
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 12, DECEMBER 2000 3379
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Class of Two-Channel PR FIR Filterbanks and
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Abstract—In this paper, a new method for designing
two-channel PR FIR filterbanks with low system delay is
proposed. It is based on the generalization of the structure previ-
ously proposed by Phoonget al. Such structurally PR filterbanks
are parameterized by two functions ( ( ) and ( )) that can
be chosen as linear-phase FIR or allpass functions to construct
FIR/IIR filterbanks with good frequency characteristics. The
case of using identical ( ) and ( ) was considered by Phoong
et al. with the delay parameter chosen as2 1. In this
paper, the more general case of using different nonlinear-phase
FIR functions for ( ) and ( ) is studied. As the linear-phase
constraint is relaxed, the lengths of ( ) and ( ) are no
longer restricted by the delay parameters of the filterbanks.
Hence, higher stopband attenuation can still be achieved at low
system delay. The design of the proposed low-delay filterbanks
is formulated as a complex polynomial approximation problem,
which can be solved by the Remez exchange algorithm or analytic
formula with very low complexity. In addition, the orders and
delay parameters can be estimated from the given filter specifi-
cations using a simple empirical formula. Therefore, low-delay
two-channel PR filterbanks with flexible stopband attenuation
and cutoff frequencies can be designed using existing filter design
algorithms. The generalization of the present approach to the
design of a class of wavelet bases associated with these low-delay
filterbanks and its multiplier-less implementation using the sum
of powers-of-two coefficients are also studied.

Index Terms—Filterbanks, genetic algorithm, perfect recon-
struction.

I. INTRODUCTION

PERFECT reconstruction (PR) multirate filterbanks have
important applications in signal analysis, coding, and the

design of wavelet bases. Fig. 1 shows the block diagram of a
two-channel maximally decimated filterbank. The system is a
PR system if the output is identical to the input ex-
cept for some constant scaling and time delay. The theory of PR
filterbanks has been extensively studied in the literature [1]–[5].
A number of techniques for designing two-channel PR filter-
banks are now available [1]–[10]. Because of the important ap-
plication of filterbanks and wavelets in image and video coding,
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much attention has been given to the design of PR filterbanks
with linear-phase response [6]–[9], [16], [30]. Nayebiet al.[10]
were the first to consider the design of low-delay perfect recon-
struction filterbanks. The problem was formulated as an opti-
mization problem and was solved using the conjugate gradient
algorithm. One problem with the optimization approach is that
the filterbanks so obtained are in general not PR (pseudo PR).
This is also a major problem of other related works based on
optimization techniques [11], [13], [15], [18]–[20]. One solu-
tion to this problem is to employ filterbanks that are inherently
or structurally PR. The design of such structurally PR low-delay
filterbanks were recently reported in [12], [14], and [17]. Unfor-
tunately, because of the cascading structure of the filterbank, the
objective function of the unconstrained optimization is usually
highly nonlinear, and the optimization program can easily get
trapped in local minimum with unsatisfactory frequency char-
acteristics.

In this paper, a new method for designing two-channel PR
FIR filterbanks with low system delay is proposed. It is based
on the generalization of the structure previously proposed by
Phoonget al. [9]. Such structurally PR filterbanks are parame-
terized by two functions ( and ) that can be chosen as
linear-phase FIR or allpass functions to construct FIR/IIR fil-
terbanks with good frequency characteristics. The case of using
identical and was considered in [9] with the delay
parameter chosen as . In this paper, the more general
case of using different nonlinear-phase FIR functions for
and is studied. As the linear-phase constraint is relaxed, the
lengths of and are no longer restricted by the delay
parameters of the filterbanks. Hence, higher stopband attenu-
ation can still be achieved at low system delay. The design of
the proposed low-delay filterbanks is formulated as a complex
polynomial approximation problem, which can be solved by the
Remez exchange algorithm or analytic formula with very low
complexity. As a result, low-delay two-channel PR filterbanks
with flexible stopband attenuation and cutoff frequencies can be
designed using existing filter design algorithms. The proposed
technique is also applicable to the case where and
are allpass and type-II linear-phase functions, respectively. This
class of passband linear-phase IIR filterbank is able to suppress
the bumping problem previously found in [9] when both
and are chosen as allpass functions. Due to the use of the
allpass and linear-phase FIR functions, the design and imple-
mentation complexities of this filterbank are also very low.

Using the proposed approach and a new method for struc-
turally imposing the regularity condition, a new class of wavelet
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bases associated with this low-delay filterbank is obtained. Fur-
thermore, by using the sum of powers-of-two coefficient repre-
sentation and the genetic algorithm (GA), multiplier-less imple-
mentation of the proposed low-delay filterbanks are obtained.
Design examples show that the GA is a very effective method
for performing such discrete optimization. The multiplier-less
low-delay filterbanks so obtained have good frequency charac-
teristics and low implementation complexity. Although the pri-
mary objective of this paper is to design filterbanks with high
stopband attenuation and low system delay using the Remez ex-
change algorithm and least squares criteria, it should be noted
that the structure of Phoonget al.[9] and that in [14] can also be
designed to meet other performance measure such as the coding
gain. Under these circumstances, more general nonlinear opti-
mization techniques are usually required.

The paper is organized as follows: In Section II, a brief
summary of the two-channel structurally PR filterbank pro-
posed in [9] is given together with the basic idea behind the
proposed low-delay FIR filterbanks. Details of the proposed
design method and several design examples are given in Sec-
tion III. The design of dyadic wavelet bases derived from these
two-channel FIR filterbanks is studied in Section IV, where a
new method for structurally imposing the regularity condition
is proposed. Section V is devoted to the multiplier-less imple-
mentation of the proposed low-delay FIR filterbanks using sum
of powers-of-two coefficients (SOPOT) and the GA. Finally,
conclusions are drawn in Section VI.

II. TWO-CHANNEL STRUCTURALLY PR FILTERBANKS

Fig. 1 shows the structure of a two-channel maximally deci-
mated multirate filterbank. It can be shown that [1], [2] the re-
constructed signal is given by

(2.1)

where

(2.2)

and

(2.3)

The aliasing term can be canceled if the analysis and
synthesis filters are chosen as

(2.4)

Furthermore, the filterbank will be PR if the transfer function
is equal to a constant multiple of signal delay

(2.5)

Combining (2.3) and (2.4), one gets the following PR condi-
tion in and :

(2.6)

Fig. 1. Two-channel maximally decimated multirate filterbank.

Fig. 2. Structurally PR two-channel filterbank proposed in [9].

where is an integer, and is a nonzero constant. The struc-
turally PR two-channel FIR/IIR filterbanks proposed in [9] are
shown in Fig. 2. The expressions for the analysis filters are given
by

(2.7)

and

(2.8)

It can be seen from (2.7) and (2.8) that (2.6) is satisfied for any
choices of and . Therefore, FIR and IIR filterbanks
can readily be realized by choosing and as polyno-
mials or rational functions. In [9], the case of using identical

and is studied with the delay parameter chosen as
. A new class of FIR and IIR filterbanks was obtained by

choosing and as Type-II linear-phase functions and
allpass functions, respectively. The design of [and ]
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can be accomplished by noting that [and ] will be-
come an ideal lowpass filter if [and ] has the following
magnitude and phase responses

for

for .
(2.9)

With this choice of , is approximately equal
to in the passband ( ) and 0 in the stopband
( ). To design a linear-phase FIR filterbank,
has to be a type-II linear-phase function with length ,
which is an even number. Furthermore, if , then
from (2.8), should approximate
in the stopband of . Because is very
small in the passband of , will approximate
a delay in its passband. Since the delays of

and in the interval are and
, respectively, the delay parameter must be equal to

. It is worth noting that linear-phase FIR filterbank
with can also be designed by properly selecting
the delay parameter and the length of , . This has
been reported and studied previously in [6] and [7]. The relation
between system delay , the delay parameters and , and
the lengths of the linear-phase FIR functions and ,

, and , are summarized as follows:

(2.10)
In summary, the delay parameters of these types of struc-

turally PR filterbanks determine the system delay and the length
of the analysis filters. It can also be observed from (2.8) and
(2.10) that the delay of the highpass filter is always larger
than that of the lowpass filter . This is due to the special
filterbank structure in Fig. 2. It is also interesting to note that
by inverting the signs of and , the role of the lowpass
and highpass filters in this structure can be interchanged. In fact,

becomes a highpass filter and becomes a lowpass
filter. This yields a filterbank with a highpass filter having
a shorter filter length and delay response than the lowpass filter

. For simplicity, it is assumed throughout this paper that
is a lowpass filter and that is a highpass filter. For

low-delay applications [32], the length of the linear-phase FIR
function might be too small to provide sufficient stopband at-
tenuation. One solution is to relax the linear-phase requirement
of and and use nonlinear-phase FIR functions. The
system delay in this case is still given by .

and , however, can be greater than and
, unlike their linear-phase counterparts. It should be noted

that the conjugate quadrature filters (CQF’s) in [1], which are
obtained by spectral factorization of linear-phase half band fil-
ters, are nonlinear phase. One of them is minimum-phase, and
the other is maximum-phase. Other choices are possible, but the
system delay is still limited by the length of the filters. There-
fore, the structure considered here is more suitable for low-delay
applications.

In the following section, we will consider the case where
and are chosen as nonlinear-phase FIR functions, and a
new class of PR filterbanks with low system delay will be in-

troduced. The design of such nonlinear-phase FIR functions is
formulated as a complex polynomial approximation problem,
which is solved using the Remez exchange algorithm and ana-
lytic formula.

III. PROPOSEDMETHOD

A. Design of Lowpass Filter

Let and be, respectively, the passband and stopband
cutoff frequencies of . Similarly, let and be the
passband and stopband cutoff frequencies of . Supposing
that and , the desired fre-
quency response of is

(3.1)

where is a positive integer. The error function in approxi-
mating is therefore given by

(3.2)

Using (3.1), (3.2) can be written more clearly as

(3.3)
Since is a halfband lowpass filter, its cut-off frequen-

cies and are placed symmetrically with respect to [2],
that is, . Thus, it can be easily derived from (3.3)
that

(3.4)

Although the minimization in (3.2) involves and is
different from the conventional Chebyshev approximation, the
property of the low delay halfband filter obtained in (3.4) sug-
gests that we can minimize either in the passband or stop-
band of , i.e., or . The ideal
response of can be chosen to be the same as (2.9).

For the time being, we will assume that the length of the FIR
function , is even. The odd value case can be obtained
similarly and is summarized in Appendix A. As mentioned ear-
lier, will be a linear-phase function with in order
to realize filterbanks with linear phase. In a low-delay filterbank,
the required delay will, in general, be smaller than the length
of , i.e., . First of all, let us decompose the im-
pulse response of into its even and odd parts

(3.5)

where

and

(3.6)

As the length of is even, and , which are the
-transforms of and , are type-II and type-IV
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linear-phase FIR functions, respectively. Therefore, they can be
expressed in the following forms:

(3.7a)

(3.7b)

where

Both polynomials and have orders and
are equal to . Substituting (3.7) and (3.5) into (3.2),
one gets

(3.8)

where

and

As mentioned earlier, the required delayis smaller than the
length of the function , . The constant is therefore
greater than zero, and the desired response of is given
by

(3.9)

Equation (3.9) is recognized as a complex polynomial
approximation problem. Such a complex Chebyshev or min-
imax approximation problem has previously been addressed
by several authors [22]–[27]. Without loss of generality, we
adopted the method in [25] because it is relatively simple to
implement. Basically, and are
chosen to minimize the real and imaginary parts of
separately using the Remez exchange algorithm. In other
words, the complex Chebyshev approximation is solved using
two independent real Chebyshev approximations. The desired
functions of and are then given
by

and

(3.10)

Writing , the two Chebyshev approximation
problems can be written as

and

(3.11)

where

and

The interval is an optional disjoint interval used to
control the values of and in the
transition band of . Since is a type-II linear-
phase function, it is equal to zero at , i.e., . On
the other hand, is equal to zero at , i.e.,
, because it is a type-IV linear-phase function. The actual value

of determines how large the values of or
are in the interval [i.e., in the transi-

tion band of ]. Equation (3.11) can readily be solved
using the function REMEZ in the signal processing Toolbox of
MATLAB.

can also be determined using the least squares de-
sign criterion. In fact, the weighted least squares error in approx-
imating by is given by

(3.12)

where is a positive weighting function. Substituting (3.7)
into (3.12), one gets, after some manipulation

(3.13)

where
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The optimal weighted least squares solution is therefore given
by

and (3.14)

To avoid calculating the integrals analytically, one can
approximate the integral by a summation with sufficient large
number of terms.

B. Design of Highpass Filter

Having assumed that is a reasonably good lowpass
filter, we now proceed to formulate the problem of designing

with as an even-length FIR function. It can be seen
from (2.8) and (2.9) that the frequency response of is
dependent on both the lowpass filter and the function

. The ideal frequency response of is

(3.15)

The error function of the highpass filter is de-
fined as

(3.16)

Since the minimization in (3.16) involves , which
is periodic with period , it is different from the conven-
tional Chebyshev approximation. In fact, for a given value of

, will affect the values of at as
well as . Fortunately, it is observed that the magnitude of

is almost equal to one, except around , where
it is even smaller. It then follows from (2.8) that the passband
ripple of is approximately equal to the stopband error
of . This allows us to minimize only the stopband
attenuation of using instead of minimizing
(3.16) over the passband and stopband and relies on the high
stopband attenuation of to achieve small passband
ripple. First of all, let us consider the case where is an
even-length FIR filter with length . The odd value case can
be derived similarly and summarized in Appendix A. Using
again the even and odd parts decomposition of the impulse
response of , we have

(3.17)

where

(3.18)

Similar to and , and , which are the
-transforms of and , are type-II and type-IV

linear-phase FIR functions of length , respectively.
and can therefore be expressed as follows:

(3.19a)

(3.19b)

where

(3.19c)

is the order of the polynomials and is equal to .
Substituting (3.19) and (3.17) into (3.16), we have

(3.20)

where

(3.21)

Let the lowpass filter be written as

(3.22)

where is a complex function, and it is approximately
equal to one in the passband and 0 otherwise when the order
of is sufficiently high. Substituting (3.22) into (3.20), one
obtains

(3.23)

where . From (3.23), it can be
seen that the ideal response of is

(3.24)

Again, if and are used to approx-
imate the real and imaginary parts of separately, then
their ideal responses are

Re

Re
(3.25a)

Im

Im

(3.25b)

Writing , the minimax design problem can be
written as

(3.26)
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where

The two Chebyshev approximation problems in (3.26) are
similar to (3.11), which again can be solved by the Remez ex-
change algorithm. If the least squares criterion is used, it can be
shown, as in Section III-A, that the optimal values ofand
are given by

and (3.27)

where

Re

Im

It can be seen that if , the filterbank be-
comes linear-phase. Therefore, all the above results are also ap-
plicable to linear-phase FIR filterbanks. It should also be noted
that (3.25) and (3.27) are valid if is an IIR filter such as
the allpass based filter [9]. This property has been utilized to de-
sign a class of IIR filterbanks with and chosen as all-
pass and linear-phase functions, respectively [31]. Because the
proposed low-delay filterbank is derived from the structure in
Fig. 2, it is by no means complete and optimal. For example, it is
possible to express any two-channel PR FIR filterbank using the
lifting scheme. As mentioned earlier, this will, in general, lead
to an unconstrained optimization of highly nonlinear function,
which is more difficult to solve. In Section III-E, it is demon-
strated by several design examples that low-delay PR filterbanks
with very good frequency characteristics can still be obtained by
the proposed structure with very low design and implementation
complexities.

C. Combined Weighting Function

As mentioned earlier in Section III-A, solving the complex
Chebyshev approximation problem using two independent real
Chebyshev problems of its real and imaginary parts is inherently
suboptimal. The loss in stopband attenuation can be as high as
3 dB [24]. Better results can be achieved by using the method in
[24]. In this paper, a simple reweight technique is employed to
improve the performance of the independent approach in [25].
More precisely, the errors in approximating the real and imag-
inary parts with the independent approach is used to reweight
the original weighting function to achieve an overall equiripple
complex error.

Let and be, respectively, the approximation error
of the two independent Chebyshev approximations. The com-
plex approximation error is

(3.28)

and its norm is given by . It can be
seen that although and are equiripple, is not
necessarily equiripple. The reweight technique used here mod-
ifies the original weighting function as follows:

(3.29)

where is a positive integer. From experimental results, it was
found that gave better performance than .
can be estimated by performing an initial independent Cheby-
shev approximation. After that, the problem is solved again
using the new weighting function instead of . It is
found that this method can provide considerable improvement
over the independent Chebyshev approximations in [25]. In this
paper, all the complex Chebyshev approximations involving

and are assumed to be carried out by this method.

D. Selection of and

In practical applications of such a low-delay FIR filterbank,
one frequently encountered problem is the following: Given

and , the stopband attenuation of and , and
their cutoff frequencies , and , , how are the delay
parameters and and the lengths and chosen? Here,
some design guidelines regarding the selection of such param-
eters will be given. The linear-phase and nonlinear-phase cases
with and are discussed in
turn.

Linear-Phase Case:In this case, both and are
linear-phase. It is observed that is a linear-phase half-
band filter with identical passband and stopband ripples. The
formula proposed by Kaiser (in [38, eq. (7.104)]) can therefore
be used to estimate (the order of this halfband filter) and the
length of .

(3.30)

where , and . The length of ,
is therefore approximately given by . To estimate
(the length of ), it is observed that when is identical

to , the stopband attenuation of is about 10 dB lower
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Fig. 3. Low delay analysis filters in Example 3.1 designed by the Remez exchange algorithm. (a) Impulse responses of�(z) and�(z). (b) Magnitude responses
of �(z) and�(z). (c) Magnitude responses of low delay analysis filtersH (z) andH (z) (solid lines) and their linear-phase counterparts (dashed lines). (d)
Group delay responses of low delay analysis filters.

than that of . To achieve similar stopband attenuation for
and , the length of can be slightly increased

at the expense of higher system delay.
Nonlinear-Phase Case:If is nonlinear-phase, the stop-

band attenuation of is 1–5 dB lower than that of a linear-
phase halfband filter with the same length, depending on the
passband delay. Normally, the passband delay of can be
reduced by a factor of two, as compared with the linear-phase
halfband filter without too much degradation in stopband atten-
uation. However, significant bumping (1 dB) will appear in the
transition band of if the passband delay is lowered fur-
ther. This observation allows us to estimate the length of
using its linear-phase counterpart as a reference, which in turn
can be estimated using the formula in (3.30). To estimate,
it is observed that when is equal to , the stopband
attenuation of is comparable with that of . With
these choices (together with the one mentioned in linear-phase
case), the total system delay of the filterbank is only two thirds
of its linear-phase counterpart with comparable stopband atte-
unation. Slightly higher stopband attenuation can be obtained
when the system delay is increased by increasingand .
Let us consider Example 3.1. If the required stopband attenu-
ation for is 40 dB (or ) and the cut-off fre-

quencies are and , the order of the
linear-phase filter , as suggested by (3.30), is .
Because the linear-phase is a type-II FIR filter, the length
of should be . The length of the linear-phase filter

should be slightly larger than to achieve a comparable
stopband attenuation for and . In this example, it is
found that is sufficient. For the low-delay filterbank,
the passband delay of , as discussed earlier, can be chosen
as one half of its linear-phase counterpart. The delay parameter

is therefore chosen as 2. The remaining delay parameter
can be chosen as , which is equal to 5. The system delay
of the resulting low-delay filterbank is only 15 samples. Note
that a linear-phase filterbank, using the same structure, will re-
quire a system delay of 23 samples to achieve the same stopband
attenuation. The same procedure can be applied to example 3.2,
except that and are now odd numbers.

E. Design Examples

In this section, the proposed method is evaluated and com-
pared with other conventional methods through several design
examples.

Example 3.1: In this design example, and are non-
linear-phase FIR functions with lengths and
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TABLE I
COEFFICIENTS OF�(z) AND �(z) IN EXAMPLE 3.1 AND EXAMPLE 4.1

. The orders of the polynomials and are
, and the orders of and are

. The delay parameters and are, respectively, 2 and 5.
The overall system delay is samples. Fig. 3(a) plots
the impulse responses of and designed by the pro-
posed method using the Remez exchange algorithm. Their co-
efficients are listed in Table I. Fig. 3(b) displays the magni-
tude responses of (solid line) and (dashed line). To
demonstrate the higher stopband attenuation of the proposed
low-delay FIR filterbanks over their linear-phase counterpart, a
two-channel linear-phase FIR filterbanks with the same system
delay was designed by the proposed algorithm. The delay pa-
rameters and are still 2 and 5, but the lengths of
and are shortened to and , respectively,
due to the linear-phase constraint. Fig. 3(c) displays the mag-
nitude responses of the low-delay analysis filters and

(solid lines), whereas those of the linear-phase analysis
filters are plotted in dashed lines. It is observed that under the
same system delay ( ) and the same passband and stop-
band cut-off frequencies ( and ), the
stopband attenuation of the proposed low-delay lowpass anal-
ysis filter is much higher than its linear-phase counterpart (42
dB versus 26 dB). On the other hand, the stopband attenua-
tion of the low-delay highpass analysis filter is slightly higher
than its linear-phase counterpart (40 dB versus 36 dB). This im-
provement in the stopband attenuation, however, will require ad-
ditional arithmetic computations in filterbank implementation
[the number of the variables of and in the low-delay
case is 18, whereas that of the linear-phase is only 6]. To reduce
the implementation complexity of the proposed low-delay filter-
banks, a very efficient multiplier-less realization of the proposed
low-delay filterbanks using the SOPOT coefficients is proposed
later in Section V. Fig. 3(d) plots the group delay responses
of the low-delay analysis filters (solid line) and
(dashed lines), respectively. It can also be seen from Fig. 3(d)
that both and are approximately linear-phase in
their passbands.

In order to compare the proposed method with the conven-
tional low-delay design methods in [10] and [16], the cutoff fre-

quencies and system delay are identical to the design examples
in [10, Fig. 5] and [16, Fig. 3]. The stopband attenuation of the
analysis filters in [10] is about 39 dB. The stopband attenua-
tion of and in [16, Fig. 3] are, respectively, 45 dB
and 40 dB. Therefore, the proposed analysis filters have com-
parable passband and stopband performance as those in [10]
and [16]. By adjusting the cutoff frequencies to
and and and , the pro-
posed method can still provide comparable stopband attenua-
tion as that in [14, Fig. 1] (55 dB versus 56 dB) and a higher
stopband attenuation than that in [20, Fig. 2] (30 dB versus 25
dB). It should be noted that due to the simplified structure of
the proposed filterbank, its design complexity is very low, and
there is no reconstruction error, which is always present in other
methods based on constrained nonlinear optimization [10], [20].

Furthermore, as mentioned earlier, the proposed filterbank
structure is still PR even under coefficient quantization, unlike
the direct form in [16]. The design complexity of the proposed
method is also much lower than the unconstrained nonlinear
optimization methods in [12] and [14], thanks to the Remez
exchange algorithm. The overall performance comparison be-
tween the proposed method and the conventional low-delay fil-
terbank design methods [10], [14], [16], [20] is summarized in
Table II, where the arithmetic complexity is simply defined as
the number of multiplications and additions in implementing the
filterbank. This demonstrates the good performance, flexibility,
low implementation, and design complexities of the proposed
method, as compared with conventional methods. Fig. 4 dis-
plays the magnitude and group delay responses of the low-delay
analysis filters and designed by the proposed least
squares method. It can be observed that the stopband attenua-
tions of and are comparable to the minimax de-
sign in Fig. 3, but the stopband attenuation of and
around or is slightly higher in the least squares
case.

Example 3.2: In this example, a two-channel low-delay FIR
filterbank with odd filter length is designed. The lengths of
and are and , respectively. The or-
ders of the corresponding Chebyshev polynomials and
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TABLE II
OVERALL PERFORMANCE OFEXAMPLE 3.1 COMPARED WITH OTHER CONVENTIONAL METHODS. NOTE THAT ! IS THE PASSBAND CUTOFF FREQUENCY OF

H (z); i = 0; 1: ! IS THESTOPBAND CUTOFF FREQUENCY OFH (z); i = 0; 1: � (dB) IS THE STOPBAND ATTENUATION OFH (z), i = 0; 1:. � ALL THE

SYSTEMS HAVE 15 SAMPLES OVERALL DELAY. �� THE CUTOFF FREQUENCIESHAVE BEEN ADJUSTED TO BECOMPARABLE WITH THOSE OF[14] OR [20].
� � � NUMBER OF MULTIPLICATIONS AND ADDITIONS PERSAMPLE (ANALYSIS FILTERS)

Fig. 4. Analysis filters in Example 3.1 designed by the least squares method. (a) Magnitude responses of analysis filtersH (z) andH (z). (b) Their group delay
responses.

are and , whereas those of
and are and . The low-delay parame-
ters and are chosen to be 3.5 and 1.5, respectively. The
overall system delay of the filterbank is samples with

and . Fig. 5 plots the magnitude and group delay
responses of the analysis filters and . It can be seen
that the stopband attenuation of and is about 39
dB, and their passband and stopband cutoff frequencies are, re-
spectively, and . The transition band
is sharper than that of Example 3.1 due to the higher system
delay. It is also noted that there is a bump (about 1.5 dB) near
the transition band of , which will, in general, increase as
the length of increases for a given system delay. Detailed
coefficients of the filterbanks are given in Table III.

IV. DESIGN OFLOW-DELAY WAVELET BASES

The theory of wavelets is closely related to that of multirate
filterbanks [28], [29]. It has been shown that discrete dyadic
wavelets can be obtained from two-channel PR filterbanks with
added regularity condition. For biorthogonal dyadic wavelet
bases, it had been proved that [28] and should
have (or ) zeros at (the -regularity condition).
In addition, and should also have at least one zero
at . This is equivalent to saying that

(4.1)
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Fig. 5. Analysis filters in example 3.2 designed by the Remez exchange algorithm (a) magnitude responses of analysis filtersH (z) andH (z); (b) their group
delay responses.

TABLE III
COEFFICIENTS OF�(z) AND �(z) IN EXAMPLE 3.2

(4.2)

Substituting (2.7) and (2.8) into (4.1) and (4.2), one gets a
set of linear equations that have to be satisfied. The problem is
a constrained nonlinear optimization problem with linear con-
straints, which can be solved using the subroutine NCONF in the
IMSL library. If all the freedom is used to maximize the number
of zeros at , then (4.1) becomes a system of linear equa-
tions. Alternatively, if the least squares error function is used,

the objective function becomes quadratic, and the problem is
recognized as a quadratic programming problem with equality
constraints. Again, this can be solved numerically with relative
ease. In this section, we will limit ourselves to a class of wavelet
bases with using the methods introduced in Section III.
The advantage is that it is an analytic solution and is very easy
to apply. More precisely, we only impose one zero at
for and .

Due to the special structure of (2.7), it can be seen that the
regularity condition in (4.1) is satisfied with when

. If is an even length filter, its odd part ,
is a type-IV FIR function, which is equal to zero at . There-
fore, the constraint is simplified to
for its even part. Since this constraint cannot be incorporated
directly into the Parks–McClellan algorithm [24], it is imposed
into by the following factorization:

(4.3)

where , and is a type-III linear-phase
filter with length . Equation (4.3) is obtained
by observing that is symmetric so that its coefficients,
except the two around the center of symmetry, can be written as
a product of a type-III linear-phase function and . The
remaining two coefficients are multiple of .
Using a scale factor of 1/2, (4.3) guarantees that the required
condition is satisfied. Since is a type-III
linear-phase function, it can be written as

(4.4)

where

Substituting (4.3) and (4.4) into (2.7), one obtains the error
function as follows:

(4.5)
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Fig. 6. Analysis filters with wavelet bases (example 3.3) designed by the Remez exchange algorithm (a) magnitude responses of analysis filtersH (z) and
H (z); (b) their group delay responses. (c) analysis scaling function; (d) analysis wavelet function.

where

(4.6)

, and are given by (3.7b).
If the Chebyshev or minimax problem is solved as two inde-
pendent real Chebyshev approximations, the desired functions

and are given by

(4.7)

and

(4.8)

This can be solved using the Remez exchange algorithm with
weighting functions

We now consider the design of the highpass filter. It can
be seen from (2.7) that when the condition

is incorporated. Therefore, the highpass filter
will be zero at when . Again, using

the property and the following factorization for

(4.9)

where

the required regularity condition can be incorporated. Let
be given by

(4.10)
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TABLE IV
SOPOT COEFFICIENTS FOREXAMPLES 5.1 AND 5.2.

Following the same approach in designing the lowpass filter,
the desired responses of and are
shown to be

Re
(4.11)

Im

(4.12)

where is the complex envelope of given by
(3.22). Again, the optimal minimax solution is similar to that
in (4.9) with weighting function given by

and

This design algorithm can also be generalized to the case
where the length of is odd. The detail is given in Ap-
pendix B. Due to page limitations, derivation of the least squares
design is omitted here. It should be noted that the proposed

method is also applicable to the design of wavelet bases with
linear phase.

Example 4.1: In this example, we will design a wavelet fil-
terbank with the same parameters as Example 3.1 using the pro-
posed method. In particular, the lengths of the FIR functions

and are and , respectively. The
low-delay parameters and are also selected as 2 and 1.
The system delay is maintained as 15 samples. Fig. 6(a) and (b)
plot the magnitude and group delay responses of (solid
line) and (dashed line). It is observed that the frequency
performance of and of the wavelet filterbank is
comparable with that in Example 3.1, except those zeros have
been imposed at for and for .
The analysis scaling and wavelet functions of these low-delay
wavelet filterbanks are shown in Fig. 6(c) and (d), which are
very smooth. The coefficients of and are also listed
in Table I.

V. MULTIPLIERLESSLOW-DELAY FIR FILTER BANKS

In this section, we will study the multiplierless implementa-
tion of the proposed low-delay FIR filterbanks using SOPOT
coefficients and the GA. The design method proposed in the
previous sections is very efficient for designing low-delay FIR
filterbanks with real-valued coefficients. Since the filterbank is
structurally PR, the simplest way to obtain a PR filterbank with
SOPOT coefficients is to round the coefficients obtained in Sec-
tions III and IV to the nearest SOPOT coefficients. It is, how-
ever, a suboptimal solution. A number of methods have been
proposed for designing FIR filters with SOPOT coefficients. A
classical work is the integer programming method proposed by
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Fig. 7. Analysis filters of Example 5.1 designed by GA. Magnitude responses
of analysis filtersH (z) andH (z).

Lim [33]. Other heuristic methods such as simulated annealing
[34] and GA [35] have also been proposed as alternatives to the
problem. These heuristic techniques are, in general, very easy
to use and are able to a yield reasonably good solution even
when the objective function is nonsmooth with complicated (in-
equalities) constraints. An important drawback, however, is the
long computational time of the algorithms, which depend on a
number of issues such as the strategy used, coding style, and
the initial population, etc. In [35], the GA is used to obtain the
SOPOT coefficients for the lattice coefficients in a multiplier-
less two-channel orthogonal filterbank derived from the loss-
less lattice structure [2]. In this paper, the GA is also employed
to search for the SOPOT coefficients of the functions and

. More precisely, the coefficients of and are rep-
resented as

(5.1)

where is a positive integer, and its value determines the range
of the coefficients. is the number of terms of theth coeffi-
cient. Normally, is limited to a small number, and the multi-
plication of such SOPOT coefficients can be implemented with
simple shifts and additions. The objective function we minimize
is

(5.2)
where is the desired frequency response. Various aspects
on the implementation of GA can be found in [37] and the ref-
erences therein.

Example 5.1: In this example, a multiplierless low-delay fil-
terbank with the same specification as Example 3.1 is designed
using the GA. The cut-off frequencies are and

. The SOPOT coefficients of the filterbank obtained
are shown in Table IV. Fig. 7 shows the frequency responses
of the multiplierless PR filterbank. The stopband attenuation of

Fig. 8. Analysis filters of Example 5.2 designed by GA: magnitude responses
of analysis filtersH (z) andH (z).

and are, respectively, 39.2 dB and 40 dB, which
are very close to their real-valued counterparts. The averaged
number of terms used per coefficient is only 2.2. The total arith-
metic complexities for implementing and are 37 ad-
ditions and 39 shifts. Counting the two more additions in the fil-
terbank, the total arithmetic complexity is 39 additions and 39
shifts in the decimated domain or 19.5 additions and 19.5 shifts
in the original sampling rate. The number of shift operations can
further be reduced if additional memory locations are used to
store the shifted immediate data. These results demonstrate the
low implementation complexity and good performance of the
proposed multiplierless filterbank. It is also found that the GA,
although requiring more computational time, is very effective in
finding the SOPOT coefficients of the multiplierless low-delay
filterbanks with good frequency characteristics.

Example 5.2: In this example, another multiplierless low-
delay filterbank is designed using the GA. The specifications
are and . , , , and

. The SOPOT coefficients obtained are also shown
in Table IV. Fig. 8 shows the frequency responses of the mul-
tiplierless filterbank. Both the stopband attenuation of
and are 39 dB, which are very close to their real-valued
counterparts. The average number of terms per coefficient is 2.5.
The total arithmetic complexity required in the original sam-
pling rate is 32 additions and 32 shifts. The number of shifts can
be reduced if additional memory locations are used to store the
shifted immediate data. These results again demonstrate the ef-
fectiveness of the GA and the low implementation complexity
of the multiplierless low-delay filterbank. More design exam-
ples can be found in [36]. To obtain the results in Examples 5.1
and 5.2 by GA, it requires approximately 20 to 40 min, respec-
tively, on a Pentium II 350 MHz personal computer if no initial
guesses for and are used. The computational time
can, however, be greatly reduced if and in Examples
3.1 and 4.1 are quantized to SOPOT coefficients and included
in the initial population.

VI. CONCLUSION

In this paper, a new approach for designing two-channel PR
FIR filterbanks with low system delay is presented. It is based
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on the use of nonlinear-phase FIR functions in the PR structure
previously proposed by Phoonget al. [9]. Because the linear-
phase requirement is relaxed, the lengths of and are
no longer restricted by the delay parameters of the filterbanks.
Hence, higher stopband attenuation can be achieved at low
system delay. The design of the proposed low-delay filterbanks
is formulated as a complex polynomial approximation problem,
which is solved by the Remez exchange algorithm or analytic
formula with very low complexity. The generalization of the
present approach to the design of a class of wavelet bases
associated with this low-delay filterbank and its multiplier-less
implementation using the sum of powers-of-two coefficients
are also studied.

APPENDIX A
DESIGN OF AND WITH ODD LENGTH

When the length of is odd, it can be written as a sum of
type-I and type-III FIR functions as follows:

(A1.1)

where

The desired magnitude response of
is still given by (3.9).

If the complex Chebyshev approximation is solved using two
real approximations as in Section III-A, the ideal responses in
(3.10) are modified to

(A1.2a)

(A1.2b)

with weighting functions

and
(A1.2c)

A factorization similar to (A1.1) also exists when the length
of is odd. In fact, the desired response of

is still given by (3.24), where

The ideal responses of and ,
using separate real and imaginary parts approximation, are

Re

Re
(A1.3a)

Im

Im

(A1.3b)

The corresponding weighting functions in the Remez ex-
change algorithm are

and

(A1.3c)

It should be noted that because and are odd integers,
the low delay parameters and are half integers. Due to
page limitations, detail derivation of the least squares solution
is omitted. It can be derived similar to the even length case de-
scribed in Sections III-A and III-B.

APPENDIX B
WAVELET BASES FOR AND WITH ODD LENGTH

When the length of is odd, it can be written as a sum of
a type-I FIR function and a type-III FIR function .
Since a type-III FIR function has a zero at , can be
factored using the same method in (4.3)

(B1.1)

where , and is a type-IV FIR function
with length . If the Chebyshev problem is solved
by using two independent real Chebyshev approximations, the
desired magnitude responses of and in (4.7) and
(4.8) are modified to

(B1.2)

with weighting functions

and

(B1.3)
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Similar modifications can be made when the length of
is odd. The desired magnitude responses of in (4.11) and
(4.12) are modified to

Re

Im

(B1.4)

with weighting functions

and

(B1.5)
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