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Reconstruction of Irregularly Sampled Discrete-Time
Bandlimited Signals with Unknown Sampling

Locations
Pina Marziliano and Martin Vetterli, Fellow IEEE

Abstract—The purpose of this paper is to develop methods that
can reconstruct a bandlimited discrete-time signal from an irreg-
ular set of samples atunknownlocations. We define a solution to the
problem using first a geometric and then an algebraic point of view.
We find the locations of the irregular set of samples by treating the
problem as a combinatorial optimization problem. We employ an
exhaustive method and two descent methods: the random search
and cyclic coordinate methods. The numerical simulations were
made on three types of irregular sets of locations: random sets;
sets with jitter around a uniform set; and periodic nonuniform sets.
Furthermore, for the periodic nonuniform set of locations, we de-
velop a fast scheme that reduces the computational complexity of
the problem by exploiting the periodic nonuniform structure of the
sample locations in the DFT.

Index Terms—Bandlimited, irregular sampling, jitter, periodic
nonuniform, unknown locations.

I. INTRODUCTION

T HE WELL-KNOWN sampling theorem states that a con-
tinuous-time bandlimited signal can be recovered from a

uniform set of samples if the sampling rate is twice the band-
limit. The Kadec-1/4 theorem [1] is its equivalent when the
samples are irregularly spaced. The irregular sampling problem
for continuous and discrete-time bandlimited signals has been
treated in [2]–[4] and for two-dimensional (2-D) signals in [5].
In all of these problems, the band limit, the sample values, and
their locations are supposedly known or given. In practice, the
sampling locations are not always known, for instance, when
there is a certain jitter around a uniform set of locations as in
Fig. 1(a) or as in Fig. 1(b), when there is a certain unknown
shift in a periodic nonuniform set of samples. This is the mo-
tivation for studying the irregular sampling problem withun-
knownsampling locations [6]. The question we intend to answer
is the following: How can we recover a discrete-timebandlim-
ited signal of length from irregularly spaced sample values
without knowing the sampling locations ( )?
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In [7], a similar problem is studied in the context of error cor-
rection. The authors reconstruct a passband signal of length
given a noisy signal with errors in unknown locations. To de-
termine the locations of the errors, they require the knowledge of
at least values in the error spectrum. In other words, they are
looking for the complement set of the sampling locations given
information on some part of the error spectrum. Our problem
differs from theirs in that we have no knowledge of the error
spectrum except its structure; we have onlysample values,
whereas they have the entire signal, although it is noisy; the
number of samples is usually much larger than the number of
errors ; therefore, our problem has more unknown variables.

The paper is organized as follows. In Section II, we formulate
the irregular sampling with unknown locations (ISUL) problem
for discrete-time bandlimited signals. We define a solution by
describing the problem geometrically and algebraically. We also
study the different conditions for which there may be multiple
solutions and a unique solution. Three solving methods for the
ISUL problem are described in Section III. The first is an ex-
haustive search method that tests all the possible sets of loca-
tions. The two other methods (the random search and cyclic co-
ordinate method) are descent algorithms in which a solution set
of locations is obtained by perturbing a location. The random
search method differs from the cyclic coordinate method in that
the perturbation follows a probability density function, whereas
the latter is deterministic. In Section IV, we describe three ex-
periments. In the first experiment, we consider signals where the
irregular sampling set of locations is random, and the second is
one where the irregular set is composed of a uniform set with
a certain jitter. We show that the cyclic coordinate method is
more successful in finding the sets of locations than the random
search method. The third experiment involves reconstructing a
signal where the sampling locations are formed by a union of
uniform sets differing by shifts. The shifts are unknown. We de-
termine these shifts using the exhaustive method. We will show
that the size as well as the computational costs of the problem
are reduced by exploiting the periodic structure in the data and
in the DFT matrix.

The notations are as follows: Vectors and matrices are de-
noted by bold lowercase and capital letters, respectively. A fi-
nite discrete-time signal of length will be represented by
a vector , where

is the index set. Similarly, for matrices,
suppose is an real or complex-valued matrix. Let

and be two index
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Fig. 1. (a) Discrete-time signal of lengthN = 32 with a jitter of �1 aroundfnTg , whereT = 4 andK = 8. (b) Periodic nonuniformly sampled
discrete-time signal of lengthN = 32 composed ofC = 3 uniform sets of lengthK = 4 with shiftsr = (4; 5; 7).

sets. Then, the submatrix is composed of the rows of
indexed by and columns of indexed by ; see [8].

II. PROBLEM FORMULATION AND SOLUTION

The ISUL problem consists of reconstructing a length-dis-
crete-time - signal given
sample values , where

is anunknownirregularly spaced ordered subset
of , . We recall the defi-
nition of bandlimitedness for discrete-time signals.

Definition 1: A discrete-time signal
of length is bandlimited to (in the low-pass sense) if the
last components of the discrete Fourier transformare
zero, i.e.,

...

...

...
...

...
...

(1)

where is the discrete Fourier transform matrix, and
( mod ). To solve the ISUL

problem, we must have a clear understanding of the subspaces
to which the irregular set of sample valuesbelong.

A. Derivation of a Solution—Subspace and Algebraic
Approach

In this section, we derive a solution to the ISUL problem by
describing it alternatively via a subspace and an algebraic ap-

proach. We begin by analyzing the signal subspace followed by
that of the irregular set of sample values.

From (1), we obtain an expression for the signal in terms of
the spectrum by inverting the matrix and noticing that
the last columns do not contribute to the signal (since the
last spectrum values are zero). We obtain

...
...

...
...

...
(2)

or using the notation described in Section I,

(3)

where is the conjugate transpose of the [since
], and .

Expanding (2), we see that is a linear combination of the
first columns of

(4)

where is the
th column of . We define as the subspace that is spanned

by the first columns of . Consequently

span (5)
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Fig. 2. Geometric interpretation of the ISUL problem for a signal of lengthN

with K = 3 unknown sample locations and bandlimited toL = 2. (a) Signal
x belongs toV , which is the subspace spanned by the two first columns of
the (DFT) , i.e.,V = spanfF(N ; 0) = (1; 1; � � � ; 1) ; F(N ; 1) =
(1; W ; � � � ; W ) g. (b) Irregular set of sample valuess belonging
to the projection ofV onto the subspace spanned byfe ; e ; e g, which
is denoted byS , whereN = fn ; n ; n g.

This is illustrated in Fig. 2 for arbitrary , , and .
Suppose that is an irregular set of locations
associated with the sample values. Then

(6)

and consequently

span

(7)

Define span as the subspace spanned by
the canonical base vectors associated to the irregular set of
locations , where is a vector, with value 1
in th position and 0 elsewhere. Then, thespan

is isomorphic to the
projection of onto . Thus, we define a solution for the
irregular sampling with unknown locations problem as follows:

Definition 2: Suppose is a length- discrete-time
signal. Let be a set of sample values, and let

be a set of locations. Then, is a solution to
the ISUL problem if

(8)

The following figures are obvious facts, but we include them to
build some intuition on the problem. Fig. 2 gives a geometric
interpretation, and Fig. 3 illustrates when a set of locations is
and is not a solution to the problem.

We recall that the known variables are , and the
unknown variables are . The goal is to determine .
Suppose the location set is known; then, this is achieved
by solving the system of equations and unknowns
in (6) and then substituting in (3). A least squares solution to
the system is obtained by using the generalized inverse1 of

, i.e.,

(9)

The problem with unknown location set is harder since we ob-
tain a system of nonlinear equations of the form

(10)
and unknowns , i.e., more unknown
variables than equations.

Note that the spectrum in (9) depends on the location set
. If the location set is the right one, then is recovered,

and we obtain

(11)
How can we verify algebraically that a given set of locations

is a solution to the ISUL problem? One way
is to verify that the sample values at those locations are the same
as the observed sample values, i.e.,

(12)

or equivalently

(13)

If (13) is satisfied, then is a solution to the problem.

B. Classification of Solutions

We want to identify conditions for which there are unique and
multiple solutions to the ISUL problem. Intuitively, if the inter-
section of the subspaces associated with two sets of locations is
empty except for , then there is a unique set of locations
that correspond to the sample values.

1If K = L, then the generalized inverse is the inverse of the matrix. The
existence of the generalized inverse or the inverse is assured due to the Vander-
monde structure ofF(N ; L).
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Fig. 3. (a) Example of a solutionN = f0; 1g. (b) Example of a nonsolution:
M = f0; 2g.

Theorem 1: A set of locations is a unique solution within
shifts to the ISUL problem if

(14)

Proof: For a set of locations , the reconstructed signal
is given by (11). For another set of locations , the recon-
structed signal is

(15)
Equation (11) is equal to (15) if and only if

(16)

If there are no common elements in the two subspaces, then the
system in (16) is satisfied only if since .

Similarly, if the intersection of two subspaces generated by
different sets of locations is not empty, then there are multiple
solutions to the ISUL problem, as illustrated in Fig. 4.

Corollary 1: Given an irregular set of sample valuesof an
signal, two sets of locations and are both

solutions to the ISUL problem if

(17)

Fig. 4. Example of multiple solutions:N = f0; 1g,M = f0; 2g. If the
sample valuess are such that they lie on the intersection, there is no way to
differentiate the setsN andM .

Proof: If the rank of the matrix

in (16) is greater than , then the system may admit one or more
solutions.

For example, if the signal to be reconstructed is
and the irregular set of

sample values is (i.e., ),
then the possible sets of locations for the sample values
are , ,

, and .
Next, we show that if a set of locations is a solution to the

ISUL problem, then all shifts of that set is also a solution. This
is due to the shift property of the .

Theorem 2: Let be an irregular set of sample values of an
discrete-time signal . If is a solution

to the ISUL problem, then with
is also a solution.

Proof: We show that

span (18)

span (19)

span (20)

span (21)

(22)

Hence, isalso a solutiontothe ISULproblem.

C. Periodic Nonuniform Sampling with Unknown Shifts

The periodic nonuniform sampling problem has been studied
in [9] and [10] for multiband signals. We consider the ISUL
problem where the irregular set of locations follows a periodic
nonuniform pattern. It comes about in applications where a uni-
form set of samples is insufficient to reconstruct the signal, i.e.,
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. By taking multiple uniform sets differing by a shift,
a periodic nonuniform set of locations is formed. The shift is
unknown, and therefore, so are the locations. The following ex-
ample illustrates that by exploiting the periodic structure of the
set of locations, the size of the ISUL problem is reduced as well
as the computational effort.

Example 1: Consider a discrete-time signalof length
bandlimited to . Suppose the discrete-time uniform

sampling interval is equal to ; then, the number of samples
in the uniform set is , which is insufficient
to reconstruct the signal (the number of samples must be at least

). If we take uniform sets of samples, for example, at
locations , , and ,
then we obtain a periodic nonuniform set of locations

. We reformulate the problem
by partitioning it according to the periodic structure

(23)

We notice that , and breaking
it up some more

(24)

where

and is a zero matrix. Recall that ;
therefore, if we multiply (24) on each side by the matrix

(25)

we obtain the following partitioned system:

(26)

Each block of the partitioned matrix in (26) is a diagonal matrix
whose values are given by the rows associated with
and columns , of the matrix in (23). The key step
in Example 1 that reduces the problem is the multiplication of
(24) by the diagonal block matrix in (25). We generalize
by the following:

...

...
...

...
...

(27)

where
length of the signal;
discrete-time uniform sampling interval;
number of uniform sets;
size of a uniform set of locations ;
th uniform set of locations;

, ;
th shift from the uniform set ,

;
size of the periodic nonuniform set ;
band limit ;
diagonal matrices,

, .
To solve the periodic ISUL problem, we must calculate the gen-
eralized inverse of the partitioned matrix, which involves matrix
multiplication and inverse operations. We obtain a solution in
the least squares sense by means of the generalized inverse of
the partitioned matrix in (27). Hence, we obtain

(28)

where , , and
is also a partitioned matrix whose blocks are
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Fig. 5. Fast reconstruction scheme for periodic nonuniform sampling.

diagonal matrices. The fast reconstruction scheme is illustrated
in Fig. 5.

1) Computational Complexity:We next compare the com-
putational complexity of the fast reconstruction scheme with the
direct unstructured one.

The inverse of a partitioned matrix is obtained from (30) in
the Appendix, where we let . Note that is a par-
titioned matrix where each block is a
diagonal matrix. Define as the number of operations
required to calculate the inverse of. We suppose that is a
power of 2 and use a divide-and-conquer approach to determine

(i.e., let ). We obtain the
following recurrence equation:

and conclude that . Although
is larger than 3, the complexity of our fast scheme is by far still
less than the direct scheme becauseis much less than . We
summarize the number of operations (matrix multiplication, ma-
trix inversion) required for each scheme in Table I. Furthermore,
by substituting and in Table I, keeping the
variables and constant, and letting vary, the computa-
tional complexities of the two schemes are compared in Fig. 12.

III. N UMERICAL SOLVING METHODS

We numerically solve the ISUL problem by considering it as a
combinatorial optimization problem. We describe three solving
methods. We test the optimality of a solution by verifying
if the -norm of (13)

(29)

equals zero for the first method, which is an exhaustive search
method. The other two methods (the cyclic coordinate and
random search methods) are both descent heuristics that mini-
mize . The main goal of this paper is to find a solution
to the ISUL problem; therefore, we used the direct method to
calculate , which may be computationally expensive
for large problems. We can further reduce the computations
by noting that the matrix is a Toeplitz matrix and can be
obtained by computing only the first row, i.e., operations.
Consequently, by fast Toeplitz methods, it can be inverted in

operations [3].

TABLE I
SUMMARY OF COMPLEXITY O(operations)FOR BOTH SCHEMES

Fig. 6. Discrete-time signal of lengthN = 32 with a random set of unknown
locations of sizeK = 8.

A. Exhaustive Method

An elementary way to solve the ISUL problem is using an
exhaustive search approach. This method consists of verifying
(29) for all sets of locations. From Theorem 2, since some
sets of locations are just shifts of each other, we put these sets
in one class and elect a representative for each class. The repre-
sentative satisfying (29) with is a solution of the
ISUL problem. Clearly, this method can only be used for small
size problems because of the combinatorial explosion, and mul-
tiple solutions are identified on such type of problems. We can
construct them algebraically, but these are extremely unlikely to
be found in practice.

B. Descent Methods: Random Search and Cyclic Coordinate

The random search method is an iterative descent algorithm.
A component of the location set is perturbed according to a
probability distribution. If the cost function ( ) of the
perturbed solution decreases, we keep perturbing the same com-
ponent. Otherwise, we perturb another component and continue
this until a global or local minimum is found.

Algorithm 1 : Random search method
1) Initialization:

Choose an initial set of locations
, and let , .

Go to General step.
2) General step:
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Fig. 7. (a) Convergence of the cyclic coordinate (CC) and random search (RS)
method on a discrete-time signal of lengthN = 32 with a random set of
unknown locations of sizeK = 8 and bandlimited toL = 2. Here, the global
minimum has been found in the first attempt. (b) Total number of iterations
to find a global minimum when multiple local minima are encountered. The
maximum number of local minima was set to 30.

a) Obtain by the perturbing component
of by , where Bin .

b) If , then is a
global minimum. Stop.

c) If , then is a
local minimum. 2

d) If , then the current

set , .

e) Let , . If , repeat
step 2a

The cyclic coordinate method [11] is similar to the gradient
descent in that it descends in the best direction but does not re-
quire any derivative information. It uses the coordinate direction
axis as the search directions. It differs from the Random search

2There is a local minimum when the cost function value remains the same
from one perturbation to another.

Fig. 8. Success percentage of finding global minimum using the CC and RS
methods for signals of lengthN = 32 with a random sampling set ofK = 8

locations. Average of 20 simulations on 20 different signals.

Fig. 9. Success percentage of finding global minimum using CC and
RS methods for sampling with jitter in locations where the jitter follows
a binomial probability distribution with parameters (2; p) centered at
� = 0. Average of 100 simulations on 50 different signals with parameters
N = 16; K = 4; L = 2.

method in that the perturbation is not probabilistic but determin-
istic.

Algorithm 2 : Cyclic coordinate method
1) Initialization:

Let be the coordinate direc-
tions, where is vector with
value 1 in position

and 0 elsewhere. Choose an initial set
of locations , and let ,

.
Go to General step.

2) General Step:
a) is obtained by perturbing com-

ponent of by

.

Let .
b) If , then is a global

minimum. Stop.
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(a)

(b)

(c)

Fig. 10. Three copies (C = 3) of Lena with low resolution. Each image is of
sizeN �K ; N = 256; K = 32.

c) If , then is a
local minimum.

d) Let , .
If , then repeat step 2a.

If , then let , and repeat
step 2a.

Both methods do not guarantee a global minimum. When
stuck in a local minimum, a random set of locations is gener-
ated, and the methods are repeated. The tested algorithm comes
to a halt when a global minimum is attained or an upper bound
on the number of local minima is exceeded.

IV. EXPERIMENTAL RESULTS

In this section, we apply the methods described in Section III
to find three types of irregular sets:

1) random set of locations;
2) jittered set of locations;
3) periodic nonuniform set of locations.

A. Unknown Random Sampling Set of Locations

In this experiment, we want to find the locations of a random
sampled discrete-time signal of length with
random samples and bandlimited to ; see Fig. 6. In
Fig. 7(a), we compare the convergence of the CC and RS
methods and conclude that the CC method converges faster.
This is due to the deterministic nature of the algorithm. We
also illustrate how the number of iterations required to find
a global minimum varies from one simulation to another in
Fig. 7(b). We restricted the maximum number of local minima
to 30. Finally, in Fig. 8, we show that the probability of finding
a global minimum depends on the smoothness of a signal, i.e.,
the smaller the band limit as compared with , the more
likely it is to find the right set of locations.

B. Unknown Jittered Sampling Set of Locations

In this experiment, we take samples around multiples of a
sampling interval but with a certain time location uncertainty.
Formally, the irregular set of locations is ,
where is the jitter. We assume the jitter follows a binomial
distribution centered at with parameters , where
is the probability of no jitter, and . We applied
the RS and CC methods on jittered data withvarying from
0.01 to 0.3. Fig. 9 compares the two methods, and we conclude
that the percentage of finding a global minimum using the CC
method is on average 83%.

C. Periodic Nonuniform Sampling Set with Unknown Shifts

We apply the exhaustive method to solve the periodical
ISUL. The descent methods described in Section III-B are not
appropriate since they do not consider the nice structure of the
problem. Thanks to our fast scheme, the number of possible
locations is reduced to .

1) Application—Super-resolution:One application of the
periodic nonuniform sampling with unknown shifts is for
instance if we want to improve the resolution of an image by
taking several samplings of the same image but with a shift.
For simplicity, we suppose that the spectrum is such that the
first columns of the 2-D are nonzero and that the last

columns are zeros. Therefore, the 2-D case is simply
an extension of the 1-D case. Hence, we need only find the
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(a)

(b)

Fig. 11. (a) Periodic nonuniform sampling set obtained from three copies of
Lena put on a finer grid (N�K �T; N = 256; K = 32; T = 8) according
to the shifts found by the exhaustive methodN = fr + nTg , r =
(1; 3; 5), i = 1; � � � ; C . (b) Reconstruction of Lena.

shifts on one row of the image and suppose that they are the
same for the other rows. Fig. 10 shows three images of Lena
of size . Each of the three images were taken from a

image and differ by a horizontal shift. The discrete
uniform sampling period is , and therefore, the shifts
must be between 0 and 7. Using the exhaustive method instead
of verifying locations, we are able to determine the
shifts by verifying locations. Once the shifts are
found, we place each set of data on a finer grid of size
and reconstruct the image. The periodic nonuniform sampled
image and the reconstruction are shown in Fig. 11.

V. CONCLUSION

We have studied the irregular sampling with unknown loca-
tions problem for discrete-time bandlimited signals. We have
derived a solution and showed, in certain cases, the existence
of multiple solutions. We have described three methods that nu-
merically solve the ISUL problem. We have shown that for the

Fig. 12. Comparison of the unstructured direct method and the fast structured
scheme.

periodic nonuniform case, the computational complexity of the
problem can be substantially reduced. In particular, we have de-
veloped a fast method to calculate the generalized inverse by ex-
ploiting the periodic structure of the set of locations in the
matrix. We have shown how we can apply this to improve the
resolution of an image. As future work, we are investigating the
unknown locations problem in two dimensions, as well as im-
proving the search methods. One promising method is the Tabu
search [13], which keeps a tabu list, i.e., a list of bad perturba-
tions, and avoids getting stuck in local minima.

APPENDIX

A. Inverse of a Partitioned Matrix

Suppose is an partitioned matrix

...
...

...

where are square matrices. The inverse of a
partitioned matrix can be found in [8] by

(30)

where is a subset of , and is the com-
plement index set of . For instance, if and

, , then ,
and
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