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Design and Multiplier-Less Implementation of a
Class of Two-Channel PR FIR Filterbanks and
Wavelets with Low System Delay

J. S. Mao, S. C. Chan, W. Liu, and K. L. HMember, IEEE

Abstract—In this paper, a new method for designing much attention has been given to the design of PR filterbanks
two-channel PR FIR filterbanks with low system delay is with linear-phase response [6]-[9], [16], [30]. Nayebal.[10]
proposed. It is based on the generalization of the structure previ- were the first to consider the design of low-delay perfect recon-

ously proposed by Phoonget al. Such structurally PR filterbanks . . .
are parameterized by two functions B(z) and a(z)) that can struction filterbanks. The problem was formulated as an opti-

be chosen as linear-phase FIR or allpass functions to construct Mization problem and was solved using the conjugate gradient
FIR/IR filterbanks with good frequency characteristics. The algorithm. One problem with the optimization approach is that

case of using identical3(z) and a(z) was considered by Phoong the filterbanks so obtained are in general not PR (pseudo PR).
et al. with the delay parameter M chosen as2N — 1. In this s 5 also a major problem of other related works based on

paper, the more general case of using different nonlinear-phase o .
FIR functions for 3(z) and «(z) is studied. As the linear-phase optimization techniques [11], [13], [15], [18]-{20]. One solu-

constraint is relaxed, the |engths Of,B(Z) and a(z) are no tion to this pl’oblem is to employ filterbanks that are inherently
longer restricted by the delay parameters of the filterbanks. or structurally PR. The design of such structurally PR low-delay
Hence, higher stopband attenuation can still be achieved at low filterbanks were recently reported in [12], [14], and [17]. Unfor-
system delay. The design of the proposed low-delay filterbanks ,nately because of the cascading structure of the filterbank, the

is formulated as a complex polynomial approximation problem, . . . L
which can be solved by the Remez exchange algorithm or analytic objective function of the unconstrained optimization is usually

formula with very low complexity. In addition, the orders and highly nonlinear, and the optimization program can easily get
delay parameters can be estimated from the given filter specifi- trapped in local minimum with unsatisfactory frequency char-
cations using a simple empirical formula. Therefore, low-delay gacteristics.

two-channel PR filterbanks with flexible stopband attenuation In this paper, a new method for designing two-channel PR

and cutoff frequencies can be designed using existing filter design . . . .
algorithms. The generalization of the present approach to the FIR filterbanks with low system delay is proposed. It is based

design of a class of wavelet bases associated with these low-dela@n the generalization of the structure previously proposed by
filterbanks and its multiplier-less implementation using the sum Phoonget al. [9]. Such structurally PR filterbanks are parame-

of powers-of-two coefficients are also studied. terized by two functionsf(~) and«(»)) that can be chosen as
Index Terms_F”terbanKS, gene’[ic a|gorithm’ perfec’[ recon- |inear-phase FIR or allpaSS fUnCtionS to construct FIR/”R f||'
struction. terbanks with good frequency characteristics. The case of using

identical 5(z) and «(z) was considered in [9] with the delay
parameteft/ chosen a&N — 1. In this paper, the more general
case of using different nonlinear-phase FIR functions#or)
ERFECT reconstruction (PR) multirate filterbanks havenda( ) is studied. As the linear-phase constraint is relaxed, the
important applications in signal analysis, coding, and thengths of3(z) anda(z) are no longer restricted by the delay
design of wavelet bases. Fig. 1 shows the block diagram oparameters of the filterbanks. Hence, higher stopband attenu-
two-channel maximally decimated filterbank. The system isation can still be achieved at low system delay. The design of
PR system if the outpuk(n) is identical to the input:(n) ex- the proposed low-delay filterbanks is formulated as a complex
cept for some constant scaling and time delay. The theory of BBlynomial approximation problem, which can be solved by the
filterbanks has been extensively studied in the literature [1]-[32emez exchange algorithm or analytic formula with very low
A number of techniques for designing two-channel PR filtecomplexity. As a result, low-delay two-channel PR filterbanks
banks are now available [1]-[10]. Because of the important agith flexible stopband attenuation and cutoff frequencies can be
plication of filterbanks and wavelets in image and video codingesigned using existing filter design algorithms. The proposed
technique is also applicable to the case whefe) and a(z)
are allpass and type-lIl linear-phase functions, respectively. This
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bases associated with this low-delay filterbank is obtained. Fur- 21 12

thermore, by using the sum of powers-of-two coefficient repre- HE) 4’@____@_' ()
sentation and the genetic algorithm (GA), multiplier-less imple- 0 ’ R
mentation of the proposed low-delay filterbanks are obtained. " )
Design examples show that the GA is a very effective method : :
for performing such discrete optimization. The multiplier-less

low-delay filterbanks so obtained have good frequency charac H(2) "@““@_' Gi(2)
teristics and low implementation complexity. Although the pri-
mary objective of this paper is to design filterbanks with high Fig. 1. Two-channel maximally decimated multirate filterbank.
stopband attenuation and low system delay using the Remez ex-

change algorithm and least squares criteria, it should be noted

that the structure of Phoorag al.[9] and that in [14] can also be ) ( > N
designed to meet other performance measure such as the coc

v

gain. Under these circumstances, more general nonlinear of 05 ¥
mization techniques are usually required. .
The paper is organized as follows: In Section Il, a brie z ) —o2)

summary of the two-channel structurally PR filterbank pro
posed in [9] is given together with the basic idea behind th
proposed low-delay FIR filterbanks. Details of the propose ——»@ z™ M Y >
design method and several design examples are given in S
tion Ill. The design of dyadic wavelet bases derived from thes
two-channel FIR filterbanks is studied in Section IV, where ¢
new method for structurally imposing the regularity conditior
is proposed. Section V is devoted to the multiplier-less imple
mentation of the proposed low-delay FIR filterbanks using sut

T2

of powers-of-two coefficients (SOPOT) and the GA. Finally, > z y
conclusions are drawn in Section VI. v

Il. TWO-CHANNEL STRUCTURALLY PR ALTERBANKS az) —B@) -

Fig. 1 shows the structure of a two-channel maximally deci 05
mated multirate filterbank. It can be shown that [1], [2] the re: T~
g

> N v _,
R(z)

constructed signak (=) is given by

X(2) = T(2)X(2) + Alz)X(~2) (2.1) (b)

where
Fig. 2. Structurally PR two-channel filterbank proposed in [9].

T(z) =3 [Ho(2)Go(2) + H1(2)G1(2)] (2.2)
and whereng is an integer, and is a nonzero constant. The struc-
turally PR two-channel FIR/IIR filterbanks proposed in [9] are
_1 _ _
Alz) =3 [Ho(=2)Go(2) + Hi(=2)G1(2)] - (23)  ghownin Fig. 2. The expressions for the analysis filters are given

The aliasing term4(z) can be canceled if the analysis ané)y
synthesis filters are chosen as (- 2 L52)
2+ 282
2

Ho(z) = (2.7)

Go(z) = —H1(—Z), G1(Z) = Ho(—z). (24) and
Furthermore, the filterbank will be PR if the transfer function Hi(2) = —a(z*)Ho(z) + 2727 (2.8)

T(z) is equal to a constant multiple of signal delay ) o
It can be seenfrom (2.7) and (2.8) that (2.6) is satisfied for any

choices of3(z) and a(z). Therefore, FIR and IIR filterbanks
(2-5)  can readily be realized by choosifgz) and«(z) as polyno-
mials or rational functions. In [9], the case of using identical
Combining (2.3) and (2.4), one gets the following PR condb ) anda(~) is studied with the delay parametef chosen as
tion in Ho(z) and H,(2): 2N —1. Anew class of FIR and IIR filterbanks was obtained by
choosing3(z) anda(z) as Type-Il linear-phase functions and
T(z) = 3 [Ho(—2)Hi(z) — Ho(z)H1(—2)] = cz~™ (2.6) allpass functions, respectively. The designiéf) [and a(z)]

T(z) =cz™".
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can be accomplished by noting thég () [and H, ()] will be-  troduced. The design of such nonlinear-phase FIR functions is
come an ideal lowpass filterif( z) [and«(2)] has the following formulated as a complex polynomial approximation problem,

magnitude and phase responses which is solved using the Remez exchange algorithm and ana-
lytic formula.
2 — e IN e, forw € [0, 7/2]
B(e’™) = ¢H@N=DwEm)  for € (n/2, 7). (2.9) I1l. PROPOSEDMETHOD

' ' A. Design of Lowpass Filter

With this choice of3(e/2), Ho(e’*) is approximately equal

to ¢ =72V« in the passbandJ( € [0, 7 /2]) and 0 in the stopband
(w € [7/2, 7]). To design a linear-phase FIR filterbank,z)
has to be a type-ll linear-phase function with length = 2.V,
which is an even number. Furthermorepifz) = 3(z), then
from (2.8), 3(e?2*)Ho(e’*) should approximate 72V +1)«

Letw,, andw,, be, respectively, the passband and stopband
cutoff frequencies oH(z). Similarly, letw,,, andw,, be the
passband and stopband cutoff frequencied gfz). Supposing
thatw,, = ws, = wp andw,, = wp,, = ws, the desired fre-
guency response diy(z) is

in the stopband o (7). Becausdi(a?Q“)Ho(ej“) is very HO ey _ [ © P2Ne 0 < w < wp a1
small in the passband df; (¢’*), Hi(e?*) will approximate d (&%) = 0 we <w < (3.1)

a delay e 7@M+1« in jts passband. Since the delays of ’ ’ =

Ho(e?*) and3(e?*) in the intervakw = [0, 7/2] are2N and Wwhere N is a positive integer. The error function in approxi-

2N — 1, respectively, the delay paramefer must be equal to matmgH( )( ) is therefore given by
(2N — 1). It is worth noting that linear-phase FIR filterbank L iaNG N ©), iw
with a(z) # B(z) can also be designed by properly selecting Eo(w) =5 (¢ +B(e¥)e™*) — Hy (e'*)
the delay parametel/ and the length of«(~), NV,. This has 0<w <. (3.2)
been reported and studied previously in [6] and [7]. The relation
between system delay, the delay parameters and A4, and
the lengths of the linear-phase FIR function&) and 8(z), { L (B(e2iw)emiv — ¢=i2Nw) | 0 <w < w,
W) =91
2

Using (3.1), (3.2) can be written more clearly as

N,, andNg, are summarized as follows: o Nw i i
(6_1 w4+ (e J“)G_J“) , wy<w< .

Ng=2N, (Na—1)+2N =2M +1, ng = 2N +2M +1. _ _ o (3.3)
(2.10) SinceHo(z) is a halfband Iowpgss f||ter, its cut-off frequen-

In summary, the delay parameters of these types of str@€Sw» @ndw; are placed symmetrically with respectit? [2],

turally PR filterbanks determine the system delay and the Ieniﬁ‘?‘t is,w, + ws = m. Thus, it can be easily derived from (3.3)

of the analysis filters. It can also be observed from (2.8) a

(2.10) that the delay ofthg highpass filfé;(z) is always Iarggr Eo(w) = —Ej(r —w), 0<w< w,. (3.4)

than that of the lowpass filtely(z). This is due to the special

filterbank structure in Fig. 2. It is also interesting to note that Although the minimization in (3.2) involve§(c?“) and is

by inverting the signs of(z) anda(z), the role of the lowpass different from the conventional Chebyshev approximation, the

and highpass filters in this structure can be interchanged. In fatoperty of the low delay halfband filter obtained in (3.4) sug-
Hy(z) becomes a highpass filter aifl (=) becomes a lowpass gests that we can minimizg,(w) either in the passband or stop-

filter. This yields a filterbank with a highpass filtéf,(z) having band of Hy(z), i.e.,0 < w < w, orw, < w < 7. The ideal

a shorter filter length and delay response than the lowpass filtesponse ofi(z) can be chosen to be the same as (2.9).

Hy(=). For simplicity, it is assumed throughout this paper that For the time being, we will assume that the length of the FIR

Hy(z) is alowpass filter and tha{, (z) is a highpass filter. For function3(z), Ny is even. The odd value case can be obtained

low-delay applications [32], the length of the linear-phase FI&milarly and is summarized in Appendix A. As mentioned ear-

function might be too small to provide sufficient stopband atier, 3(z) will be alinear-phase function witN 3 = 2V in order

tenuation. One solution is to relax the linear-phase requirementealize filterbanks with linear phase. In alow-delay filterbank,

of 5(z) anda(z) and use nonlinear-phase FIR functions. Ththe required delayv will, in general, be smaller than the length

system delay in this case is still given by = 2V + 2M + 1. of 3(z), i.e., N < Ng/2. First of all, let us decompose the im-

N, andNg, however, can be greater thagl/ — N + 1) and pulse responsks(n) of 3(z) into its even and odd parts

2N, unlike their linear-phase counterparts. It should be noted

that the conjugate quadrature filters (CQF’s) in [1], which are ha(n) = hp, () + hp,o(n) (3.5)

obtained by spectral factorization of linear-phase half band fi|;, .o

ters, are nonlinear phase. One of them is minimum-phase, and

the other is maximum-phase. Other choices are possible, but the hy o(n) = hs(n) + hg(Ng —n—1)

system delay is still limited by the length of the filters. There- o 2

fore, the structure considered here is more suitable for low-def I ho( N 1

applications. hp,o(n) = s(n) — hg(Ng —n — ), (3.6)
In the following section, we will consider the case whé(e) 2

and «(z) are chosen as nonlinear-phase FIR functions, and aAs the length of3(z) is even5.(z) andj,(z), which are the
new class of PR filterbanks with low system delay will be inz-transforms oft.s .(n) andhs .(n), are type-Il and type-IV
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linear-phase FIR functions, respectively. Therefore, they can béNriting = = cos(2w), the two Chebyshev approximation
expressed in the following forms: problems can be written as
Be(e?*) = eI WNs=1/2 co5(w /2) P (cos(w))  (3.74) Ak, opt = AIE IMin max ‘We(x) (Pe(}@)(x) — P& (x))‘
. . a
Bo(&) = e Ne=D 2 sin(w/2) PY (cos(w))  (3.7b)  and
bk, opt = arg Hblill max ‘Wo (2) (PO(’B)(J}) - I:’O(B)(x))‘
k

where
Lg I, =(=1, 2] Uz, 1] (3.11)
P(B) (cos(w Z a, (cos(w where
@) Fs < x5 = cos(2w,y)
P57 (cos(w Z by, (cos(w))” - We(x) = cos (0.5 - arccos(z))
and
Both ponnomiaIsPe(’a)(a:) andPo('B)(a:) have orderd.s and Wo(2z) = sin (0.5 - arccos(z)) .

are equal t§.V/2) — 1. Substituting (3.7) and (3.5) into (3.2), . o . L
one gets The interval(0, #,] is an optional disjoint interval used to

control the values oPe('B)(cos(Zw)) andPo('B)(cos(Zw)) in the
Eo(w) = %e—j‘“Nﬁ{cos(w)Pe('@) (cos(2w)) transition band offo(¢’*). Sincef. (¢’*) is a type-Il linear-
' phase function, itis equal to zeroat =, i.e.,f.(e’™) = 0.0On
+j-sin(w)- P (COS(2w))} —emIN the other hand3,(¢’~) is equal to zero at = 0, i.e.,3,(c’®) =
L %N [ 2eNa (3 e 0, because itis atype-IV linear-phase function. The actual value
=3¢’ {‘3 R e C )—1}7 w € [0, /2] of #, determines how large the values Bf”(cos(2w)) or
(3.8) Pé'a)(cos(2w)) are in the interva(—1, Z,] [i.e., in the transi-
tion band of Hy(e¢?*)]. Equation (3.11) can readily be solved
where using the function REMEZ in the signal processing Toolbox of
, MATLAB.
PP (i) = {COS(w) - P (cos(2w)) Ho(¢?*) can also be determined using the least squares de-
. 3 sign criterion. In fact, the weighted least squares error in approx-
i - sin(w) - P (COS(2w))} imating HS” (¢ by Ho(c#*) is given by
and
2 [7/?
Na =(Ngs/2) - N. D=2 / Wa(w) | Eo(w)[? dw (3.12)
0

As mentioned earlier, the required del&yis smaller than the
length of the functior3(z), V5. The constantV, is therefore
greater than zero, and the desired respong&df{c’«) is given

wherel¥,(w) is a positive weighting function. Substituting (3.7)
into (3.12), one gets, after some manipulation

by Dy =a"Qa+b"Qb—2a"r. — 20" r,+¢  (3.13)
P(g'a)(ej‘“') — oi2eNa (3.9) Wwhere
T
Equation (3.9) is recognized as a complex polynomial a=la ar - ar, JT
approximation problem. Such a complex Chebyshev or min- b=[bo b1 --- bp,]
imax approximation problem has previously been addressed r,= [7,(@ 7{@ 722} , E=oc

by several authors [22]-[27]. Without loss of generality, we
adopted the method in [)25] because it is relatively simple to
implement. Basmally,PF (cos(2w)) and P(S'@)(cos(2w)) are
chosen to minimize the real and imaginary partsPé?)(ej‘“‘) Nyt
separately using the Remez exchange algorithm. In other [@olrr, = / Wa(w) sin®(w)- (cos(2w)) ™ dw
words, the complex Chebyshev approximation is solved using

two independent real Chebyshev approximations. The desired (F) == / 2Wa(w) cos(2wNa)-cos(w)
functions OfPe(,’a)(cos(2w)) andPé'B)(cos(2w)) are then given T Jo

[@Q.Jpks = / Wa(w) cos?(w)-(cos(2w) ¥+ 2 du

by ~(Cos(2/w))k dw
/2
(o) _ 2 - i
PP (cos(2w)) = Coi(ozs‘*(d\)h) e o= /0 2Wa(w) sin(2wNa ) -sin(w)
and (cos(2w))* duw
sin(2wiNa) 9 /2

PO (cos(2w)) = O<w< /2. (3.10) c=— Wo(w) dw.

sin(w) 7 Jo
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The optimal weighted least squares solution is therefore givemere

by Lo
P (cos(w)) = ar (cos(w))”
Gopt = Q1 and by = Q1. (3.14) =" (e0s(e)) — b (oos())
Lo
To avoid calculating the integrals analytically, one can P (cos(w)) = by, (cos(w))F . (3.19¢)
approximate the integral by a summation with sufficient large ’ =0

number of terms. . . .
L, isthe order of the polynomials and is equa{ 14, /2) — 1.

B. Design of Highpass Filter Substituting (3.19) and (3.17) into (3.16), we have

Having assumed thatfy(z) is a reasonably good lowpass F) (w) = ¢=9«(M+1) _ o=iw(Na=1) p(o) (i) g (/)
filter, we now proceed to formulate the pro_blem of designing w € [0, 7/2] (3.20)
Hy (=) with o(2) as an even-length FIR function. It can be seen
from (2.8) and (2.9) that the frequency responseddefz) is where
dependent on both the lowpass filtBi(z) and the function

a(z). The ideal frequency responset (/) is P(I) = {COS(W) - PE (cos(2w))
O o 0, 0<w<w, +j - sin(w) - P (COS(2w))} . (3.21)
HY ()= . (3.15)
d e—Iw@M+) << ) p ,
P =E = Let the lowpass filtetHy(c?“) be written as
The error functionF; (w) of the highpass filte; (=) is de- H (ejw) _ A(ejw)e_jQwN (3.22)
fined as 0 - '

M) - . W i where A(e/*) is a complex function, and it is approximately
Ey(w)=¢"’ —a(e™)Ho(e’*)—H,; " (¢"). (3.16) equal to one in the passband and O otherwise when the order

_ L ) . ] of B(w) is sufficiently high. Substituting (3.22) into (3.20), one
Since the minimization in (3.16) involves(e*/*), which  jpiaing

is periodic with periodw, it is different from the conven- ’ ’ ’ ’
tional Chebyshev approximation. In fact, for a given value aF, (w) = ¢/<@M+L) _ o=iw((No =1)+2N) pla)(piwy . 4(I)

w € [0, 7/2], a(e®*) will affect the values oft; (e/*) atw as _ o Jw(M+) {1 92 Ma ple) (o). A(ejw)}
well asw + 7. Fortunately, it is observed that the magnitude of
a(e?*) is almost equal to one, except around= 7 /2, where w € [0, /2] (3.23)

it is even smaller. It then follows from (2.8) that the passband _ .
ripple of H, (¢/*) is approximately equal to the stopband erro‘?’heretﬁ/[?t; (.g“/ﬁ) + (V- M@ ))_]ij Erom (3.23), it can be
of Ho(e/*). This allows us to minimize only the stopband®®€" that IN€ ldealrespons () is

attenuation ofH;(e’“) using a(e?’<) instead of minimizing P(a)(ejw) — I2Ma gL (i) e [0, 7/2].  (3.24)
(3.16) over the passband and stopband and relies on the high d ’ ’

stopband attenuation affy(e’*) to achieve small passband Again,ifPF(,a)(cos(w))andP(fa)(cos(w))are used to approx-

ripple. First of aII3 let us consider the case wherg) is an  jnate the real and imaginary parts@j‘l)(ejw) separately, then
even-length FIR filter with lengttV,,. The odd value case caniygir ideal responses are

be derived similarly and summarized in Appendix A. Using
again the even and odd parts decomposition of the impuls

Re(A—l(ejw)ejQu:IWA)
(a) =
responsé,, (n) of a(z), we have ?)ﬁ (cos(2w)) =

cos(w)
B Re (A (e/*)ei2wMa)

ha(n) = ha,e(n) + ha,o(n) (3.17) | A(c7) 2 cos(w) (3.252)
where PO (cos(2w)) = Im (Als(.ej(w))eJQw]WA)
ho(n) + ha(Na —n —1) o
ha,e(n) = i ) 2N 1 _ Im (j *jt(j;a;)(.zﬂu\m)  o<wenfs
oy =P a2 ) g [A(e5)]? sin(w) 250

Similar to 8. (z) and3,(z), (%) anda,(z), which are the  Writing z = cos(2w), the minimax design problem can be
z-transforms ofh,, .(n) andh,, ,(n), are type-Il and type-IV written as
linear-phase FIR functions of lengf#,, respectivelya. (¢/) . .
anda, (/) can therefore be expressed as follows: (rs opt = Argminmax ‘We(x) (Pe(a)(x) - Pe(,a)(x))‘

() = IO/ cos(02) P (cos(w))  (349a)  Dhyep = axgminmax | Wo(x) (P () = PV(@) )|
(7)) = je 9N =D 2 6in (0 /2) P (cos(w))  (3.19b) (3.26)
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where C. Combined Weighting Function

As mentioned earlier in Section IlI-A, solving the complex
L, =(=1, &)U [zs, 1], &5 <25 = cos(2wp) Chebyshev approximation problem using two independent real
- 0.5 2 Chebyshev problems of its real and imaginary parts is inherentl
—_ s j0.5 arccos(z) y p g yp y
We(@) = c0s (0.5 arccos(z)) ‘A (6 )‘ suboptimal. The loss in stopband attenuation can be as high as
W (x) = sin (0.5 - arccos()) ‘A (ejO.f)arccos(ac)) ‘2 3 dB [24]. Better results can be achieved by using the method in
¢ ' ' [24]. In this paper, a simple reweight technique is employed to

The two Chebyshev approximation problems in (3.26) alm(?rf\lg?etzizeﬁjrzﬁ;m;?g; ?:1 t:sp‘gi?rzzgﬂg%?ﬁg?: d"i]l‘TEEZiZ]-.
similar to (3.11), which again can be solved by the Remez ex- '

: N . inary parts with the independent approach is used to reweight
change algorithm. If the least squares criterion is used, it can - I : . o
shown, as in Section I1I-A, that the optimal valuesigfandi tﬁ% original weighting function to achieve an overall equiripple

complex error.

are given by Leté.(w) andé,(w) be, respectively, the approximation error
o . L of the two independent Chebyshev approximations. The com-
aopt =Q, 7 and b, =-Q, 7, (3.27) plex approximation erroé(w) is
where 6(w) = be(w) + jbo(w) (3.28)
P P LT and its norm is given by$(w)| = /62(w) + 62(w). It can be
a_[ao al ... aLa] € - (o) .
R S seen that althoughy. (w) andé,(w) are equiripple|6(w)| is not
b=T[bo b -~ br] necessarily equiripple. The reweight technique used here mod-
Fo= [7:'(()4) 7:@ f%g) ]T, L=o0, ¢ ifies the original weighting functiofV () as follows:
- 9 /2 _
@l =2 / Wa(w) cos? () Wi(w) = W(w) [5(w)]” (3.29)
0
. (Cos(2w))k1+k2 |A(ej‘°‘)|2 dw whereP is a positive integer. From experimental results, it was
9 /2 found thatP = 2 gave better performance thadh= 1. |6(w)]
[Q.)kk, = Wa(w) sin®(w) can be estimated by performing an initial independent Cheby-
T Jo - shev approximation. After that, the problem is solved again
- (cos(2w)) 1 | A()|” dw using the new weighting functio; (w) instead ofi¥ (w). Itis
© 2 /2 , , found that this method can provide considerable improvement
o= / 2Wa(w)Re[A(e/)e I20Ma] over the independent Chebyshev approximations in [25]. In this
0 N paper, all the complex Chebyshev approximations involving
: (COS(W) ~(cos(2w)) ) dw (%) anda(z) are assumed to be carried out by this method.
/2 : :
7 = 2 / 2Wa(w)lm [A(e/)e=i2Ma] D. Selection ofV, M, Ng and N,
Qo
? X In practical applications of such a low-delay FIR filterbank,
) (Sm(w) - (cos(2w)) ) dw one frequently encountered problem is the following: Given
o (/2 8s,andé;, , the stopband attenuation &f(z) and H1(z), and
c= . / Walw) dw. their cutoff frequencies,, , w,, andw,, ,w,, , how are the delay
0

parametersy andA/ and the lengths/s and NV, chosen? Here,

It can be seen that iINA = Ma = 0, the filterbank be- Some design guidelines regarding the selection of such param-
comes linear-phase. Therefore, all the above results are also@ifts Will be given. The linear-phase and nonlinear-phase cases
plicable to linear-phase FIR filterbanks. It should also be notddth wp, = ws, = wp andw,, = wp, = w, are discussed in
that (3.25) and (3.27) are validH,(¢’*) is an lIR filter such as turn.
the allpass based filter [9]. This property has been utilized to de-Linear-Phase Casein this case, bottd(z) and (<) are
sign a class of IR filterbanks with(z) anda(z) chosen as all- linear-phase. It is observed thi(z) is a linear-phase half-
pass and linear-phase functions, respectively [31]. Because #g@d filter with identical passband and stopband ripples. The
proposed low-delay filterbank is derived from the structure #ormula proposed by Kaiser (in [38, eq. (7.104)]) can therefore
Fig. 2, itis by no means complete and optimal. For example, itf§ used to estimati, (the order of this halfband filter) and the
possible to express any two-channel PR FIR filterbank using ti§&gth of 5(z).
lifting scheme. As mentioned earlier, this will, in general, lead 9010, § — 13

. - . . . . 210
to an unconstrained optimization of highly nonlinear function, Lo = B YN
which is more difficult to solve. In Section llI-E, it is demon- ’
strated by several design examples that low-delay PR filterbanksereAw = w, — w,,, andé = §,,, = é,,. The length of3(z),
with very good frequency characteristics can still be obtained By is therefore approximately given 6y, +2)/2. To estimate
the proposed structure with very low design and implementatidv, (the length ofx(z)), itis observed that whei,, is identical
complexities. to N, the stopband attenuation £ () is about 10 dB lower

(3.30)
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Fig. 3. Low delay analysis filters in Example 3.1 designed by the Remez exchange algorithm. (a) Impulse respiingemdix(=). (b) Magnitude responses
of 3(z) anda(z). (c) Magnitude responses of low delay analysis filt&fig(z) and H, (=) (solid lines) and their linear-phase counterparts (dashed lines). (d)
Group delay responses of low delay analysis filters.

than that ofH(z). To achieve similar stopband attenuation foquencies arev, = 0.347 andw, = 0.66w, the order of the
Hy(z) and H1(z), the length ofx(z) can be slightly increased linear-phase filtetH, (=), as suggested by (3.30), is = 12.
at the expense of higher system delay. Because the linear-phag¢z) is a type-Il FIR filter, the length
Nonlinear-Phase Caself 3(z) is nonlinear-phase, the stop-of 3(z) should beVs = 8. The length of the linear-phase filter
band attenuation offo(z) is 1-5 dB lower than that of a linear- «(z) should be slightly larger thai¥ to achieve a comparable
phase halfband filter with the same length, depending on th®pband attenuation féf,(z) andH;(z). In this example, itis
passband delay. Normally, the passband delajf«if:) can be found thatV, = 10 is sufficient. For the low-delay filterbank,
reduced by a factor of two, as compared with the linear-phathes passband delay &fy(z), as discussed earlier, can be chosen
halfband filter without too much degradation in stopband atteas one half of its linear-phase counterpart. The delay parameter
uation. However, significant bumping-(L dB) will appearinthe N is therefore chosen as 2. The remaining delay paraniéter
transition band ofHy(z) if the passband delay is lowered fur-can be chosen &3V — 1, which is equal to 5. The system delay
ther. This observation allows us to estimate the length(ef of the resulting low-delay filterbank is only 15 samples. Note
using its linear-phase counterpart as a reference, which in tthat a linear-phase filterbank, using the same structure, will re-
can be estimated using the formula in (3.30). To estimate quire a system delay of 23 samples to achieve the same stopband
it is observed that whed is equal to3/N — 1, the stopband attenuation. The same procedure can be applied to example 3.2,
attenuation ofH,(z) is comparable with that off,(z). With except thatVs and N, are now odd numbers.
these choices (together with the one mentioned in linear-phase )
case), the total system delay of the filterbank is only two thirds Design Examples
of its linear-phase counterpart with comparable stopband attetn this section, the proposed method is evaluated and com-
unation. Slightly higher stopband attenuation can be obtainpdred with other conventional methods through several design
when the system delay is increased by increasihand M. examples.
Let us consider Example 3.1. If the required stopband attenuExample 3.1: In this design exampléi(z) anda(z) are non-
ation for Ho(z) is 40 dB (oré,, < 0.01) and the cut-off fre- linear-phase FIR functions with lengttié; = 8 and N, =
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COEFFICIENTS OFf3(z) AND () IN EXAMPLE 3.1 AND EXAMPLE 4.1
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TABLE

Example 3.1

Example 4.1

B(=)

o(2)

B(z)

o(z)

-6.122981893326920e-002

-1.743263074129322e-002

-6.860333316293123e-002

-2.231767854809924e-002

4.665091805090530e-001

6.148674113264712e-002

4.852634764782267e-001

7.354326492786681e-002

8.041133592808363e-001

-1.642674206548875e-001

7.874089332511693e-001

-1.719970076192219¢-001

-3.537827046312050e-001

6.149753727946287¢-001

-3.325236490599400e-001

6.210882208958493e-001

2.255496470471235e-001

6.255681859248121e-001

2.147668758288946e-001

6.249609215611015e-001

-1.391949022596057e-001

-1.679968084966865e-001

-1.314446186132179¢-001

-1.764457687368829¢-001

7.365179626980009¢-002

6.298270160800767¢e-002

8.009306132427543e-002

7.459638702347382e-002

-3.016262583933727e-002

-2.117141328591070e-002

-3.496074604647677e-002

-3.006253412136717e-002

1.197988381898378e-003

6.759899558032634¢-003

O o QA & | Bl W] —~]| OB

1.565945242569830e-003

-1.257049407528445¢-004

10. The orders of the ponnomialEe(/@)(x) and P (z) are guencies and system delay are identical to the design examples
Ls = 3, and the orders of{*)(z) and P{*)(z) are L, = in[10, Fig. 5] and [16, Fig. 3]. The stopband attenuation of the
4. The delay parameter¥ and M are, respectively, 2 and 5.analysis filters in [10] is about 39 dB. The stopband attenua-
The overall system delay is, = 15 samples. Fig. 3(a) plots tion of Ho(z) andH; (=) in [16, Fig. 3] are, respectively, 45 dB
the impulse responses @f~) and () designed by the pro- and 40 dB. Therefore, the proposed analysis filters have com-
posed method using the Remez exchange algorithm. Their parable passband and stopband performance as those in [10]
efficients are listed in Table I. Fig. 3(b) displays the magnand [16] By adjusting the cutoff frequenciesag = 0.247
tude responses gf(z) (solid line) anda(z) (dashed line). To andw; = 0.767 andw, = 0.47 andws; = 0.67, the pro-
demonstrate the higher stopband attenuation of the propogeged method can still provide comparable stopband attenua-
low-delay FIR filterbanks over their linear-phase counterparttign as that in [14, Fig. 1] (55 dB versus 56 dB) and a higher
two-channel linear-phase FIR filterbanks with the same systeégi®pband attenuation than that in [20, Fig. 2] (30 dB versus 25
delay was designed by the proposed algorithm. The delay §#). It should be noted that due to the simplified structure of
rametersN and M are still 2 and 5, but the lengths ¢{z) the proposed filterbank, its design complexity is very low, and
anda(z) are shortened to/s; = 4 andN,, = 8, respectively, there is no reconstruction error, which is always presentin other
due to the linear-phase constraint. Fig. 3(c) displays the magethods based on constrained nonlinear optimization [10], [20].
nitude responses of the low-delay analysis filtéfg(») and Furthermore, as mentioned earlier, the proposed filterbank
H,(z) (solid lines), whereas those of the linear-phase analysigucture is still PR even under coefficient quantization, unlike
filters are plotted in dashed lines. It is observed that under tH direct form in [16]. The design complexity of the proposed
same system delay.§ = 15) and the same passband and stopgnethod is also much lower than the unconstrained nonlinear
band cut-off frequenciess, = 0.347 andw, = 0.667), the optimization methods in [12] and [14], thanks to the Remez
stopband attenuation of the proposed low-delay lowpass are¥change algorithm. The overall performance comparison be-
ysis filter is much higher than its linear-phase counterpart (42een the proposed method and the conventional low-delay fil-
dB versus 26 dB). On the other hand, the stopband attentgrbank design methods [10], [14], [16], [20] is summarized in
tion of the low-delay highpass analysis filter is slightly highefable Il, where the arithmetic complexity is simply defined as
than its linear-phase counterpart (40 dB versus 36 dB). This ithe number of multiplications and additions in implementing the
provementin the stopband attenuation, however, will require dtiterbank. This demonstrates the good performance, flexibility,
ditional arithmetic computations in filterbank implementatiotow implementation, and design complexities of the proposed
[the number of the variables ¢f(z) anda(z) in the low-delay method, as compared with conventional methods. Fig. 4 dis-
case is 18, whereas that of the linear-phase is only 6]. To redu@ys the magnitude and group delay responses of the low-delay
the implementation complexity of the proposed low-delay filte@nalysis filterst (z) andH, (z) designed by the proposed least
banks, a very efficient multiplier-less realization of the proposeluares method. It can be observed that the stopband attenua-
low-delay filterbanks using the SOPOT coefficients is proposéi@ns of Hy(z) and H,(z) are comparable to the minimax de-
later in Section V. Fig. 3(d) plots the group delay respons&ign in Fig. 3, but the stopband attenuatiorthf(») and H: ()
of the low-delay analysis filter&ly(z) (solid line) andH,(z) aroundw = 0 orw = ~ is slightly higher in the least squares
(dashed lines), respectively. It can also be seen from Fig. 3@dse.
that bothH,(z) and H,(z) are approximately linear-phase in Example 3.2:1n this example, a two-channel low-delay FIR
their passbands. filterbank with odd filter length is designed. The length$36£)

In order to compare the proposed method with the conve@d a(z) are N3 = 13 and N, = 15, respectively. The or-
tional low-delay design methods in [10] and [16], the cutoff freders of the corresponding Chebyshev polynomlaﬁ%) and
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TABLE I
OVERALL PERFORMANCE OFEXAMPLE 3.1 GOMPARED WITH OTHER CONVENTIONAL METHODS NOTE THAT w,,. |S THE PASSBAND CUTOFF FREQUENCY OF
H;(z);i=0, 1. w,, |STHESTOPBAND CUTOFF FREQUENCY OFH(z);i = 0, 1. 6., (dB) IS THE STOPBAND ATTENUATION OF H;(z),i = 0, 1.. * ALL THE

SYSTEMS HAVE 15 SAMPLES OVERALL DELAY. %% THE CUTOFF FREQUENCIESHAVE BEEN ADJUSTED TO BECOMPARABLE WITH THOSE OF[14] OR [20].
* x x NUMBER OF MULTIPLICATIONS AND ADDITIONS PERSAMPLE (ANALYSIS FILTERS)

Ex. 3.1 vs. Linear Phase, Ref. [10, 16] and Ex. 5.1 Ex. 3.1 vs. Ref. [14] Ex. 3.1 vs. Ref. [20]
Ex.3.1 | LP [10] (6] | Bx.s1i [ Bx.3a#= | [14] | Ex31* | [20]
L, 034z | 0347 | 0387 047 0.347 0.24x 03w 0.47 04n
0 0.667 0.667 0.687 0.7% 0.667 0.76 0.87 0.6 0.67
@, 0.66x | 0.66z | 0.687 0.67 0.667 0.76x 0.77 0.6% 0.67
ay 0347 0.347 0.387 037 0.347 0.24r 027 0.4rm 047
J, (dB) 42 26 39 45 39 55 56 30 25
d, (dB) 40 36 39 40 40 54 57 29 25
PR Yes Yes No Yes Yes Yes Yes Yes No
ROb}ISt to Yes Yes No No Yes Yes Yes Yes No
quantization
Filterlength | 1535 | 1553 | 1616 | 2228 | 1533 | 1533 | 3282 | 1533 | 2836
low/high pass
Implementation | g npyy | 3 Mul, | 32 Mul | S0Mul. | 195 oMul. | 11Mul | 9Mul | 64Mul
Complexity | g Add. | 6Add. | 30 Add. | 48Add. | Add. | 9Add. | 9Add | 9Add | 62Add
Design . . . high ) high
Complexity low low high medium | very high low igl ow ig
o Hy(2) H\(z)
@ 201 g
§ -40 / g.
B0F //’\/ [\\/ /'/\\
60 / \l \ [( q
y ‘
70 J ‘} 4

0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 05

Normalized frequency Normalized frequency

(a) (b)

Fig. 4. Analysis filters in Example 3.1 designed by the least squares method. (a) Magnitude responses of analy$ig filtersd (= ). (b) Their group delay
responses.

Pé'a)(a:) areLg, = 6 andLg, = 5, whereas those dPe(,“)(a:) IV. DESIGN OFLOW-DELAY WAVELET BASES

andP;™ (z) areL,, = 7andLa, = 6. The low-delay parame-  The theory of wavelets is closely related to that of multirate
tersNa andM are chosen to be 3.5 and 1.5, respectively. Therpanks [28], [29]. It has been shown that discrete dyadic
overall system delay of the filterbankig = 23 samples with y5yelets can be obtained from two-channel PR filterbanks with
N =3andM = 8. Fig. 5 plots the magnitude and group delayqded regularity condition. For biorthogonal dyadic wavelet
responses of the analysis filtefil (2) and Hy (z). It can be seen pages it had been proved that [28}(z) and Go(z) should
that the stopband attenuation Hf(z) and H;(z) is abo_ut 39 havek, (or Ky) zeros at: = —1 (the K -regularity condition).
dB, and their passband and stopband cutoff frequencies are,fesddition, H; (z)andG (z) should also have at least one zero
spectivelyw, = 0.41w andw, = 0.597. The transition band 4t , — 1. This is equivalent to saying that

is sharper than that of Example 3.1 due to the higher system

delay. It is also noted that there is a bump (about 1.5 dB) near d*Ho(z)

=0, k=0,1,---, Ko—1

the transition band aoff; (=), which will, in general, increase as dzF | .__|

the length ofa(z) increases for a given system delay. Detailed d*Go(2) .

coefficients of the filterbanks are given in Table III. ok =0, k=0,1,---, Ko—1. (41)
~ z=—1
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Fig. 5. Analysis filters in example 3.2 designed by the Remez exchange algorithm (a) magnitude responses of analy&is fijtarel H, (z); (b) their group
delay responses.

TABLE Il

COEFFICIENTS OFf3(z) AND a(z) IN EXAMPLE 3.2

Exampl

e3.2

B2

a(z)

4.294779413338781e-002

-1.163701925116906e-002

—_

-1.170835357798205e-001

2.260366411090361e-002

5.390400943595075e-001

-5.288511796238420e-002

7.324070751151649¢-001

8.395452202030107e-002

-3.017651897513106e-001

-1.800816790721913e-001

2.064998768532979¢-001

6.096728386449619¢e-001

-1.563554928168682e-001

6.553300405703779e-001

1.201468774531898¢-001

-2.167265245937488e-001

-9.042900882382673e-002

1.243710163194015e-001

ol ool | N ] B W] N

6.521746989227317e-002

-8.090268621265134e-002

-4.416639244876935e-002

4.945017933994644e-002

11

2.738672428390126e-002

-3.142658732964170e-002

12

-1.832442604348075e-002

1.836068887085309e-002

13

-9.893828004585433¢-003

14

5.58741356649468%¢-003

Substituting (2.7) and (2.8) into (4.1) and (4.2), one gets a 7
set of linear equations that have to be satisfied. The problem i |s

H(1)

=G1(1)=0

the objective function becomes quadratic, and the problem is
recognized as a quadratic programming problem with equality
constraints. Again, this can be solved numerically with relative
ease. In this section, we will limit ourselves to a class of wavelet
bases withi, = 1 using the methods introduced in Section Ill.
The advantage is that it is an analytic solution and is very easy
to apply. More precisely, we only impose one zereat —1

for Ho(z) andGo(z).

Due to the special structure of (2.7), it can be seen that the
regularity condition in (4.1) is satisfied witklh = 1 when
B(2)].=1 = L.If B(z) is an even length filter, its odd past (=),
is atype-IV FIR function, which is equal to zerozat 1. There-
fore, the constraing(>)|.—; = 1is simplified tof.(2)|.=1 =1
for its even part. Since this constraint cannot be incorporated
directly into the Parks—McClellan algorithm [24], it is imposed
into 3.(z) by the following factorization:

Bx) = (=) )+ 31+ 271) - 5

whereSg = (Ng — 2)/2, andg.(z) is a type-lll linear-phase
filter with length N@ = Ny — 1. Equation (4.3) is obtained

by observing thaf3.(z) is symmetric so that its coefficients,
except the two around the center of symmetry, can be written as
a product of a type-Ill linear-phase function afid- »—*). The
remaining two coefficients are multiple ¢f + »~1) - =,
Using a scale factor of 1/2, (4.3) guarantees that the required
condition3.(z)|.—; = 1 is satisfied. Since.(z) is a type-Il
linear-phase function, it can be written as

(1-= (4.3)

Be(e®) = j - e WD/ 2gin(w) - PP (cos(w))  (4.4)

(4.2) where

[:/3

k
E ay, (cos(w))",

PO (cos(w Ls=(Ns—3)/2.

a constrained nonlinear optimization problem with linear con-
straints, which can be solved using the subroutine NCONF in theSubstituting (4.3) and (4.4) into (2.7), one obtains the error
IMSL library. If all the freedom is used to maximize the numbefunction as follows:

of zeros at: = —1, then (4.1) becomes a system of linear equa-
tions. Alternatively, if the least squares error function is used,

Bo(w) = semi2N {mizeNa p@)(eiv) 1] (45)
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Fig. 6. Analysis filters with wavelet bases (example 3.3) designed by the Remez exchange algorithm (a) magnitude responses of andlsis)fitteds
H,(#); (b) their group delay responses. (c) analysis scaling function; (d) analysis wavelet function

where

B(2)|.—1 = 1 is incorporated. Therefore, the highpass filter
R H;(z) will be zero atz = 1 whena(z)|.—1; = 1. Again, using
PO(eiwy = {Cos(w) — 2sin(w) - sin(2w) 2@ (COS(2w))}

the propertyx,(2)|.=1 = 0 and the following factorization for

+ 7 -sinw - P (cos(2w)) (4.6) @ (2)

Na = (N3/2) — N, and P (cos(w)) are given by (3.7b).  a.(2)
If the Chebyshev or minimax problem is solved as two inde-

gendent real Chebyshev approximations, the desired functions
PF(,’B)(COS(Qw)) andP(,('B)(cos(2w)) are given by

=(1-2z1 () + 31+ 27% (4.9

where
PO (cos(20)) = cos(w) — COS.(2NACU) @.7) Qo) =5 - o—iw(Na=1)/2 Sin(w) - P (cos(w))
2sin(w) - sin(2w) .
and ) No = Na
Lo
P(‘y) (cos(w Z (cos(w
2w N,
P (cos(2w)) = % 0<w<n/2. (4.8) =0
SHLW So = (Na—2)/2, Lo=(Ny—3)/2
This can be solved using the Remez exchange algorithm with
weighting functions the required regularity condition can be incorporated. Let
Plo)(piw i
We(z) =2sin (0.5 - arccos(x)) - sin (arccos(z)) (e7) be given by

Wo(z) = sin (0.5 - arccos(z)) (x = cos(2w))

P@(eiwy = {Cos(w) — 2sin(w) - sin(2w) - P (cos(20))
We now consider the design of the highpass filter. It can
be seen from (2.7) thally(z)|.—=1 = 1 when the condition

+j -sin(w) - P (cos(2w))} . (4.10)
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TABLE IV
SOPOT @EFFICIENTS FOREXAMPLES 5.1 AND 5.2.
Example 5.1 Example 5.2
n B(2) of(z) B(2) a(z)
0 A S 27427 27427 427 240
1 27 427 427 27 27428 270428 4270
2 27 427 -2 272727 2742 -2 27 -2
3 27227 271427 427 27 4220 274425427
4 273427 274274270 272727 2742t 42
5 272 2724274276 222 -0® PR R
6 27 274402 2727 271427407
7 =27 -2 -2 27-27 274270427
8 2427 -2 -2 27 -2
9 -2 27427 —27*-27-2°
10 27027 27t -2°-27
1 27 4278 273427
12 276 _ 99
13 =27

Following the same approach in deS|gn|ng the lowpass filtenethod is also applicable to the design of wavelet bases with
the desired responses @* (cos w) and P (cos w) are linear phase.
shown to be Example 4.1:In this example, we will design a wavelet fil-
terbank with the same parameters as Example 3.1 using the pro-
1 posed method. In particular, the Iengths of the FIR functions
2sin(w) sin(2w) B(=) anda(z) areNg = 8 and N, = 10, respectively. The
low-delay parameter®» andM are also selected as 2 and 1.

P (cos(2w)) =

Re(A*(e7%)ei2wMa) h delay i intained | 06 i
+ |cos(w)— S (4.11) e system delay is maintained as 15 samples. Fig. 6(a) and (b)
| A(e?)] plot the magnitude and group delay response#gfz) (solid
2109 Im(A* (e/)e??Ma) line) andH; (z) (dashed line). It is observed that the frequency
P (eos(2)) = i )|? si > O<w<n/2 performance ofHy(~) and H; (=) of the wavelet filterbank is
|A(ed)|” sin(w) _
(4.12) comparable with that in Example 3.1, except those zeros have

been imposed att = = for Ho(z) andw = 0 for Hi(z).

The analysis scaling and wavelet functions of these low-delay
where A(¢?“) is the complex envelope affy(c’“) given by wavelet filterbanks are shown in Fig. 6(c) and (d), which are
(3.22). Again, the optimal minimax solution is similar to thavery smooth. The coefficients @f(z) and«(z) are also listed

in (4.9) with weighting function given by in Table 1.

sin (arccos(z)) V. MULTIPLIERLESSLOW-DELAY FIR FILTER BANKS

2 In this section, we will study the multiplierless implementa-

tion of the proposed low-delay FIR filterbanks using SOPOT
coefficients and the GA. The design method proposed in the
previous sections is very efficient for designing low-delay FIR
filterbanks with real-valued coefficients. Since the filterbank is
structurally PR, the simplest way to obtain a PR filterbank with
SOPOT coefficients is to round the coefficients obtained in Sec-
This design algorithm can also be generalized to the cagans Ill and IV to the nearest SOPOT coefficients. It is, how-
where the length of}(z) is odd. The detail is given in Ap- ever, a suboptimal solution. A number of methods have been
pendix B. Due to page limitations, derivation of the least squarpsoposed for designing FIR filters with SOPOT coefficients. A
design is omitted here. It should be noted that the proposedssical work is the integer programming method proposed by

We(z) =2sin (0.5 - arccos(x)) -
‘A ( 70. oarccos(m))‘
and
. 2
Wo(x) = sin (0.5 - arccos(x)) ‘A (e’o'o arCCOS(w))‘
(z = cos(2w)).
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Fig. 8. Analysis filters of Example 5.2 designed by GA: magnitude responses
Fig. 7. Analysis filters of Example 5.1 designed by GA. Magnitude responseganalysis filtersH(z) and H.(z).
of analysis filtersH,(z) and H,(z).

z) and H(z) are, respectively, 39.2 dB and 40 dB, which

Lim [33]. Other heuristic methods such as simulated anneaImH ( :
; very close to their real-valued counterparts. The averaged
[34] and GA [35] have also been proposed as alternatives to the S .
number of terms used per coefficientis only 2.2. The total arith-

problem. These heuristic techniques are, in general, very edsy.. complexities for implementing( =) anda(~) are 37 ad-

to use and are able to a yield reasonably good solution EVfiflons and 39 shifts. Counting the two more additions in the fil-

when_the objecuve_functlon. is nonsmooth with compllcateq ('Qérbank, the total arithmetic complexity is 39 additions and 39
equalities) constraints. An |mportant_drawback_, however, is tr.%ﬁifts in the decimated domain or 19.5 additions and 19.5 shifts
:?Jgt;:grmoﬁuitsitfer;alsﬂgqe:sf :Eg zigstr:hmjég\(’jh'zg(:ﬁpe;dlgnira1‘n the original sampling rate. The number of shift operations can
the initial population, etc. In [35], the %yA i us’ed to ogbtai); t'hgur er be reduced if additional memory locations are used to

Popuk T o - . .. Store the shifted immediate data. These results demonstrate the
SOPOT coefficients for the lattice coefficients in a muItlpI|er|—OW implementation complexity and good performance of the
less two-channel orthogonal filterbank derived from the loss- P plexity 9 P

less lattice structure [2]. In this paper, the GA is also ernploygroposed multiplierless filterbank. It is also found that the GA,

to search for the SOPQOT coefficients of the functigiis) and a}thpugh requinng more gqmputatlonal tlm.e’ IS very effective in
i - finding the SOPOT coefficients of the multiplierless low-delay
a(z). More precisely, the coefficients ¢f ») anda(z) are rep-

filterbanks with good frequency characteristics.
resented as ) . .-

Example 5.2:In this example, another multiplierless low-
delay filterbank is designed using the GA. The specifications
arew, = 0.4r andw, = 0.6n. N =3, M =8, Ny = 12, and
N, = 14. The SOPOT coefficients obtained are also shown
in Table IV. Fig. 8 shows the frequency responses of the mul-
tiplierless filterbank. Both the stopband attenuationif =)
and H, (=) are 39 dB, which are very close to their real-valued
where/ is a positive integer, and its value determines the rangeunterparts. The average number of terms per coefficientis 2.5.
of the coefficientsp,, is the number of terms of theth coeffi- The total arithmetic complexity required in the original sam-
cient. Normally,p,, is limited to a small number, and the multi-pling rate is 32 additions and 32 shifts. The number of shifts can
plication of such SOPOT coefficients can be implemented witle reduced if additional memory locations are used to store the
simple shifts and additions. The objective function we minimizghifted immediate data. These results again demonstrate the ef-
is fectiveness of the GA and the low implementation complexity
of the multiplierless low-delay filterbank. More design exam-
k=01, welo, ] ples can be four_1d in [3_6]. To obtai_n the results in Examples 5.1
’ - ’ and 5.2 by GA, it requires approximately 20 to 40 min, respec-

. ) ) ) (5.2) tively, on a Pentium Il 350 MHz personal computer if no initial
whereH (w) is the desired frequency response. Various aspeE

Pn

h(n) = ax-2", ax€{-1,1}
k=1

bpe{-¢---,-1,0,1,---, ¢} (5.1)

Ei(Hy) = max HHk(w)—I:Ik(w)

: : k fFesses fory(2) and 3(z) are used. The computational time
on the implementation of GA can be found in [37] and the re san, however, be greatly reducedfz) and/3(z) in Examples

erences therein. o 3.1 and 4.1 are quantized to SOPOT coefficients and included
Example 5.1:1n this example, a multiplierless low-delay fil- i, the initial population.

terbank with the same specification as Example 3.1 is designed
using the GA. The cut-off frequencies arg = 0.347 and

w, = 0.667. The SOPOT coefficients of the filterbank obtained
are shown in Table IV. Fig. 7 shows the frequency responsedn this paper, a new approach for designing two-channel PR
of the multiplierless PR filterbank. The stopband attenuation BfR filterbanks with low system delay is presented. It is based

VI. CONCLUSION
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on the use of nonlinear-phase FIR functions in the PR structureThe ideal responses d?e(,a)(cos(Qw)) and Po(")(cos(2w)),
previously proposed by Phoorg al. [9]. Because the linear- using separate real and imaginary parts approximation, are
phase requirement is relaxed, the lengthg@f) anda(z) are

no longer restricted by the delay parameters of the filterbanks. P(a) (cos(2w)) = Re(A—l (ejw) GjQwaA)

Hence, higher stopband attenuation can be achieved at low ©

system delay. The design of the proposed low-delay filterbanks e(A*(Cjw)CﬂwMA)

= ' (Al1.3a)
is formulated as a complex polynomial approximation problem, | A(ei«)[?
which is solved by the Remez exchange algorithm or analytic (@) |m(A*1(Cjw)6j2]wAw)
formula with very low complexity. The generalization of the P (cos(2w))= sin(2w)
present approach to the design of a class of wavelet bases Im(A*(ej“)cﬂMM)
associated with this low-delay filterbank and its multiplier-less = —— , O<w<m/2
implementation using the sum of powers-of-two coefficients |A (e/+)” sin(2w)
are also studied. (A1.3b)

APPENDIX A The corresponding weighting functions in the Remez ex-
DESIGN OF/3(z) AND () WITH ODD LENGTH change algorithm are
When the length 0B(z) is odd, it can be written as a sum of
type-1 and type-lll FIR functions as follows: We(a:) _ %(CJO.SMCCOS@)‘Q
and

Be(e®) =7 WNs=1/2 . p(B) (cos(w)) .

2
Bo(7) = je 9N D 2gin () . PO (cos(w)) (ALL) Vel(®)= sin(arccos(z ‘A(G’O"”C“’S(’”))‘ (z=cof2w)).

(A1.3c)
where
It should be noted that becausg and.V, are odd integers,
Lg, the low delay parameterS, andM a are half integers. Due to
P (cos(w Z“k cos(w)*, g, =(Nzg—1)/2 page limitations, detail derivation of the least squares solution
is omitted. It can be derived similar to the even length case de-
L,; scribed in Sections I1I-A and 111-B.
PP (cos(w Zbk cos(w))”, Lg, = (Ng—3)/2.
APPENDIX B
WAVELET BASES FOR3(z) AND () WITH ODD LENGTH
The desired magnitude response @ % (c’“) = When the length ofi(z) is odd, it can be written as a sum of

PP (cos(2w)) + PP (cos(2w)) is still given by (3.9). atype-I FIR functiond.(z) and a type-lil FIR functiors,(z).
If the complex Chebyshev approximation is solved using twgince a type-lll FIR function has a zeroat 0, 3.(z) can be
real approximations as in Section IlI-A, the ideal responses filctored using the same method in (4.3)

(3.10) are modified to

Be(z) = (L= 271) - Be(z) + 2= (BL.1)
PO (cos(2w)) = cos(2wNa), (Al.2a)
P (cos(2w)) = sinwNa) o _ < /2 (Al2b) WhereSs = (Ny—1)/2, andj.(z) is a type-IV FIR function
° sin(2w) with length Ny = Ng — 1. If the Chebyshev problem is solved
by using two independent real Chebyshev approximations, the
with weighting functions desired magnitude responses®fz) and3,(z) in (4.7) and

(4.8) are modified to

W.(z) =1, and W,(z) = sin (arccos(x)) (z = cos(2w)). | — cos(2Naw)

(Al.2c) P (cos(2w)) =
A factorization similar to (A1.1) also exists when the length 2sin’(w)
of a(z) is odd. In fact, the desired responseff*) (¢’«) = PO (cos(2w)) = sin(2wNa ) 0<w<r/2 (BL2)
e(,a)(cos(2w)) +JPo(a)(COS(2w)) is still given by (3.24), where sin(2w) '
Le, with weighting functions
P (cos(w)) = Z ar (cos(w))¥,  La, = (Ny—1)/2
k=0 W.(x) =2sin? (0.5 arccos(z))
L(\o
P (cos(w)) = 3 b (cos(@))* . La, = (Na —3)/2 20

0 W, (z) = sin (arccos(x)) (x = cos(2w)). (B1.3)

o~
Il
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Similar modifications can be made when the lengtfa6f)
is odd. The desired magnitude responses(af) in (4.11) and
(4.12) are modified to

[19]

[20]
1 1 Re(A*(cj“")cﬂ“’MA)
2sin® w | A(ei«)[?
Im (A*(e7*)ei2wMa)

| A(e7)|? sin(2w)

Pe(") (cos(2w)) =

(21]

(22]

P (cos(2w)) = , O<w< /2

(B1.4) [23]

with weighting functions
[24]

- 2
W, (z) =2sin? (0.5 arccos(z))- ‘A (6]0'0 arCCOS(’”)) ‘
and
: j0.5 arccos(x) 2
Wo(z) = sin (arccos(a:))~‘A (e’ )‘ (z=cos(2w)) . 26]
(B1.5)

(25]
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