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Reconstruction of Irregularly Sampled Discrete-Time
Bandlimited Signals with Unknown Sampling
Locations

Pina Marziliano and Martin VetterliFellow IEEE

Abstract—The purpose of this paper is to develop methods that  In [7], a similar problem is studied in the context of error cor-
can reconstruct a bandlimited discrete-time signal from an irreg- rection. The authors reconstruct a passband signal of le¥gth
ular set of samples aunknownlocations. We define a solution to the given a noisy signal with errors in unknown locations. To de-

problem using first a geometric and then an algebraic point of view. . . .
We find the locations of the irregular set of samples by treating the termine the locations of the errors, they require the knowledge of

problem as a combinatorial optimization problem. We employ an at |e?31271 values in the error spectrum. In other W0rd$' they_ are
exhaustive method and two descent methods: the random searchlooking for the complement set of the sampling locations given
and cyclic coordinate methods. The numerical simulations were jnformation on some part of the error spectrum. Our problem
made on three types of irregular sets of locations: random sets; differs from theirs in that we have no knowledge of the error

sets with jitter around a uniform set; and periodic nonuniform sets. t t its structure: h Al | |
Furthermore, for the periodic nonuniform set of locations, we de- spectrum except its structure, we have onlysample values,

velop a fast scheme that reduces the computational complexity of Whereas they have the entire signal, although it is noisy; the
the problem by exploiting the periodic nonuniform structure of the  number of sampleX is usually much larger than the number of

sample locations in the DFT. errorsn; therefore, our problem has more unknown variables.
Index Terms—Bandlimited, irregular sampling, jitter, periodic The paper is organized as follows. In Section II, we formulate
nonuniform, unknown locations. the irregular sampling with unknown locations (ISUL) problem

for discrete-time bandlimited signals. We define a solution by
describing the problem geometrically and algebraically. We also
study the different conditions for which there may be multiple
HE WELL-KNOWN sampling theorem states that a consolutions and a unique solution. Three solving methods for the
tinuous-time bandlimited signal can be recovered fromi8UL problem are described in Section Ill. The first is an ex-
uniform set of samples if the sampling rate is twice the ban@laustive search method that tests all the possible sets of loca-
limit. The Kadec-1/4 theorem [1] is its equivalent when théons. The two other methods (the random search and cyclic co-
samples are irregularly spaced. The irregular sampling probleimiinate method) are descent algorithms in which a solution set
for continuous and discrete-time bandlimited signals has besflocations is obtained by perturbing a location. The random
treated in [2]-[4] and for two-dimensional (2-D) signals in [S]search method differs from the cyclic coordinate method in that
In all of these problems, the band limit, the sample values, atik perturbation follows a probability density function, whereas
their locations are supposedly known or given. In practice, tlige latter is deterministic. In Section IV, we describe three ex-
sampling locations are not always known, for instance, wheieriments. In the first experiment, we consider signals where the
there is a certain jitter around a uniform set of locations as iftegular sampling set of locations is random, and the second is
Fig. 1(a) or as in Fig. 1(b), when there is a certain unknowsne where the irregular set is composed of a uniform set with
shift in a periodic nonuniform set of samples. This is the mex certain jitter. We show that the cyclic coordinate method is
tivation for studying the irregular sampling problem with- more successful in finding the sets of locations than the random
knownsampling locations [6]. The question we intend to answeearch method. The third experiment involves reconstructing a
is the following: How can we recover a discrete-timbandlim-  signal where the sampling locations are formed by a union of
ited signal of lengthv from K irregularly spaced sample valuesuniform sets differing by shifts. The shifts are unknown. We de-
without knowing the sampling locationd (< K < N)? termine these shifts using the exhaustive method. We will show
that the size as well as the computational costs of the problem

. . . are reduced by exploiting the periodic structure in the data and
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Fig. 1. (a) Discrete-time signal of lengfi = 32 with a jitter of £1 around{nT}%-', whereT = 4 and K = 8. (b) Periodic nonuniformly sampled

discrete-time signal of length’ = 32 composed of” = 3 uniform sets of length<, = 4 with shiftsr = (4, 5. 7).

sets. Then, the submatR(«, 3) is composed of the rows of proach. We begin by analyzing the signal subspace followed by

F indexed by« and columns oF indexed byg; see [8]. that of the irregular set of sample values.
From (1), we obtain an expression for the signal in terms of
Il. PROBLEM FORMULATION AND SOLUTION the spectrum by inverting thBFT ,- matrix and noticing that

the lastV — L columns do not contribute to the signal (since the

The ISUL problem consists of reconstructing a lengfuis- lastN — L spectrum values are zero). We obtain

crete-timeL-BL signalx = (zo, z1, -+, zy_1)7 given K
sample values = x(Ny) = (Tnys Ty, * > Tng )L, Where Zo 1 1 1
Ny = {n;} | isanunknowrirregularly spaced ordered subset . —(—1)
i - 1 Wy Wy
of N={0,1,---, N -1}, L < K < N.We recall the defi- Tt 1 N N
nition of bandlimitedness for discrete-time signals. : -N . .
Definition 1: A discrete-time signax = (zo, ---, anx_1)7 ' _('N_l) _(N_'l)(L_l)
of length NV is bandlimited toL (in the low-pass sense) if the \Zn-1 1 Wy Wy
last N — L components of the discrete Fourier transfotrare o
zero, i.e., R
1
o I @)
2 :
1 1 1 Zo Tro1
1 Wy - Wit : . . .
5 _ A N 1 or using the notation described in Section |,
L—1 -
0 : : : 1 .
1wt e [\ x(V) = SFW, £)x(£) ®)
where F is the conjugate transpose of tH@F T, [since

(DFTy)~! = (1/N)DFT%], and£ = {0, 1, ---, L — 1}.
x =DFTy -x (1) Expanding (2), we see that\) is a linear combination of the

. . . . L first columns ofF
where DF Ty is the discrete Fourier transform matrix, and

Wy = e /N (Wp = W]\?,mOdN). To solve the ISUL 1 .
= — F l 4
problem, we must have a clear understanding of the subspaces XA N Z HEW, ) @)

. . icL
to which the irregular set of sample valugbelong. ¢

whereF(N, 1) = (1, W=t w=2 ... w—(N-UNOT is the
th column ofF. We defineV; as the subspace that is spanned
by the L first columns ofF. Consequently
In this section, we derive a solution to the ISUL problem by
describing it alternatively via a subspace and an algebraic ap- x € Ve = span{F(N, D}hice. (5)

A. Derivation of a Solution—Subspace and Algebraic
Approach
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Fig. 2. Geometric interpretation of the ISUL problem for a signal of ledgth
with K = 3 unknown sample locations and bandlimited’tc= 2. (a) Signal
x belongs toV., which is the subspace spanned by the two frrst columns
the (DFT)~',i.e,V; = span{F(N, 0) = (1, 1, DT, FW, 1) =
(1, W=t ... W-@W=1)T} (b) Irregular set of sample valuesbelongrng
to the projectron ol onto the subspace spannedfley,, , e..,, €., }, which
is denoted byS.,. , WhereNx = {n1, ns, ns}.

This is illustrated in Fig. 2 for arbitraryv, K = 3, andL = 2.
Suppose thatVi = {n;}X, is an irregular set of locations
associated with the sample valuesThen

1 .
5= F(Ng, £)%(L) (6)
and consequently

s € span

. {F(NK, )= (VV_"II7 Wl L W_nKl)T}

ice’

@)

Definition 2: Supposex is a length&V discrete-timel — BL
signal. Lets be a set of’ (K < N) sample values, and let
Ny = {n;}£ | be a set of locations. TheN/ is a solution to
the ISUL problem if

s c PTOjS,\"K V. (8)

The following figures are obvious facts, but we include them to
build some intuition on the problem. Fig. 2 gives a geometric
interpretation, and Fig. 3 illustrates when a set of locations is
and is not a solution to the problem.

We recall that the known variables ase£, K, N, and the
unknown variables arg, Ny . The goal is to determine(\).
Suppose the location safx is known; then, this is achieved
by solving the system o equations and. unknownsx(£)
in (6) and then substituting in (3). A least squares solution to
the system is obtained by using the generalized invecfe
F(NK, [,), i.e

F(NVk, L)X(L)
(/\/A, ) s =F(Ng, LY'F(Ng, £)%(L)
([,) [F(NK, [,)*F(NK, [')]_IF(NK, [,)*S
C)

The problem with unknown location set is harder since we ob-
tain a system of nonlinear equations of the form

SZ‘IQA?()-FQAHW_M+~~~+.§7L,1W_m(L_l) i=1---K
(10)
andL + K unknowns{a; } 7= o5 {ni i, i.e., more unknown
variables than equations.
Note that the spectrusa(£) in (9) depends on the location set
N . If the location set is the right one, the\) is recovered,

and we obtain
of

x(N) = F(N, L)[F(Nk, L)*F(Nk, L] 'F(Nk, L)*s.

(11)

How can we verify algebraically that a given set of locations
My = {m;}£, is a solution to the ISUL problem? One way
is to verify that the sample values at those locations are the same
as the observed sample valugs.e.,

X(MK) =S (12)
or equivalently

[F(My, L)[F(My, L*F(My, £)] 1
F(Mg, £)* —I]s=0. (13)

If (13) is satisfied, then\ i is a solution to the problem.

B. Classification of Solutions
We want to identify conditions for which there are unique and

Define Sy, = span{e,, }X, as the subspace spanned bynultiple solutions to the ISUL problem. Intuitively, if the inter-
the canonical base vectors associated to the irregular sese€tion of the subspaces associated with two sets of locations is

locations V., wheree; is a N x 1 vector, with value 1
in jth position and 0 elsewhere. Then, theun{F(Nx, )
= (Wl w—nel Wk, - is isomorphic to the
projection ofV; onto Sus,, . Thus, we define a solution for the

empty except fos = 0, then there is a unique set of locations
that correspond to the sample valses

If K = L, then the generalized inverse is the inverse of the matrix. The
existence of the generalized inverse or the inverse is assured due to the Vander-

irregular sampling with unknown locations problem as followsnonde structure oF (Vx, £).
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Fig. 4. Example of multiple solutionsVx = {0, 1}, Mx = {0, 2}. If the
sample values are such that they lie on the intersection, there is no way to
differentiate the setd/x and M k.
Proof: If the rank of the matrix
[F(Nk, £)*F(Nk, L] F(Nk, £)*
e — [F(My, LY F(My, L) " F( My, L)
b . . .
() in (16) is greater tha#, then the system may admit one or more
Fig.3. (a)Exampleofasolutiok’x = {0, 1}.(b) Example ofanonsolution: Solutions. u
My = {0, 2} For example, if the signal to be reconstructed is
x = (a,b,a,a,c a a d? and the irregular set of
Theorem 1: A set of locationsV is a unique solution within sample values is = (a, b, a, ¢, a)* (i.e., N = 8, K = 5),
shifts to the ISUL problem if then the possible sets of locations for the sample values
are MY = {0,1,2,4,5}, MP = {0,1,2,4,6},

PTO].S'MKVﬁ n PTOjS,\"K Vﬁ - (Z) \V/M[( 75./\/'[(. (14) Mg?) = {07 17 37 47 5}5andM§?) = {07 17 37 47 6} .
Next, we show that if a set of locations is a solution to the

Proof: For a set of locationd/s, the reconstructed signal ISUL problem, then all shifts of that set is also a solution. This

is given by (11). For another set of locationdy,, the recon- S due to the shift property of thBFTx.
structed signal is Theorem 2: Let s be an irregular set of sample values of an

L — BL discrete-time signat. If N = {n;}X, is a solution
to the ISUL problem, the i = N +7 = {n; + 7}, with
re{l,---, N —ng}is also a solution.

Proof: We show thatProjs,, V. = Projsy Ve

X(N) = F(N, [,)[F(MK, [,)*F(MK, [,)]_IF(MK, [,)*S.
(15)

My

Equation (11) is equal to (15) if and only if
Projs,,, Vi = span{F(Mp, Dhec (18)

= span{FNx +7, D}ier (29)

= span{WKrF(NI(, l)}lcg (20)
If there are no common elements in the two subspaces, then the = span{F Nk, D}iec (21)
system in (16) is satisfied only i x = My sinces 20. = =Projs,, Ve (22)

Similarly, if the intersection of two subspaces generated by

different sets of locations is not empty, then there are multiptéence M =Ny + r isalso a solutiontothe ISUL problem.

solutions to the ISUL problem, as illustrated in Fig. 4. o _ _ _ _
Corollary 1: Given an irregular set of sample valuesf an C. Periodic Nonuniform Sampling with Unknown Shifts

L — BL signal, two sets of location{x and Ny are both  The periodic nonuniform sampling problem has been studied

(PN, L) FWic, L] FWk, £)*
— [F(MK, [,)*F(MK, [,)]_IF(MK, [,)*)S =0. (16)

solutions to the ISUL problem if in [9] and [10] for multiband signals. We consider the ISUL
problem where the irregular set of locations follows a periodic
s € ProjSMKvﬁ N ProjsNK Ve £ VN # Mg nonuniform pattern. It comes about in applications where a uni-

(17) form set of samples is insufficient to reconstruct the signal, i.e.,
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K < L. By taking multiple uniform sets differing by a shift,andO, is a2 x 2 zero matrix. Recall thdDFT}; = 2-DFT§1;
a periodic nonuniform set of locations is formed. The shift itherefore, if we multiply (24) on each side by the matrix
unknown, and therefore, so are the locations. The following ex-

ample illustrates that by exploiting the periodic structure of the DFT, O O;
set of locations, the size of the ISUL problem is reduced as well % 0, DFT, 0, (25)
as the computational effort.

Example 1: Consider a discrete-time signabf lengthV = 0: 0: DFI,
8 bandlimited toL = 4. Suppose the discrete-time uniformye gptain the following partitioned system:
sampling interval is equal t6 = 4; then, the number of samples
in the uniform set iy = N/T = 2 < L, which is insufficient Zo
to reconstruct the signal (the number of samples must be at least DFT; - x(Nk, ) Dy; Dy 4
L). If we takeC = 3 uniform sets of samples, for example, at 4 | DFTs - x(N,) | = | Dar Dao Al (26)
locationsNy, = {0, 4}, Nk, = {1, 5}, andNk, = {2, 6} *2

. v o o R DFT; - x(Ng Ds:; D

then we obtain a periodic nonuniform set of locatiovg = 2 x(Ni) ot 52 T3

U2, Nk, = {0, 1, 2, 4, 5, 6}. We reformulate the problem
by partitioning it according to the periodic structure

To (1 1 1 1
Ty 1 Wg*t 1 wgt &
z| |1 wgt owg? wg? | & 23)
T Sl wgt owgr wy” iy
T2 1 wg? owgt wg© #3
T 1 W Wt wy?
We notice thaf} Wi_éi] = Wi_l] = DFT3}, and breaking
it up some more
Zo
<$4>
|| ()
x5
X2
<$6>
DFT; DFT; O, O, O, O,
=| 0, O, DFT, DFT; O, O,
O, O, O, O, DFT, DFT}
(D1 O2
02 D12 -%0
Dy O | & (24)
02 D22 -%2
D31 O Z3
| Oz Dsa |
where
1 0 1 0
D, = 0 J, ])122{O J
D21: ! 0 :| D22:|: gQ 0 :|
Lo wgtl’ 0o Wwg?
D31:'1 0 } D32:[W84 0 }
Lo w2l 0o Wwgt

Each block of the partitioned matrix in (26) is a diagonal matrix
whose values are given by the rows associated wjthey, xo

and columng0, 1},{2, 3} of the matrix in (23). The key step
in Example 1 that reduces the problem is the multiplication of
(24) by the diagonal blocKRF T, matrix in (25). We generalize
by the following:

DFT, x(Nk,)
N D]:‘"I‘K0 X(NKZ)
Ko .
DFTKO X(NK(,)
Dy Dy Dir Zo
D21 D22 D2R -’i'l
Dci Deo Dcr Tr1
y=D- %(L) 27)
where
N length of the signal;
T discrete-time uniform sampling interval,
C number of uniform sets;
Ky size of a uniform set of locationky, = N/T € N,;
Nk, ith uniform set of locationsNk, = {nT +
Titn=0, . Ko—1,t =1, -, O
7 ith shift from the uniform se{n7'},=o ... K,—1,0 <
r, < T -1
K size of the periodic nonuniform sé&f = CKj;
L band limitL = RKy, 1 < R<C;
D,; diagonal matrices, D;; = diag({W 5"t

(= 1)Ko, -y jEo—1})s 8 =1, -+, Cyj=1,---, R,
To solve the periodic ISUL problem, we must calculate the gen-
eralized inverse of the partitioned matrix, which involves matrix
multiplication and inverse operations. We obtain a solution in
the least squares sense by means of the generalized inverse of
the partitioned matriD in (27). Hence, we obtain

%(£) =(D'D)"'D"y (28)

where y [DFT(x(Nk,), ---, DFT(x(Ngx)]¥, and
(D*D)~!D* is also a partitioned matrix whose blocks are
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TABLE |
x(Nx,) —|DFTk, “(£) SUMMARY OF COMPLEXITY O(operationsyFOR BOTH SCHEMES
X
D*D)"D* LDFT; x
( ) v v Complexity
x(No) —DFTx, Direct scheme Fast scheme
F*F L’K D*D R2CK,

Fig. 5. Fast reconstruction scheme for periodic nonuniform sampling. (FF)-* 3 (D'D)~' | Rl

F* - x(Nk) | LK D*y RCKjylogKy

diagonal matrices. The fast reconstruction scheme is illustrated
in Fig. 5.

1) Computational ComplexityWe next compare the com- 004
putational complexity of the fast reconstruction scheme with the
direct unstructured one.

The inverse of a partitioned matrix is obtained from (30) in o6}
the Appendix, where we leA = D*D. Note thatA is a par-
titioned R x R matrix where each bloclA,,,,, is a Ky x K 0025
diagonal matrix. Definesppa (R) as the number of operations
required to calculate the inverse Af. We suppose thak is a
power of 2 and use a divide-and-conquer approach to determine oust
A-l = (D*D)7!(i.e.,leta = {1, ---, R/2}). We obtain the
following recurrence equation: oo

® o02r

0.005 -

S L

1
[}
1
1
1
]
[l
]
[}
L}
[}
[}
[}
1
i
i
1
'
]
¥
1

opa(R) = 100pa(R/2) + 12(R/2)°Ko + 4(R/2)* Ko ) . ,

At = RG> ==

unknown locations

2
8
gt
®

and conclude thatp (R) c O(R10g2 10K0)_ A|th0ugh10g2 10 rigétfii(.)nSD(;?(;ri(;gtiTegsignal of length' = 32 with a random set of unknown

is larger than 3, the complexity of our fast scheme is by far stif o

less than the direct scheme becafisis much less that.. We

summarize the number of operations (matrix multiplication, m&. Exhaustive Method

trix inversion) required for each scheme in Table I. Furthermore, oy glementary way to solve the ISUL problem is using an
by substitutingk’ = CKo andL = RK, in Table |, keepingthe exnaustive search approach. This method consists of verifying
variablesC' and i constant, and letting(, vary, the computa- (29 oy al| (%) sets of locations. From Theorem 2, since some

tional complexities of the two schemes are compared in Fig. Igts of locations are just shifts of each other, we put these sets

in one class and elect a representative for each class. The repre-
[ll. NUMERICAL SOLVING METHODS sentative satisfying (29) witl’(M ) = 0 is a solution of the

ISUL problem. Clearly, this method can only be used for small

We_nume_rlcally_sqlve_the ISUL problem by C(_)n5|der|ng It aS&ze problems because of the combinatorial explosion, and mul-
combinatorial optimization problem. We describe three solwrl

thods. We test th timality of lutior « b . ﬂ)le solutions are identified on such type of problems. We can
me OQS' e test the optimality of a solutidri ¢ by verifying construct them algebraically, but these are extremely unlikely to
if the £%-norm of (13) be found in practice.

EMg) = H [F(MK, L) [F(Mpg, L) F(My, L))} B. Descent Methods: Random Search and Cyclic Coordinate

S F(My, L) — I} SH (29) The random search method is an iterative descent algorithm.
A component of the location set is perturbed according to a
] o ) probability distribution. If the cost functionF( M x)) of the
equals zero for the first method, which is an exhaustive seaigtrturbed solution decreases, we keep perturbing the same com-

method. The other two methods (the cyclic coordinate apghnent. Otherwise, we perturb another component and continue
random search methods) are both descent heuristics that migis until a global or local minimum is found.

mize E(M ). The main goal of this paper is to find a solution
to the ISUL problem; therefore, we used the direct method to

calculate E(M g ), which may be computationally expensiveAlgorithm 1 : Random search method
for large problems. We can further reduce the computatioth§ Initialization:
by noting that the matri¥*F is a Toeplitz matrix and can be Choose an initial set of K locations

obtained by computing only the first row, i.€{L operations. M%), and let Mg = M%), j=1

Consequently, by fast Toeplitz methods, it can be inverted inGo to General step.
CL,log L operations [3]. 2) General step:
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(a) Fig. 8. Success percentage of finding global minimum using the CC and RS
450 : : T T T T T methods for signals of lengt’ = 32 with a random sampling set df = 8
-+« RS method . h . . .
— CC method locations. Average of 20 simulations on 20 different signals.

100 T T T

o . ] 8 10 12 14 16 18 20 T |
simulation 30r L
. RS method
\ 20 . . L . . .
(b) ) 0.06 0.1 0.15 02 025 03 035

fitter probabiltty, p

Fig. 7. (a) Convergence of the cyclic coordinate (CC) and random search (Rf). 9. Success percentage of finding global minimum using CC and
method on a discrete-time signal of length = 32 with a random set of RS methods for sampling with jitter in locations where the jitter follows
unknown locations of siz&” = 8 and bandlimited td, = 2. Here, the global 3 hinomial probability distribution with parameter®, () centered at

minimum has been found in the first attempt. (b) Total number of iterations — . Average of 100 simulations on 50 different signals with parameters
to find a global minimum when multiple local minima are encountered. The — 16, Kk = 4, L = 2.

maximum number of local minima was set to 30.

method in that the perturbation is not probabilistic but determin-

a) Obtain Mf,) by the perturbing component istic.
j of Mg by A, where A~ Bin(2M, p).
b) If E(ME,?)) = 0, then My = Mg?) is a  Algorithm 2 : Cyclic coordinate method
global minimum. Stop. 1) Initialization:
c) If |E(M§?)) — E(Mg)| = 0, then My is a Let di,---,dx be the coordinate direc-
local minimum. 2 tions, where d; is 1 X K vector with
d It EMP) < BWMY), then the current value 1 in position
set My =MD, MY = mQ, i and O elsewhere. Choose an initial set
e) Let j=j+1, Mx=MY If j<K, repeat of K locations MY, and let My = M,
step 2a J=1

Go to General step.

2) General Step:
The cyclic coordinate method [11] is similar to the gradiery) A4, is obtained by perturbing com-

descent in that it descends in the best direction but does not 'eponent j of M%) by A, = argmin_pr<a<m
quire any derivative information. It uses the coordinate direction {E(/\/tq) + Ad,)}.
axis as the search directions. It differs from the Random searcf]_et ./\I/‘t[’ _ /\it(l) d,

K = MK VARVE

2There is a local minimum when the cost function value remains the sarié IT _ E(Mg) = 0, then My is a global
from one perturbation to another. minimum. Stop.
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Fig. 10. Three copies{ = 3) of Lena with low resolution. Each image is of

©

sizeN x Ko, N = 256, K, = 32.

c) If

|E(M§3)) —E(Myg)| = 0, then

local minimum.
d)y Let j=j+1, MP =My,

If

j < K, then repeat step 2a.

My is a

If 7 > K, then let j = 1, and repeat
step 2a.

Both methods do not guarantee a global minimum. When
stuck in a local minimum, a random set of locations is gener-
ated, and the methods are repeated. The tested algorithm comes
to a halt when a global minimum is attained or an upper bound
on the number of local minima is exceeded.

IV. EXPERIMENTAL RESULTS

In this section, we apply the methods described in Section IlI
to find three types of irregular sets:

1) random set of locations;
2) jittered set of locations;
3) periodic nonuniform set of locations.

A. Unknown Random Sampling Set of Locations

In this experiment, we want to find the locations of a random
sampled discrete-time signal of length = 32 with K = 8
random samples and bandlimited fo = 2; see Fig. 6. In
Fig. 7(a), we compare the convergence of the CC and RS
methods and conclude that the CC method converges faster.
This is due to the deterministic nature of the algorithm. We
also illustrate how the number of iterations required to find
a global minimum varies from one simulation to another in
Fig. 7(b). We restricted the maximum number of local minima
to 30. Finally, in Fig. 8, we show that the probability of finding
a global minimum depends on the smoothness of a signal, i.e.,
the smaller the band limiL. as compared withx, the more
likely it is to find the right set of locations.

B. Unknown Jittered Sampling Set of Locations

In this experiment, we take samples around multiples of a
sampling interval but with a certain time location uncertainty.
Formally, the irregular set of locationsA§, = {nT+¢, } X7},
wheree is the jitter. We assume the jitter follows a binomial
distribution centered at = 0 with parameter$2, p), wherep
is the probability of no jitter, and € {—1, 0, 1}. We applied
the RS and CC methods on jittered data witkarying from
0.01 to 0.3. Fig. 9 compares the two methods, and we conclude
that the percentage of finding a global minimum using the CC
method is on average 83%.

C. Periodic Nonuniform Sampling Set with Unknown Shifts

We apply the exhaustive method to solve the periodical
ISUL. The descent methods described in Section 1lI-B are not
appropriate since they do not consider the nice structure of the
problem. Thanks to our fast scheme, the number of possible
locations is reduced to%) < ().

1) Application—Super-resolutionOne application of the
periodic nonuniform sampling with unknown shifts is for
instance if we want to improve the resolution of an image by
taking several samplings of the same image but with a shift.
For simplicity, we suppose that the spectrum is such that the
first L columns of the 2-DDFT are nonzero and that the last
N — L columns are zeros. Therefore, the 2-D case is simply
an extension of the 1-D case. Hence, we need only find the
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Comparison of the two schemes
xad KeC K, L=R K, C=64,Ax32
25t
o
£
§1,5
<3
1
(X3
...... :
2 a 6 8 10 12 14 16
K

Fig. 12. Comparison of the unstructured direct method and the fast structured
scheme.

periodic nonuniform case, the computational complexity of the
problem can be substantially reduced. In particular, we have de-
veloped a fast method to calculate the generalized inverse by ex-
ploiting the periodic structure of the set of locations inINET
matrix. We have shown how we can apply this to improve the
resolution of an image. As future work, we are investigating the
unknown locations problem in two dimensions, as well as im-
proving the search methods. One promising method is the Tabu
search [13], which keeps a tabu list, i.e., a list of bad perturba-
tions, and avoids getting stuck in local minima.

(b) APPENDIX

Fig. 11. (a) Periodic nonuniform sampling set obtained from three copies of
Lena put on a finer grid{ x Ko T, N = 256, K, = 32, T = 8) according A. Inverse of a Partitioned Matrix
to the shifts found by the exhaustive methdd, = {r; + nT}Eo =

(1,3.5),i =1, ---, C. (b) Reconstruction of Lena. SupposeA is an R x R partitioned matrix
All A12 T AlR
shifts on one row of the image and suppose that they are the A G
same for the other rows. Fig. 10 shows three images of Lena
of size256 x 32. Each of the three images were taken from a
Ar1 Agrz - Apgr

256 x 256 image and differ by a horizontal shift. The discrete
uniform sampling period i§" = 8, and therefore, the shifts
must be between 0 and 7. Using the exhaustive method inst¥dtere A,..,, are square matrices. The inveBe= A~' of a
of verifying (,%5,) locations, we are able to determine th@artitioned matrix can be found in [8] by

shifts by verifying (%) = (3) locations. Once the shifts are

found, we place each set of data on a finer grid of 8k&x 256 B(a, [A( — Ala, A, o) TTA(, a)] -1
and reconstruct the image. The periodic nonuniform samplelg ) Ala, a) 1A(a o)
image and the reconstruction are shown in Fig. 11. _
A, (o, @) " Aoy, o)A, )]
V. CONCLUSION (30)
We have studied the irregular sampling with unknown loca- _ _

tions problem for discrete-time bandlimited signals. We hayhere « is a subset of{1, .-, R}, and o’ is the com-
derived a solution and showed, in certain cases, the existefé&ment index set ofw. For instance, ifR = 4Aand
of multiple solutions. We have described three methods that mu- = {1, 2}, o/ = {3, 4}, then Ao, o) = [1! J21]

merically solve the ISUL problem. We have shown that for thend A(a, o) = [312 21*].



MARZILIANO AND VETTERLI: RECONSTRUCTION OF IRREGULARLY SAMPLED SIGNALS 3471

The authors would like to thank M. Gastpar and P. Prandc
for feedback. They would especially like to thank F. Marvas
for his stimulating questions and R. Pribic and J. Vieira for th
interesting discussions during the Sampling Theory and Appg
cations’99 workshop. The authors would also like to ackno

ACKNOWLEDGMENT Pina Marziliano was born in Montreal, PQ, Canada,
in 1971. She received the B.Sc. degree in applied
mathematics and the M.Sc. degree in computer
science, specializing in operations research, from the
Université de Montréal in 1994 and 1996, respec-
tively. She is currently pursuing the Ph.D. degree
at the Audio Visual Communications Laboratory,
Communication Systems Department, Swiss Federal
Institute of Technology, Lausanne, Switzerland.

She received two summer internship scholarships

edge the reviewers for their helpful comments. (in 1992 and 1993) as well as a grant for the M.Sc.

(1
(2]

(3]

[4]
(3]

(6]

(71

(8]
[9]

(20]

(11]
[12]

(13]

degree from the Natural Sciences and Engineering Research Council of Canada
(NSERC). Her current research interests are sampling theory and applications
in communications and signal processing.

Martin Vetterli (F'95) received the Dipl.El.-Ing. de-
gree from ETH Zurich (ETHZ), Zirich, Switzerland,
in 1981, the M.S. degree from Stanford University,
Stanford, CA, in 1982, and the D.Sc. degree from
EPF Lausanne (EPFL), Lausanne, Switzerland, in
1986.

He was a Research Assistant at Stanford and EPFL
and has worked for Siemens and AT&T Bell Labora-
tories. In 1986, he joined Columbia University, New
York, NY, where he was an Associate Professor of

REFERENCES

R. M. Young, An Introduction to Nonharmonic Fourier SeriesNew
York: Academic, 1980.

H. G. Feichtinger and K. Gréchenig, “Theory and practice of irregula
sampling,” inWavelets: Mathematics and Applicatiods J. Benedetto
and M. W. Frazier, Eds. Boca Raton, FL: CRC, 1994, pp. 305-363.
H. G. Feichtinger, K. Gréchenig, and T. Strohmer, “Efficient numerica

methods in nonuniform sampling theory\lumer. Math. vol. 69, pp. Electrical Engineering and Co-Director of the Image
423-440, 1995. and Advanced Television Laboratory. In 1993, he joined the University of Cal-
K. Grochenig, “A discrete theory of irregular samplind,ih. Algebra ifornia, Berkeley, where he was a Professor with the Department of Electrical
Appl, vol. 193, pp. 129-150, 1993. Engineering and Computer Sciences until 1997. He now holds an Adjunct Pro-

T. Strohmer, “Computationally attractive reconstruction of bandlimiteéessor position. Since 1995, he has been a Professor of Communication Systems
images from irregular sampledEEE Trans. Image Processingol. 6, at EPFL, where he chaired the Communications Systems Division from 1996
pp. 540-548, June 1997. to 1997, and heads the Audio-Visual Communications Laboratory. He held vis-
P. Marziliano and M. Vetterli, “Irregular sampling with unknown iting positions at ETHZ in 1990 and at Stanford in 1998. His research interests
locations,” inProc. IEEE Int. Conf. Acoust., Speech, Signal Progessinclude wavelets, multirate signal processing, computational complexity, signal
Phoenix, AZ, Mar. 1999. processing for telecommunications, digital video processing and compression,
P. J. S. G. Ferreira and J. M. N. Vieira, “Detection and correction aind wireless video communications. He is on the editorial boardsnofls
missing samples,” ifProc. Workshop Sampling Theory AppAveiro,  of Telecommunications, Applied and Computational Harmonic Analgsid

Portugal, June 1997, pp. 169-174. The Journal of Fourier Analysis and Applicatioride is the co-author, with J.
R. A.Hornand C. R. JohnsoMatrix Analysis New York: Cambridge Kovacevig of the bookWavelets and Subband Codienglewood Cliffs, NJ:
Univ. Press, 1985. Prentice-Hall, 1995). He has published about 85 journal papers on a variety of

B. Foster and C. Herley, “Exact reconstruction from periodic nonuniopics in signal and image processing and holds five patents.

form samples,” inProc. |IEEE Int. Conf. Acoust., Speech, Signal Dr. Vetterli is a member of SIAM and was the Area Editor for Speech,
Process.vol. 5, Detroit, MI, May 1995, pp. 1452-1455. Image, Video, and Signal Processing of the IEERANSACTIONS ON

P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sampling andoMMUNICATIONS. He received the Best Paper Award of EURASIP in 1984
reconstruction of multi-band signals,” Rroc. IEEE Int. Conf. Acoust., for his paper on multidimensional subband coding, the Research Prize of the
Speech, Signal Procesgol. 3, Atlanta, GA, May 1996, pp. 1688—1691. Brown Bovery Corporation (Switzerland) in 1986 for his doctoral thesis, the
H.D. Sherali, M. S. Bazaraa, and C. M. Shelgnlinear Programming |IEEE Signal Processing Society’s Senior Award in 1991 and in 1996 (for

Theory and Algorithms New York: Wiley, 1993. papers with D. LeGall and K. Ramchandran, respectively), and was a IEEE
R. J. Marks Il Advanced Topics in Shannon Sampling and InterpolatioBignal Processing Distinguished Lecturer in 1999. He received the Swiss
Theory Seattle, WA: Springer-Verlag, 1992. National Latsis Prize in 1996 and the SPIE Presidential award in 1999. He is

F. Glover, “Tabu search-Part IORSA J. Computvol. 1, no. 3, pp. a member of the Swiss Council on Science and Technology. He was a plenary
190-206, Summer 1989. speaker at various conferences (e.g., 1992 IEEE ICASSP).



