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Filterbank Reconstruction of Bandlimited Signals
from Nonuniform and Generalized Samples

Yonina C. Elday Student Member, IEEEBNd Alan V. Oppenheintellow, IEEE

Abstract—This paper introduces a filterbank interpretation of Another well-known sampling theorem by Papoulis [8],
various sampling strategies, which leads to efficient interpolation \which generalizes uniform sampling of a signal, states that
and reconstruction methods. An identity, which is referred to as a bandlimited signal can be reconstructed from uniformly

the Interpolation Identity, is developed and is used to obtain par- - . . .
ticularly efficient discrete-time systems for interpolation of gener- spaced samples of the outputsidflinear time-invariant (LT1)

alized samples as well as a class of nonuniform samples, to uni-Systems with the signal as their input sampled at dftb
form Nyquist samples, either for further processing in that form  of the Nyquist rate. However, the reconstruction from these

or for conversion to continuous time. The Interpolation Identity  generalized samples is again computationally complex. In order
also leads to new sampling strategies including an extension of Pa-y, exp|oit alternative sampling methods in various applications,
poulis’ generalized sampling expansion. practical, efficient reconstruction algorithms are required.

Recently, there has been some work on sampling theorems for
nonbandlimited signals [3], [13] and on nonuniform and gen-
eralized sampling theorems for discrete-time signals [12, Sec.
|. INTRODUCTION 10.2].

ISCRETE-TIME signal processing (DSP) inherently re- Many of the algorithms for processing and analyzing a
lies on sampling a continuous time signal to obtain a didiscrete-time signal assume that the signal corresponds to uni-

crete-time representation of the signal. The most common fofRiMIy spaced samples of a continuous-time signal. When other
of sampling used in the context of DSP is uniform (periodi@MPling procedures are employed, a common approach is to
sampling. However, there are a variety of applications in whidRterpolate to uniform Nyquist samples of the continuous-time
data is sampled in other ways, such as nonuniformly in tinfgnal prior to processing. Existing interpolation methods
or through multichannel data acquisition. Examples in whidRclude approximate polynomial interpolation and iterative
nonuniform sampling may arise include data loss due to chanREpcedures [9]. Here again, practical, efficient interpolation
erasures and additive noise. Multichannel data can arise in diggerithms are desirable.
ital flight control, where the velocity as well as the position are !N this paper, we derive an identity that leads to efficient recon-
recorded. There are also applications where we can benefit fr§fHction methods from generalized samples, as well as efficient
deliberately introducing more elaborate sampling schemes. Berpolation to uniformly spaced samples. We then develop a
tential applications include data compression, efficient quanfieW noniterative approach to reconstruction from recurrent and
zation methods [10], and flexible A/D converters. Nth-order nonuniform samples. The resulting procedure con-
Several extensions of the uniform sampling theorem are wélpts of processing the samples with a bank of LTl filters, either
known [5]. Specifically, it is well established that a bandlimto reconstruct the original bandlimited continuous-time signal or
ited signal is uniquely determined from its nonuniform samplel9 interpolate the nonuniform samples to uniformly spaced sam-
provided that the average sampling rate exceeds the Nyquist Rigs. In addition to offering efficient implemeqtations, th_e filter-
[1]. However, in contrast to uniform sampling, reconstruction drank frameworkleads to anew class of sampling strategies. Asan
a continuous-time signal from its nonuniform samples using t§&ample, we show that applying the identity derived in this paper
direct interpolation procedure is computationally difficult. Sevi© perfe_ct recons_truction filterbanks results in a generalization of
eral alternative reconstruction methods from nonuniform safapoulis’ sampling theorem [8].
ples have been previously suggested. These methods involve itl "€ organization of this paper is as follows. In Section Il, we
erative algorithms (e.g., [2], [6], [14]), which are Computationf.ormulate the Interpolation Identity. Section Il illustrates an ap-

ally demanding and have potential issues of convergence. Plication of the identity to sampling of a signal and its derivative.
In Section IV, we describe recurrent nonuniform sampling and

_ _ _ _ arrive at a continuous-time filterbank implementation of the re-
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z(nT) 619 () The input—output relation for the decimator is given by

3 o 8(t—nT) ya[n] = ye[nM]. ©)

Fig. 1. Converting the sequence of sampiegnT) to a continuous-time ~ For the casé/ = 1andl’ = N7, the Interpolation Identity
impulse trainy. (). reduces to the equivalence depicted in Fig. 3(a) and (b), where

how the filterbank framework leads to new sampling strategies. 1 w
) . - ) (Wwy==—H|=—), |w] < . (4)
In particular, we present a generalization to Papoulis’ sampling To To
theorem. In the various sections, key results are stated and their
detailed derivationis includedin the appropriate appendix. Note that (4) implies thak[n] = h(nly), whereh[n] is
the discrete-time impulse response with frequency response
Il. INTERPOLATION IDENTITY H(w), andh(t) is the continuous-time impulse response with

Throughout this paper, we use the variafieandw to de- T€dUeNcy responsél (). SinceT = NTg, the sequence
note frequency variables for continuous-time and discrete-tinfe,(*1) IS, in general, an undersampled representation @,
respectively. Capital letters are used to denote the Fourier tra@d consequently,.(¢) is, in general, a filtered and aliased
form, e.g., X(£2) and X (w) denote the continuous-time and’€rsion ofz.(t). o o
discrete-time Fourier transforms oft) andz[n], respectively.  AS an illustration of the use of the identity, we apply it in
Parentheses are used for continuous-time signals and bracK¥gnext section to a well-known sampling theorem associated
for discrete-time signals. To further distinguish between conitjth the reconstruction from uniform samples of a signal and its

uous-time and discrete-time signals, we will usually denote tfgMvative. Through the use of the identity, we obtain a particu-
former with a subscript, .gz.(t). We assume that all signals'arly efficient system for interpolation of the samples to uniform
have finite energy and are bandlimitedid, i.e., their Fourier Nyauistsamples, either for further processing in that form or for
transform is zero folV’ < |Q2]. T, denotes the Nyquist period conversion to continuous time. In Sections IV and V, we apply

given by T, = =/W. We use the notation in the block dig-the identity to two classes of nonuniform sampling strategies

gram of Fig. 1 to denote conversion of the sequence of safgferred to as recurrent aféth-order nonuniform sampling. In
plesz.(nT) to a continuous-time impulse trai.(¢), where Section VI, the Interpolation Identity is used to generate new
ye(t) = 2% 2. (nT)6(t — nT'). We refer to this operation ¢lasses of sampling theorems.
as impulse modulation.

The following equivalence, which we refer to as the Interpo!l. | NTERPOLATION AND RECONSTRUCTIONFROM SAMPLES

lation Identity, will be used in subsequent sections to arrive at ef- OF A SIGNAL AND TS DERIVATIVE

ficient implementations of the reconstruction from generalized o an example of the application of the Interpolation Identity,
and nonuniformly spaced samples. The proof of this identity §gnsider sampling a signal and its derivative. It is well known

given in Appendix A.- - that a bandlimited signal can be reconstructed from uniform
Interpolation Identity: Let z.(t) be a finite energy con- samples of the signal and its derivative at half the Nyquist rate
tinuous-time signal bandlimited t&% = = /Ty, and let [4] using the reconstruction formula
hi(t),1=0,1, ---, M — 1denote the impulse responses of the
continuous-time filters with corresponding frequency responses 0
Hy(Q),1=0,1,---, M — 1bandlimited td¥ . For anyM and z(t)= Y siné(n(t — k2Ty)/2T)
T suchthatl’/Ty — 1/M = k for some integek, the block k=—oco
diagrams depicted in Fig. 2(a) and (b) are equivalent for (fIR] + (¢t = k2T) f'[K]) ()
) =M Af < o <@ ~ 2_7rl> wheref[n] = z.(n2Tq), and f'[n] = dz.(t)/dt|;nor, . Note
Iy & t To To that the sequencegdn] and f'[n] are undersampled representa-

Mo 25(l— M) tions ofz.(¢) anddz.(t)/dt, respectively.
+ H; <— — 7>> , w] <7 (1) Equation (5) can be implemented using the continuous-time
I I filterbank depicted in Fig. 4, wittho(t) = sin¢(rt/215) and
The block diagram of Fig. 2(b) consists of expanding a sé1(t) = tsinc(t/215). Note that both filters in Fig. 4 are
guence of samples by a factor bfT'/T;, and then filtering by bandlimited tol¥" = x /T5,. If, instead of reconstructing.(¢),
a discrete-time filter with frequency response given by (1). THee are interested in interpolating the uniform Nyquist samples
filtered output is then decimated by a factor/df followed by Of z(t) from f[r] and f’[»], the interpolation formula obtained
impulse modulation and lowpass filtering. The input—output réom substitutingg = n1g in (5) is
lation for the expander is given by
zln] =z.(nTq)
nIg oo
v =4 " [MT = S siné(n(n — 28)/2)( ]+ To(n—26) ' [K]).
0, otherwise. b=—co

) (6)

} . n=0, £MT/Ty, £2MT/Tg, - --
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zc(nT) 4?—- Hy(2)
2;:0:—00 6(t - nT)
zo(nT)e I Fm —ﬁ)— Hi(Q) 3 ve(t)
o8t —nT)
zo(nT)e~1 25 n ? Har-1(9)
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sl = 2nT) —— M ze[n] ) Ye[n] | M yut[n]@'> _LT—*:L I

220:_00 6(t - nTQ)
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Fig. 2. Interpolation Identity.

zc(nT) —C?_ HQ) —— w(t) f[n] - ,(iﬁ J Ho(S)
> o3t —nT) o _
@) Zn:—oo o n2Tq) G—b——‘ ze(t)
zo(nT) — 1N Bw) —®— 1 — w 7' —(?— Hy(®)
Y om2 oo 8(t —nTg) ® o0t —n2Tg)
(®) Fig. 4. Reconstruction from samples of a signal and its derivative at half the

Nyquist rate.
Fig. 3. Interpolation Identity for the casd = 1 andT = NTg.

: . . . . crete-time mechanism for converting the uniform generalized
Reconstru_c'uon Of?c(t) using (5.) or interpolation using (6) samples of the signal and its derivative to uniform Nyquist sam-
are b.Oth difficult to |mpI¢ment d|rectlly. However, poth mter— les. The filterbank can be implemented very efficiently, ex-
polation and reconstruction can be implemented in a simp roiting the many known results regarding efficient implemen-

fqrm by appl_y_ing the Interpqlation I(jentit)_/ fo the syste_m i ation of the filters comprising a discrete-time filterbank (see,
Fig. 4. Specifically, the continuous-time filterbank of Fig. b.g. [12])

can be converted to a discrete-time filterbank followed by a

i time | filter (LPE). Applving th val By following an analogous procedure, we can arrive at effi-
continuous-time fowpass i er(. )- App ying the equiva eT]C(e]ient interpolation and reconstruction methods for other forms
of Fig. 3 to each branch in Fig. 4 and moving the identic

) . . . i f generalized samples. In the next section, we focus on efficient
impulse train modulation and LPF in each branch outside t g P

btain th valent imol tation in Fi plementation of the reconstruction from recurrent nonuni-
summer, we obtain the equivalent iImpiementation In ™19. gy, samples using a bank of continuous-time and discrete-time
wherehp[n] = hy(nly) for p = 0, 1. As with the contin-

. . . . . filters.
uous-time filterbank, the overall output of Fig. 5 is the orig-

inal continuous-time signat.(t). Sincez.(t) is reconstructed
through lowpass filtering of a uniformly spaced impulse train
with periodTg, the impulse train values{n] must correspond It is well established that a continuous-time signalt)

to uniformly spaced samples of(¢) at the Nyquist rate. Thus, can be reconstructed from its samples at a set of sampling
we conclude that the discrete-time filterbank provides a dismes{t, } if the average sampling period is smaller than the

IV. RECURRENTNONUNIFORM SAMPLING
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fln] te2 Hy(w)
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Fig. 5. Interpolation and reconstruction using a discrete-time filterbank.

Nyquist period, where the average sampling period is define T =3Iq
aslim, ., (¢,/n). The essential result is incorporated in the L R .
following theorem by Yao and Thomas [15]. e 0 & t T T+t, T+t
Theorem 1:Let z.(¢) be a finite energy bandlimited signal
such thatX.(Q2) = 0 for |2] > W — e for some0 < e < W. Fig. 6. Sampling distribution foN = 3.

x.(t) is uniquely determined by its samplegt,, ) if
rate. This may be beneficial in applications where high-rate A/D

n = n%‘ <L<o converters are required. Typically, the cost and complexity of a
lty — tm| > 6 >0, n#m. (7) converterwillincrease (more than linearly) with the rate. In such
cases, we can benefit from converting a continuous-time signal
The reconstruction is given by to a discrete-time signal using A/D converters, each operating
at one/N'th of the Nyquist rate. Since the converters are typically
g G(t) not synchronized, the resulting discrete-time signal is a com-
ze(t) = Z xc(tn)m @) pination of ¥ sequences of uniform samples, where each se-
nETee quence corresponds to samples at it of the Nyquist rate of
where a time delayed version of the continuous-time signal. Thus, the
resulting discrete-time signal corresponds to recurrent nonuni-
e t form samples of the continuous-time signal.
Gt) = (t—to) H <1 B E) ©) Dividing the time axis into nonoverlapping intervals of length
Tz N1y, every interval containd’ sampling points, which implies

that the average sampling rate is the Nyquist rate. Based on The-
orem 1, we can therefore reconstruct a continuous-time signal
t) from its recurrent nonuniform samples(¢,, ), where the
pling timegt,, } are given by (10). In particular, substituting
0) in (8) and (9), we obtain the following reconstruction for-
mula (see Appendix B):

G’( ») is the derivative ofGG(¢) evaluated at = t,, and if

= 0 for somen, thenty = 0.

Reconstructlon from nonuniform samples using (8) dlrect@;m
is considerably more complex than reconstruction from unifor
samples. In this section, we focus on an efficientimplementation
of (8) for the case of recurrent nonuniform sampling. In thls

form of sampling, the sampling points are divided into groups oo N-1
of N points each. The groups have a recurrent period, which z(t) = Z Z z(nT + 1)
is denoted byr’, that is equal taV times the Nyquist period n=—oo p=0
1¢. Each period consists a¥ nonuniform sampling points. N-1
Denoting the points in one period By, p =0, 1, ---, N — 1, ey H sin(w(t —t,)/T)
the complete set of sampling points are (11)
7r(t - nT —t,)/T
tp +nT, p=0,1,---,N—1,n€(—o0,o0) (10)
where
where?” = NTy. Without loss of generality, we will assume 1
throughout that, = 0. ap = —N_1 (12)
Recurrent nonuniform samples can be regarded as a combi- H sin(n(t, — t,)/T)
nation of N sequences of uniform samples taken at otk of =0, 0op

the Nyquist rate. An example of a sampling distribution for the

caseN = 3 is depicted in Fig. 6. As with (8), directimplementation of (11) is computationally
Recurrent nonuniform sampling arises in a broad range of apifficult. We will now develop new, efficient, noniterative imple-

plications. For example, we might consider converting a comentations of (11). In Section IV-A, we develop an implementa-

tinuous-time signal to a discrete-time signal using a series tafn that consists of processing the samples with a bank of contin-

A/D converters, each operating at a rate lower than the Nyquigtus-time LTl filters. In Section IV-B, we develop an alternative

rate, such that the average sampling rate is equal to the Nyquigplementation using a bank of discrete-time LTl filters.
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so(t)

z(nT) —(T)———‘ Ho(Q) z(nT) —ﬁa—— Ho(®)

Yo o8t —nT) 0o 8(t = nT)
Zo(nT + 1) —(?sl—(t) Hy(Q) ©; z(t) ze(nT + t1) *’(?———‘ e~ 1M H, () —ﬁ+}-—’ zc(t)
n——co 6(t —-nT — tl) u——oo 6(t - ”'T)

sN—l(t) —JSUN -1 )
z(nT +ty_1) —*(%)———-* Hy1(Q) Te(nT +tn-1) “—‘(’P_ eI -1Hy ()

oo 0t —nT
°°__°°<5(t—-'nT—tN._1) 4 n=—00 ( n )

Fig. 7. Reconstruction from recurrent nonuniform samples using a con- Fig. 8. Alternative form of Fig. 7.

tinuous-time filterbank.

by a continuous-time filter with impulse responsg(t) given
A. Reconstruction from Recurrent Nonuniform Samples Usily (15). Summing the outputs of thé branches results in the
a Continuous-Time Filterbank reconstructed signat.(¢).
In this subsection, we develop a continuous-time f||terbank Note that each one of the subsequences corresponds to uni-
representation of (11). To this end, we interchange the order/8fM samplesat oneN'th of the Nyquist rateTherefore, the

summations in (11) and denote the inner sunykiy), i.e., output of gach branch of lthe filter banl§.|s an aliased and fil-
tered version ok.(t). The filters, as specified by (15), have the
N—1 inherent property that the aliasing components of the filter out-
- ap(—1) H sin(n(t —t,)/T)  puts cancel in forming the summed outpytt).
An alternative form of Fig. 7, which we will find useful in
t) = AT+t . . . o . . .
fo(?) k;mx (KT +1p) (t — kT —t,)/T Section IV-B, is shown in Fig. 8. This form follows in a straight-

(13) foryvard way by simply noting t.hat the delaygfin the i_mpulse
train of thepth branch can be incorporated into the filtgx(¢).
Using the relatiomin(¢ — kx) = (—1)* sin(t), we can express 10 determine the frequency responses of the filters in Figs. 7
/»(t) as a convolution. Specifically and 8, we note that the impulse response given by (15) can be
expressed as

Jp(t) = sp(t) * p(t) (14)
where hp(t) = apT M H sin(n(t +t, —t,)/T) (18)
No1 o
H sin(m(t +t, — ty)/T) Y sm 7rt/T ]\zzl by PN (19)
hp(t) = ap, wt/T (15) o k=—N+1

where the complex coefficients, are the result of expanding

ands,(t) is an impulse train of samples, i.e., - - , -
the product of sines in (18) into complex exponentials.

e The first term in (19)sin(«¢/7")/wt corresponds to an
sp(t) = D we(KT +1,)8(t— kT —1,).  (16) ideal LPF with cut-off frequencyV /N, which we denote as
k=—c0 Hypp(Q; W/N). The effect of the summation is to create

2.(t) given by (11) can now be expressed as a surVafon- shifted and scaled versions of the LPF, i.e.,

volutions: No1 —
N_1 Hy(Q) = a,T Z b Hipp <Q - N) . (20)
z(t) = Z sp(t) * hy(t). 17) k=—N+1
p=0

Hence, we conclude that the filtets,(€2) in Figs. 7 and 8 have
Equation (17) can be interpreted as a continuous-time fthe properties that,(2) = 0 for |2] > W, i.e., the filters
terbank as depicted in Fig. 7. The signalgt) are formed are bandlimited to the same bandwidth as the continuous-time
according to (16), i.e., the samples are divided iMasubse- signal, and each filteH,(£2) is piecewise constant over fre-
qguences, where each subsequence corresponds to samplgsatcy intervals of lengtBiv/N.
one{Vth of the Nyquist rate of a time-shifted versionaaf(z). In the next subsection, we will derive a discrete-time filter
Each subsequence is converted to a continuous-time sigital bank implementation of the reconstruction, which also provides
using a shifted impulse train. The signgl(t) is then filtered efficient interpolation to uniform samples.
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zc(nT) tn How)
zo(nT +11) tN () @ rln] Ji() _Wil_ )
:°=—oo 6(t - nTQ)
Ze(nT + tn-1) t N Hy_1(w)

Fig. 9. Reconstruction from recurrent nonuniform samples using a discrete-time filterbank.

B. Interpolation and Reconstruction from Recurrent To = 3Tq, Ti = 3To/2

Nonuniform Samples Using a Discrete-Time Filterbank

. . S0t Ti+ts T 2+t T+t -
Following an analogous procedure to Section lll, the contin-

uous-time filterbank of Fig. 8 can be converted to a discrete-tin@. 10.  Sampling distribution faV = 2 with Ty = 3T andTy = 3T¢/2.
filterbank followed by a continuous-time LPF. Applying the

Interpolation Identity of Fig. 3 to each branch in Fig. 8 andonverting a continuous-time signal to a discrete-time signal
moving the impulse modulation and LPF in each branch outsidging a series of A/D converters, each operating diffarent

the summer, we obtain the equivalent implementation in Fig. &te, such that the average sampling rate is equal to the Nyquist

where rate. Thus, in addition to allowing for a series of asynchronized
. 1 w . A/D converters as in recurrent nonuniform sampling, we also
Hp(w) = 7 H, <T_> eItre/Ta, lw| <7 (21) allow for converters operating at different rates.
Q Q ; e i
The reconstruction formula is given by (23), shown at the
forp=0,1,---,N — 1. bottom of the next page (see Appendix C)I}f # 1, for some

As with the continuous-time filter banks of Figs. 7 and 8p andg, (23) cannot be expressed as a suniofonvolutions.
the overall output of Fig. 9 is the original continuous-tim&levertheless, we will show that (23) can be implemented using
signalz.(t). Furthermore, since,(t) is reconstructed through NV discrete-time filters and a continuous-time LPF.
lowpass filtering of a uniformly spaced impulse train with To this end, we denote the inner sum in (23)dyt), i.e., in
period Ty, the impulse train values[n] must correspond to (24), shown at the bottom of the next page. We further denote by
uniformly spaced samples of.(¢) at the Nyquist rate. Thus, T the least common multiplier (LCM) dfZ}, } and definels,, =
the discrete-time filterbank of Fig. 9 effectively interpolates th&/Z,,. In Appendix D, we show thaj,(¢) can be expressed as
recurrent nonuniform samples to uniform Nyquist samples. a sum of},, convolutions, i.e.,

The discrete-time filterbank of Fig. 9 can be used to interpo-
late the uniform samples and to reconstruct the continuous-time
signal from its recurrent nonuniform samples very efficiently, 9p(t) = Z Spm (t) * hepm (1) (25)
exploiting the many known results regarding the implementa- m=0
tion of filterbank structures. As with the continuous-time filterHere
bank, the magnitude responses of the discrete-time filters are

Mp—1

piecewise constant, which allows for further efficiency in the Mty
' _ = j@rl/My,)m _
implementation. hpm (t) = lz% M,° fm(t—tp)  (26)
V. NTH-ORDER NONUNIFORM SAMPLING where we defingf,(t) as
In this section, we consider a subclass of recurrent nonunifor
. ; : o : ok(t) =

sampling, for which the sampling points in each period can b N1
further divided into groups with a common inner period. Specif- . T .
ically, the samples consist @f sequences of uniform samples Typsin(rt/Ty) _!_[ sin(r(t + 1y = tq) /Ty + 7KL, [T,)
taken atV rates, i.e., the set of sampling points are — 97D

ty +nTy, p=01,- N—1ne (-, x) (22 wt H sin(w(t, — ty) /Ty + wkT,/T,)

q=0, g7p

where}">" 1 1/T,, = 1/T;, sothatthe average sampling rate is (27)

the Nyquist rate. An example of a sampling distribution for the ) _ _ )
caseN = 2with T, = 31, andT} = 3T,/2 is depicted in ands,,,,(t) is an impulse train of modulated samples, i.e.,
Fig. 10. oo

Nth-order nonuniform sampling may arise in a similarspm(t) — Z xc(kTp+tp)e—j(2ﬁm//wp)k6(t_kTp)' (28)
context as recurrent nonuniform sampling, namely, when b oo
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Equation (25) can be interpreted as a filterbank, as depict 2e(nT, + 1) () Hy(9)
in Fig. 11. The signals,,,(t) are formed according to (28), T
i.e., the samples are divided inf6 subsequences, where eacl Y28t —nTy)

subsequence corresponds to uniform samples with peri ©
Splt

T, of a time-shifted version of the original signal. From .7 ., i ‘?— Hp(Q) —(F 9()

each subsequence.(n1, + t,), we form M, discrete-time
signals by modulating the subsequencechy@=/Mz)" for T 5(t - nT)
m = 0,1,---, M, — 1. For everyp, each one of the\/,
discrete-time signals is converted to a continuous-time sigr

spm/(t) using an impulse train with period},. The signal

spm(t) is then filtered by a continuous-time filter with impulsez(nT, + t,)e
response given by (26) and (27). Summing the outputs of t .
M, branches results i, (). Sincex.(t) = Y gp(t), Lntoo 0t = 1T)
summing the outputs a¥ filterbanks of the form of Fig. 11 will
resultinz,(t). Thus, (23) can be implemented usigj, " M,,

. . . . N-1
continuous-time filters (where, in general, ;" M, > N). We now wish to obtain an equivalent implementation of (23)
The filters in Fig. 11, with impulse responsksg..(t) given ysing N discrete-time filters. We first assume that each sam-

by (26), are all bandlimited tél” since f,x() given by (27) is  pling periodT;, satisfies the condition
bandlimited tol¥ for all p andk. This can be seen by rewriting

s, _n(®)
L 2x(Mp—1) (M, 1)
i Hyp,-1)(€)

Fig. 11. Reconstructing,(¢) using a continuous-time filterbank.

fpk( ) Tp/TQ - 1/Mp = kp (30)
in(nt/T)) N-1 for some integek,. Then, sinces.(t) is obtained by summing
Spr(®) _apkm—p H the outputs ofNV filterbanks of the form of Fig. 11 and each
it q=0, g£p sampling period’, satisfies (30), we can apply the Interpolation

sin(w(t +t, — ty) /Ty + 7kT,/T,)  (29) Identity to each filterbank, resulting iV branches of the form
of Fig. 2(b). Moving the impulse modulation and LPF in each
wherea,,, is a constant. The term(t) = sin(nt/T},)/nt cor- branch outside the summer and noting that1,, /1o = 1'/1g
responds to an ideal LPF with cutoff frequencyT,,. By ex- forall pleads to the equivalentimplementation of Fig. 12, where
panding the product of sines into complex exponentials, we see M1
that the effect of the product is to create shifted and scaled ver—~p( )= M, <H <Mpw 2_7rl>
=0

sions of the LPF. The largest shift will result when multiplying N T—Q g B 1

p(t) by by exp ( It 0 et 1/Tq), whereb, ;. is a constant. Myw  2n(l— M,)
This corresponds to shifting the LPF by =7 3-, . 1/T, Hy < T T, )) ’ wl <
in the frequency domain. Since the cutoff frequency of the LPF (31)

isw/Ty, fpi(t) is bandlimited taug+7 /T, = qu: /T, =
[Ty = W. From (26), it then follows that the filters in Fig. 11andH,;(£2) isthe frequency response of the filtgy;(t) given by

are all bandlimited td?” as well. (26). The overall output of Fig. 12 is the original continuous-time
N—-1
Nei oo THsm (t—ty)/Ty)
= Z Z z(nT, +t,) ~ T . (23)
p=0m=—eo a(-1) [ sinla(t, — tg)/T, + 0T, T,)(t — 0T, —t,)
q=0, q7#p
N-1
T, [ sin(x(t —t9)/1y)
gp(t) = Z ‘/E(’(kTT‘ + tT‘) N—1 = . (24)
h=meo a(-1F [ sin(r(t, — tg)/Ty + 7kT, /T (t — KT, — t,)

=0, g#p
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zenTo+to)) — 1 75 — Holw) ] Mo

IC(TLTl +t1) — T TLQ " ﬁl(w) —’l M, _{Dﬂ%_‘ jwi—_(LL — xc(t)

Z;.oz—oo (S(t - TLTQ)

T (nTh-1 +tn_1) — T % — Hy_1(w) lMN—l

Fig. 12. Reconstruction fromVth-order nonuniform samples using a discrete-time filterbank.

signalz.(t), and the impulse train valueg:] correspond to uni- X

formly spaced samples of (¢) at the Nyquist rate. ze(t) HQ) ylr]
Using the discrete-time filterbank of Fig. 12, we can recon- t=nNTq

struct the continuous-time signal from ibéth-order samples (a)

very efficiently using only NV discrete-time filters, in con-

traﬁt_\lmth th_e contmuous_—'glme |mple_mentat|qn that requires . >} A(w) | N yin)
> p—0 M, filters. In addition, the discrete-time filterbank

interpolates the uniform Nyquist samples from tN¢h-order t =nTq

nonuniform samples. ()

We now show that we can implement (23) using dis-
crete-time filters as in Fig. 12 for any set of sampling periods.
This stems from the fact that if a continuous-time signal
z.(t) is bandlimited toW = /Ty, then it is also ban- Fig. 13(a) and (b) for any.(z), h(t) bandlimited toW =
dlimited to W' = «/Ty, for any 1y, < 1g. Therefore, let m/Tq, where
15 = T/(aM + 1), whereM is the LCM of {M, }, anda is

Fig. 13. Sampling equivalence.

the smallest integer greater than zero suchtjaK 75,. Since Hw) =H <Ti> ) |w] < . (33)
the filters in Fig. 11 are all bandlimited to/T,, they are also Q
bandlimited tor/17,. In addition The equivalence of Fig. 13 follows in a straightforward way

by noting that sampling a continuous-time signal at dfti-of
the Nyquist rate can be realized by sampling the signal at the
Nyquist rate followed by decimation by a factor 8f. We can

which is an integer. Thus, if we regard(¢) and the filters in . . .
Fig. 11 as bandligr]nited & — T/(a]\%+1() )thenthe condition then apply the well-known results [7] regarding discrete-time
) Q ' Processing of a continuous-time signal to replace the contin-

of (30) holds. We can therefore apply the Interpolation Identi T ) . . . ;
to each filterbank of the form of Fig. 11, resulting in the equivaefpus time filter by a discrete-time filter with frequency response

lentimplementation of Fig. 12, where we substitilifefor 75,. given by (33), operating on Nyquist rate samples of the contin-

Inthis casey [»] corresponds to uniform samples:of?) taken uo#ﬁ:imfersi%rllitli.on Identity of Fig. 3 together with the equiva-
at the rater/T},, which is higher than the Nyquist rate. P Y 9. 9 q

C : . lence of Fig. 13 enable us to convert any continuous-time fil-
To summarize, for any sampling periods, we can recon- . . . .
. . . . terbank to an equivalent discrete-time filterbank preceded by
struct a continuous-time signal from it¥th-order samples

using N discrete-time filters as in Fig. 12, where we substitutgquISt rate sampling and followed by impulse modulation and

; . owpass filtering, and vice versa. Thus, any perfect reconstruc-
Té? = T/(aM + 1) for T, if necessary, witt chosen so that tionp(PR) filterbgnk (i.e., adiscrete-time anaﬁyiis-synthesis filter
T, < To. . .

Q ="@ bank for which the input and output are equal) can be converted
to a continuous-time filterbank, which can then be interpreted
in terms of sampling and reconstruction.

In the previous sections, we used the Interpolation Identity As an example, consider the PR filterbank of Fig. 14. The
to obtain discrete-time filterbank structures for reconstructigheory of PR filterbanks is well established (see, e.g., [12]), and
of a continuous-time signal from generalized and nonuniformbfosed-form solutions for the synthesis filtds, () given the
spaced samples. In this section, we show how the filterbank Bmalysis filterst,(w) are known. We can convert the analysis
terpretation suggests new sampling strategies. part of the filterbank to a sampling strategy by applying the

The Interpolation Identity can be used to convert the recoequivalence of Fig. 13. This results in the sampling strategy de-
struction (synthesis) part of a continuous-time filterbank to gicted in Fig. 15, where the signal(¢) is filtered by three con-
equivalent discrete-time filterbank followed by impulse modutinuous-time filters with frequency responsgs(Q7g), p =
lation and lowpass filtering. Similarly, we can convert the sanf: 1, 2, and the outputs are sampled at the corresponding rates.
pling (analysis) part of a filterbank using the equivalence dthe reconstruction is obtained by applying the Interpolation

T, /Tl — 1My, = T/(M,Th) - 1/M, = aM/M,  (32)

VI. GENERATING NEW CLASSES OFSAMPLING STRATEGIES
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FO(W)J_ |4 goln) f4 H Holw) ‘ may be able to obtain readings of the velocity more frequently

then readings of the position since the latter typically requires

additional computation. In such cases, we can benefit from an al-

afn] Fi(w) | 4 o) t4 Hy(w) z[n}  ternative sampling strategy, where the position is recorded every
1,15 seconds withl}, > 2, and the velocity is recorded every
1,/(1, — 1)1y seconds. Thus, we allow for a lower sampling

92[n] - S .
Faw) }— |2 e i Ha(w) rate of the position, which is compensated for by a higher sam-
pling rate of the velocity.

Fig. 14. Perfect reconstruction discrete-time filterbank. Note that the fact that.(¢) is uniquely determined by sam-
ples of the outputs oi/ filters sampled at different sampling
rates can be shown using Papoulis’ theorem by splittingthe

F(QTg) —>§ — go[n] branch, consisting of a continuous-time filter followed by uni-
t = ndTy form sampling with period},, into T'/T;,, branches, wherg is
the LCM of {T,}. Each new branch will consist of filtering with
2e(t) Fi(To) X al] a filter whose impulse response is the original impulse response

shifted by a multiple off;, followed by uniform sampling with

period?’. The novelty in our generalization is in proving that the
reconstruction is possible using a single filter for each branch in-

—->§ — g[r] stead off’/T,, filters, as follows from Papoulis’ theorem.

F(QTg)

_ _ VIlI. CONCLUSION
Fig. 15. Sampling procedure.

This paper introduces a filterbank interpretation of various
sampling methods, thereby allowing for efficient implementa-

9oln] —.(%}—— ToHy(0Tg) tion of the reconstruction from generalized samples as well as
from a class of nonuniform samples. The main focus of this
®  5(t — naTy) paper was on recurrent ardth-order nonuniform sampling,
for which a continuous-time filterbank implementation of the
alnl ToH, (0Ty) e zelt) regonstruct.ion was prgsenteq. Through thg use of .the Ipterpo—
% lation Identity derived in Section I, the continuous-time filter-
® gt —ndTy) banks were convertedto eq_uivalent discrete—time filterbanks _foI—
n=Tee lowed by impulse modulation and lowpass filtering. The dis-
crete-time filterbanks provide interpolation to uniform samples
92{n] 46?_ ToHx (o) and can be implemented very efficiently exploiting the many
known results regarding the implementation of filterbank struc-
Y ont—oo 8(t —n2TQ) tures. The block diagram equivalences formulated in this paper

are general in the sense that they can be used to convert ar-
bitrary continuous-time filterbanks to equivalent discrete-time
filterbanks, and vise versa. Presenting the reconstruction from
Identity of Fig. 3 to the synthesis part of the filterbank followedjeneralized samples in terms of continuous-time filters and ap-
by impulse modulation and lowpass filtering, resulting in the rgplying the Interpolation Identity leads to efficient implementa-
construction depicted in Fig. 16. tions that inherently interpolate the uniform Nyquist samples of

The sampling procedure of Fig. 15, together with the recothe signal. Furthermore, the equivalences provide additional in-
struction of Fig. 16, constitute a generalization to Papoulisight into the sampling and reconstruction process, thus leading
well-known generalized sampling expansion (described in [8}b a whole new class of sampling strategies.
Papoulis showed that a bandlimited signalt) is uniquely
determined by the samples (nMT) of the responseg:(¢)
of M LTI filters with input x.(¢) sampled at oné4th of
the Nyquist rate. By converting a PR filterbank with unequal
decimation factors to a sampling and reconstruction schemeReferring to Fig. 2(a) and denoting the input to the filter
we allow for different sampling rates of the filters outputs, thu§1(2) by si(t), we have
generalizing Papoulis’ theorem.

As an example, consider the sampling strategy discussed in
Section Ill, namely, sampling a signal and its derivative at half si(t)
the Nyquist rate. Such a sampling scheme may be employed
in digital flight control, where the position, as well as the ve- _
locity of the aircraft, are recorded. In practical situations, we

Fig. 16. Reconstruction using a continuous-time filterbank.

APPENDIX A
PROOF OF THEINTERPOLATION IDENTITY

zo(nT)e I CmUMng (s _ T

2 (H)eTEME D5t _ T, (34)

e 112

3
Il

hle o}
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Consequently Comparing (42) with (36), we conclude that the outputs of
- Fig. 2(a) and (b) are equal if
s ==Y x <Q 4 2nL 27”“) (35)
l =7 c T T To - (ToQ 27l
T MT T Q Q
— H(Q)=—=H| —+ — Q< 4
=X @=28 (ST lesw @)
and . .
forl=0,1, ---, M —1. Equation (43) specifies how to choose
M1 0 . H(w) so that the outputs are equal. Specifically
V@) = = SOH©) Y X <Q+2—7d— ﬂ)
T MT T
=0 h=—oc0 H(w) = %H Mw  2ml
|2] < W. (36) - Ty To 1o
20 — D 204+ U)m
Referring to Fig. 2(b), we denote the Fourier transforms % fwx % (44)

of z[n], z.[n], y.[n], andyy[n] by X(w), X.(w), Y.(w), and
Y4(w), respectively. The sequence.(n7’) is obtained by SinceH;(Q2) = 0for W < |Q|, H((Mw — 27l)/Tg) = 0

uniformly samplingz..(¢) with period7’, and thus outside(2l — 1)w/M < w < (20 + 1)w/M. We can there-
fore combine theM equations represented by (44) for=
I & w 2rk 0,1, ---,M — 1 into the single equation
X = — Xel=——1}. 7 B ’
W=z 3 (2-F) (37) o
T iy =M Mw 2l
Using the frequency domain input—output relations of the ex- (w) = Ty Z t To To
pander and the decimator [7], we have l:oﬂ T
MT 1 Mw 27k
Xe(CU) =X <T—Qw> = T Z Xc < TQ - —> (38) or
k=—oc
M—
and . = M Z @ _ 2
1o To 1o
M-1
_1 w  2nl Mw 2r(l—M
Yd(w)—MZYE<M+ﬁ) + H <T———(T )>> w] < 7. (46)
1=0 Q Q
M-1
= L H <i + 2_7rl> ChoosingH (w) according to (46) guarantees that the outputs of
MT =0 M M Fig. 2(a) and (b) are equal, establishing the identity.
s w 2l 27k
Z Xe <T_ + T, T) ; (39) APPENDIX B
= Q Q
k=—o0 PROOF OF THERECONSTRUCTIONFORMULA FROM RECURRENT

SinceT'/T — 1/M is required to be an integer, we may substi- NONUNIFORM SAMPLES (11)
tutek’ = k — I(T/Ty — 1/M) in (39), resulting in Substituting (10) in (9) we have

Yo :Wi <w 27rl> G(t):tH(l—%) _ﬁm<1_nT:tl>...
> (i) @ (i) “

Next, we relate the transform of the outdut(€2) to Yu(w).  gach one of the products in (47) converges to a constant times
Sincey.(t) is obtained by lowpass filtering a uniformly space(;ln (t — t,)/T). This can be shown as follows. The function

impulse train with impulse train valueg[n] and periodl, [7] sm(7rt/T) can be expressed as an infinite product ([11, p. 114]):
ToYa(Tefy), 19 <W

Y.(Q) = {07 otherwise. (41) sin(nt/T) =kt [ <1 - %) (48)

n=—occ
n£0

Substituting (40) in (41) we have

Mol wherek is a constant. Thus
T ~ (ToQ 27l
Yo(Q) = —2 o <L + i)
=0

t—1t
1— P
N

MT M M sin(w(t —¢,)/T)

2

MT T

> X (04 ) < w @) =kt =)
k=—oc0

7

¥
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=1
=k T—t+t il
_H n + P) 7)7H700 nT
n=Tee 0
e t nT +t
= —kt 1-— 2
n#0

oo

t S t
=-kt, |] <1+ﬁr> =H00<1_7nT+t,,>

n=—oc

n£0

—sin(nt,/T)

n

=

. = t
=k 1-— . 49
nzl__[m < nl + tp> (49)
Therefore, (47) can be rewritten as
N-1
=c H sin(w(t —¢,)/T) (50)

with ¢ a constant. Differentiating (50) and evaluating the deriva-

tive att = ¢, +n1’, we have
N-1
G'(t, +nT) —CT cos(mn H sin(n(ty, +nT —t,)/T)

q;év
N-1

(-~ H sin(m(t, —4)/T).

q;ﬁp

(51)

7r
T

Substituting (10), (50), and (51) in (8) results in the reconstruc- Z bk =1 —rM] =

tion formula given by (11).
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N—-1

b [T st

qip

t))T, + xnT,/T,). (54)

The reconstruction formula given by (23) follows from substi-
tuting (53) and (54) in (52).

APPENDIX D
PROOF OF THEFILTER BANK REPRESENTATION OFg,,(t) (25)
From the definition off,.(t) [see (27)] and the relation
sin(t — kr) = (=1)*sin(t), g,(t) [defined in (24)] can be
written as

oo

Z we(KTp +tp) fpn(t

k=—o0

Note from (27) thatf,i(t) = fu+ar,)()- Thus, we further
express (55) as

gp(t) — KT, —1p). (55)

Mp—1 oo
= Z Z zo((kMp + DT, + 1)
=0 k=—o0
o tp)

Sl — (M, + 1T,
=YY M, 41

M,—1
=0 k=—o0or=—00

St =KD, — ).

Using the equality

(56)

M-1
Z ij(QTf’nl/]\f)(kfl)

m=0

(67)

Note, that Yen derives the same reconstruction formula Wwe rewriteg,(t) as

[16]. However, his derivation does not rely on Theorem 1 and is
considerably more complex then the derivation presented here.

APPENDIX C
PROOF OF THERECONSTRUCTIONFORMULA FROM N TH-ORDER
NONUNIFORM SAMPLES (23)

For this case, (8) can be written as

5B G()
pz—;) n—z—:ooxp ”T +t G/(”T +t )( —nl, — tp).
(52)

Substituting (22) in (9) and using (49), we conclude that

—kHsm t)/ 1))

p=0

(53)

M=l oo M,—1
gp( (KT, +tp)
LREDIPIPY
. —j(?ﬁnl/l\/[p)(k l)f (t _ kTp _ tp)
My,—1 oo

Z Za:(,kT—i-t

m=0 k=—oc
M,—1

1 7 (27m
Z MCJ(Q ’/Mp)lfpl(t — KT, —
=0 P

—j(27‘rrn/]\lp)k

t,). (58)

Equation (58) can be expressed as a sumigfconvolutions.
Specifically,g,(t) = Zf\f;gl Spm(t) * hpm (t), Whereh,,,,, (¢)
ands,,(t) are defined in (26) and (28), respectively.
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with k a constant. Differentiating (53) and evaluating the deriv&Ussions.

tive att = n1}, + t,, we have

G'(t, +nT)
N—1

k— cos(mn H sin(m

P

w(nd, +t, —ty)/T,)

qsﬁp
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