalues, with the exception of one eigenvalue, which hI Sthe study of the ordinary DFT. In addition, note that e

the value of zero with degeneracy two. The eigenvectors CQ= i is hoth symmetric and unitary, that B,—= P7 — P~
responding to all eigenvalues except this one are orthogonajs .« ~onsider the similarity transf(’)rmati(iiﬁSP—l, We ex-

tq each other. The two eigenvectors correspoang to.the Zﬁré)ct the resultant matrix to be in the block diagonal form, that is
eigenvalue can be chosen to be orthogonal, again beSdase
Ev 0 }

real symmetric matrix. There are many ways of choosing these
two eigenvectors such that they are orthogonal; however, there 0 Od
is only one way to choose them such that one is an even vec

. . : Eﬂherwise, theS matrix cannot have all even/odd eigenvector
and one is an odd vector. Since we are seeking the common

. : . sse%. It is clearly seen that eigenvectorsREP ! can be de-
of eigenvectors betwees and the DFT matrix and since we . .
: . . termined separately fro®v andOd matrices, and the corre-
know that all eigenvectors of the DFT matrix are either even ; . . )
) sponding eigenvectors Bfare simply the even/odd extension of
or odd vectors, we have no choice but to choose the even a

odd eigenvectors corresponding to the zero eigenvalue; othéjz| is the greatest integer less than or equal to the argument.

%’present the components of the even parfjef]. Similarly,

PSP~ ! =PSP = [ (19)

—2 1 0 0 1
1 2cos(3F)—4 1 0 0
0 1 2cos(222) — 4 0 0
1 0 0 o1 2cos(2E(N — 1)) — 4
f10] f10]
f] f]
y f[:2] .\ f[:2] (16)
JIN —2) JIN —2)
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the eigenvectors d?SP~!. Therefore, the problem of finding that the eigenvector of thEv or Od matrix with the highest
the common eigenvector set is reduced to finding the eigenvetgenvalue has no zero crossings, the eigenvector with the
tors of theEv andOd matrices. second highest eigenvalue has one zero crossing, and so on

The S matrix has a tridiagonal structure, except the twpl8]. Therefore, we can show that tl&v and Od matrices
entries at the upper-right and lower-left corners. After the sirhave eigenvectors whose number of zero crossings range from
ilarity transformation,PSP~! becomes exactly tri-diagonal,0 to | N/2] and from O to| (N — 3)/2], respectively [48].
meaning that the submatricé&s, andOd are also tridiagonal.  Since the even and odd eigenvectorS afre derived from the
From [45], we know that tridiagonal matrices hadestinct zero-padded eigenvectorsibfr andOd, we can show that after
eigenvalues, and this result implies the uniqueness of thero padding and transformation throuBh which is nothing
eigenvectors of thd&v and Od matrices and completes thebut even/odd extension of the vector, the eigenvectilvoiith
proof of the uniqueness of the common eigenvector se&8 ofk zero crossings yields the even eigenvectds ofith 2k (0 <
and the DFT matrix. k < |N/2|) zero crossings, and the eigenvector®i with

Note that in [38], the matri$s + 41 is employed as a vehicle k£ zero crossings yields the odd eigenvectoSofvith 2% + 1
to obtain an orthogonal eigenvector set for the DFT matrix. THe < k < [(NV — 3)/2]) zero crossings. This eigenvalue-based
authors of [38] conjecture that the eigenvaluessof 41 are procedure enables us to accurately determine the number of zero
distinct whenever the dimension 8f+ 41 is not a multiple of crossings of an eigenvector without employing any means of
4. In the present paper, we show that the eigenvalue degeneramynting. [48].
of S is at most two, and even though there exist many ways ofAn even eigenvector ofS can be formed ase =
choosing these two orthogonal eig_envectors, there is only e{fO...O]T, where &, is the eigenvector ofEv with k
way to choose thgm such that one is an even vector and othey Fo-crossing@ < k < [N/2]). It can be seen at this point
an odd vector. This argument uniquely determines the com Nt the vector
set of eigenvectors & and the DFT matrix, whatever the di-
mension ofS. o= L [\/ﬁék[O]ék[l] CeelrleRlr] - - el (20)

V2
) ) . has 2% zero crossings, when the above convention of zero

In the previous sections, we have shown the existence aé?gssing counting is exercised.
unigueness of the common eigenvector sef aind the DFT
matrix. In this section, we will determine which eigenvector of [e ¢[0]]

C. Ordering the Eigenvectors &f

this set corresponds to which Hermite—Gaussian function. We 1 o T ) )

will order (index) the eigenvector setin amanner consistentwith = ﬁ[ﬁek[o]ekgl) - exlr] -Gk (] e’i[l]\/iek [0]]

the ordering of the continuous Hermite—Gaussians. Our method % ZEro crossings % ZETO Crossings

of ordering will be based on the zero-crossings of the discrete (21)

Hermite—Gaussians, in analogy with the zeros of the continuous

Hermite—Gaussians. where N = 2r + 1. The same result can also be shown for
We will first clarify what we mean by the zero crossing ofV = 2r.

a discrete vector. The vectdifn| has a zero crossing at if Similarly, odd eigenvectors ofS are derived from the

f[n]f[» + 1] < 0. In counting the number of zero crossings oéigenvectors ofOd by zero padding and transformation:

the periodic sequencgin] with period NV, we countthe number o = P[0...0/65]*. It can be further shown that the odd

of zeros in the period < n < N — 1, where we also include eigenvectoro derived from the eigenvectas; of Od with &

the zero crossing at the endpoints of the period such as wheemo crossings is an eigenvectorolvith 2% + 1 zero crossings

FIN —1]f[N] = f[N — 1]f[0] < 0 [48]. With this convention, (0 < &k < [(N — 3)/2]) [48].

it can be seen that the shifted periodic sequences have the saniéis procedure not only enables us to accurately determine

number of zero crossings, regardless of the shift. Therefore, the number of zero crossings but also demonstrates that each of

number of zero crossings becomes a property of the periottie eigenvectors d8 has a different number of zero crossings

sequences and not just a property of a particular period. so that each vector can be assigned an index equal to its number
Now, we need to show that all eigenvectors have a distinaft zero crossing. The index numbékrspans different ranges,

number of zero crossings and need to establish a convenigepending on the parity d¥, that is,k = {0,...,N — 1} for

method for counting the zero crossings. The exhaustive countimdd NV andk = {0,..., N — 2, N} for evenN.

of the zero crossings can be numerically problematic due to theA numerical comparison of the continuous and discrete Her-

difficulty of determining the sign of a component which is ofmite—Gaussians is presented in Fig. 1. A comparison of the

small magnitude. known properties of discrete and continuous Hermite—Gaus-
To find the eigenvecton, with & zero crossings, we will sians is presented in Table I. These completely analogous prop-

combine two results from [45]. As discussed before, therties strengthen our belief that discrete time counterparts of the

common eigenvectors & and the DFT matrix can be derivedother properties of continuous time Hermite—Gaussians can be

from the eigenvectors of the tridiagori8l and Od matrices. obtained.

An explicit expression for the eigenvectors of tridiagonal In conclusion, there is a well-defined procedure for finding

matrices is given in [45, p. 316]. Combining this expressioand ordering the common eigenvector set of the madrand

with the Sturm sequence theorem [45, p. 300], we can shdwe DFT matrix, such that theth member of this eigenvector
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¥, () and u, [n] v, () and u, [n] TABLE |
0.7 05 COMPARISON OF THE DISCRETE
HERMITE-GAUSSIANS WITH THE CONTINUOUS HERMITE—GAUSSIANS

The continuous Hermite-Gaussians

0.3 * 1. satisfy a generating differential equation.
0.2 2. are eigenfunctions of the continuous Fourier transform.
01 3. form a complete and orthogonal set in L.
% -1 0 1 2 % -1 0 1 2 4. can be ordered by their number of zeros.
5.

v, () and u, [n The continuous Hermite-Gaussian with k zeros has the eigenvalue eI %

0.6 0.6

under the continuous time Fourier transform operation.

0.4 The discrete Hermite-Gaussians

02 i. satisfy a generating difference equation.

o are eigenvectors of the discrete Fourier transform.

form a complete and orthogonal set in RY.
-0.2
can be ordered by their number of zero-crossings.

RN e 3

-0.4
-2 -1 0 1 2

The discrete Hermite-Gaussian with k zero-crossings has the eigenvalue

imk - . .
€% under the discrete Fourier transform operation.

Fig. 1. Comparison of the{0,2,4,6}th continuous Hermite—Gaussian
functions with the corresponding eigenvectors of $heatrix (N = 16).
TABLE I
. . . EIGENVALUE MULTIPLICITY OF DFT MATRICE
set has: zero crossings and is even or odd according to whether

n is even or odd. N 1 —-j -1 J

4 1 -1
D. Definition of the Discrete Fractional Fourier Transform mom* m nom

dm+1 | m+1 m m m

The definition of the discrete FRT can now be given as
dm+2 | m+1 m m+1 m

F[m,n] = > wefmle ER 0] (22)
k=0,kA(N —1+(N)2)

dn+3 | m+1|m+1|m+1 m

TABLE Il
whereuy[n] is thekth discrete Hermite—Gaussian function (the =~ PROPERTIES OF THEDISCRETEFRACTIONAL FOURIER TRANSFORM
eigenvector ofS with % zero crossings) an@V),; = Nmod2.

The peculiar range of the summation is due to the fact that there 0 flnl = faln]
does not exist an eigenvector wiffi — 1 or N zero crossings 1 flel+gln] = faln] + galn]
when N is even or odd, respectively. This index skipping is re- 2 faln] PN Fars[n]
Iateq to thg sn”rlnlar.ly pe.cullar eigenvalue multiplicity of the DFT 3 Il =L DFT{f[n]}
matrix, which is given in Table 1. ”
Some of the properties of the discrete FRT are summarized 4 fl=n] — fal=n]
in Table IlI. 5 *[n] s fa0n)
The matrixS + 4I was previously emplqygd i|_1 [38]. In [1], 6 Bven{f[n)} = Bven{fu[n]}
Pei and Yeh have observed the visual similarity between the "
eigenvectors ofs + 4I and the Hermite—Gaussian functions, 7 Odd{flnl} <« Odd{fun]}
noting that it can form the basis of the definition of the dis- 8 LG IMP = SN fnlP
crete fractional Fourier transform. In this paper, we showed why
the matricesS + 41 or S have eigenvectors similar to the Her- TABLE IV
mite—Gaussians, proved the uniqueness of these eigenvectors, GENERATION OF F'¢ MATRIX

and presented a precise method of indexing them in one-to-one

correspondence with the Hermite—Gaussians. In the next sec-  + Cenerate matrices S and P.

tion, we will find a sequence of matrices;,, which provide 2 Generate the Ev and Od matrices from (19)-

even finer approximations to the Hermite—Gaussian functions. 3 Find the eigenvectors/eigenvalues of Ev and Od.
The overall procedure underlying the generation of the 4 Sort the eigenvectors of Ev (Od) in the descending

ath-order discrete FRT matrix is summarized in Table IV. order of eigenvalues of Ev (Od) and denote the

sorted eigenvectors as ey (o).
5 Let ug[n]=Pe,T |0...0]7.
In Section Ill, we wrote a difference equation constituting a Let ugis1[n] = P[0...0 | ok T |7
first-order approximation to the differential equation defining
the Hermite—Gaussians. In this section, we will write higher
order difference equations that provide better approximations.

IV. S5, MATRICES

6 Define F*[m,n] = Yrer ue[m] e 752 uy[n],

M={0,...,N-2,(N - (N))}
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If we denote theD(h?*) approximation taS asSa, the ma- tional Fourier transform of the sampled version of the same
trix S appearing in the previous section can then be renamedasction. The rectangular pulse is defined as

S, within this general setting of approximation matrices. As far

as ana priori discrete theory is concerned, these higher order

approximations may not be of special interest since the lowest f(t) = {
order approximation leads to the purest and simplest definition

of the discrete fractional Fourier transform. Nevertheless, these

approximations may be of use when itis desired to simulate Come_con_tlnuous_ FRT Of_ the pulse is calcu_lated using the nu-
tinuous transforms very accurately. merical integration routines of MATLAB with a tolerance of

We first derive the higher order approximations to the secorQoOOl' Th? discrete FRT iransform of the pul_se i_s calc_ulated by
derivative operator. transforming thev sample; of the pulse function in the m_terval
Theorem 4: The O(h2*) approximation ofD? can be ex- [-V/N/2,+/N /2]. From Fig. 2, we can see that the discrete
pressed as transform output is a fairly good approximation of the contin-
uous transform. Similar results have been obtained with many

other functions.

1, |t <1

0, otherwise. (26)

. 1K 1 2[(m = D1? ~
Do _pym— 1200 T 2 o2 p2ym 23
2k = g2 Z( ) (2m)! ( ) (23) VI. CONCLUSION

m=1

Proof of the theorem is given in [48]. We have presented a definition of the discrete FRT that ex-

As an example, we examine thih*) approximation of>?: actly satisfies the essential operational properties of the contin-
uous fractional Fourier transform. This definition sets the stage

. 1 . 1 . for a self-consistent discrete theory of the fractional Fourier
(D) f(nh) = 7z {hQDQ - ﬁ(hQDQ)Q} f(nh) transformation and makes possilaepriori discrete formula-
1 1 4 5 tions in applications. _ _
=3 [_ﬁf[n +2]+ gf[” +1] - 5f[n] Asa by produ_ct, we optalned the ol_lscrete counterparts of the
Hermite—Gaussian functions. We believe that the discrete coun-
—l—éf[n —1] - if[n _ 2]} (24) terparts of the muItitgde of operational properties fqr the Her—
3 12 mite—Gaussian functions, such as recurrence relations, differ-

R entiation properties, etc., can be derived by methods similar to
wheref[n] = f(nh), and the definition o2 is given in (11). those in Section lIl. Likewise, we believe the discrete counter-
As in Section IlI-A, replacingd? with (D)2 in (6) and pro- parts of the many interesting and useful properties of the con-
ceeding similarly, we may ultimately reach the higher order apinuous fractional transform will be established.
proximation matricesS,;. The eigenvectors of these matrices Our method of derivation closely resembles the continuous
will be better approximations to the Hermite—Gaussian fungefinition originally given in [6] and [7]. In these papers, the
tions. For example, the x 7 S, matrix is given by continuous FRT is defined through spectral expansion. It was

later noticed that Namias had reached the integral kernel of

i C;O % _4% 01 0 _1—12 %1 T the FRT from its spectral expansion using certain identities and
3, 6;1 3 T2 01 0 -5 formulas for the Hermite—Gaussian functions [3]. To reach the

iz 3 Cy 3 12 0 0 closed-form definition for the discrete FRT, we need similar
Sy=1 0 _% % Cs 3 —41—12 0 identities and formulas for the discrete Hermite—Gaussians de-
0 0 -1 5 Ci 5 -3 fined in this paper. Further research on the difference equation

1 12 3 s 3 22 pap q

2 01 0 -4 3 6;5 3 yielding the discrete Hermite—Gaussians may provide some re-

-3 T12 0 0 -1 3 Ce —(25) sults leading to the closed-form definition of the discrete FRT.
Although not touched on in this paper, there exists another

\év/q;rec’“ = 2(—1/12cos(2m/N(2k)) + 4/3 cos(2r /Nk) — way of interpreting the continuouS operator. Readers with

It is also possible to show that the eigenvectors of the ma_physms background may have noticed iias actually the

trix S | ) : f the DET matrix by sliahtl amiltonian of the harmonic oscillator, which is a system of
”Xd' 2k ar?haso elge?v_?r(]: ors o 5 eU ; tmatrllx %S'g undamental importance in mechanics. The mafixntro-

mo |f>/|ng € proot of Theorem 2. Unforiunately, the prody .o in this paper may be proposed as the difference analog
of uniqueness of the eigenvectors $f;, and the method of

rdering them cannot b neralized siffhe mati ) of the continuous harmonic oscillator Hamiltonian and may
0 tet 'd'g € | C,\? oth T gene ‘? ed s a lcgs aluta' lead to further interesting connections [49]. We may refer to
not tridiagonal. INEVErIneless, extensive numerical simutatio ], [51] for another discretization of the harmonic oscillator
show that the procedure for defining the discrete Hermite—Gays-

. th 5 d lize for hiah q i F amiltonian.
stans througiv, does generalize for igher order Matrces. Fur e paye already mentioned that tBé N log V) algorithm
ther work is needed to provide rigorous statements.

presented in [34] can be utilized for fast computation in most
applications. For example, in the linear-system-approximation
application in [17] and [18], we can implement the fractional
In this section, we will compare the continuous fractiondfourier transform stages with this fast algorithm. However, it
Fourier transform of a rectangular pulse with the discrete frasould be preferable to have a fast algorithm that exactly com-

V. NUMERICAL COMPARISON
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N=32 and a=0.25

N=32 and a=0.75

Fig. 2.

(solid curve) and through the discrete FRT matrix (circles). The transform orde

FRT of the rectangle function calculated through numerical integratio

a and matrix dimensiodV is indicated in the title of each plot.
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(6]

(71

(8]

9]

(10]

(11]

[12]

(13]

4]

(15]

putes the product of the fractional Fourier transform matrix de-
fined here, with an arbitrary vector. We are confident that sucfit®
an algorithm will emerge soon.

From the spectral expansion of the continuous and discrete
fractional Fourier transform, it is intuitively clear that the dis-

crete transform approaches the continuous transform as the fi8

nite step sizéx approaches 0 or, equivalently, Asapproaches
oo. Arigorous statement of this remains to be established. Neyi9]
ertheless, certain forms of convergence results for discrete Her-

mite—Gaussians have been presented in [50].

One of the most interesting avenues for future research igo]
the establishment of the relationship of the discrete fractional
Fourier transform with the discrete Wigner distribution. We
might expect the study of the relationship of the Wignerl21l
distribution with the fractional Fourier transform to contribute
to the establishment of a definitive definition of the discrete
Wigner distribution, leading to a consolidation of the theory of[22]
discrete time-frequency analysis.

Last, since the DFT is closely related to many other trans
forms such as the discrete cosine, Haar, Hadamard, Hartley, et
generalizations of these transforms to fractional orders and thejiz
applications can be accomplished in the near future.
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