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Finite Sample Criteria for Autoregressive Order
Selection
Piet M. T. Broersen

Abstract—The quality of selected AR models depends on the
true process in the finite sample practice, on the number of ob-
servations, on the estimation algorithm, and on the order selection
criterion. Samples are considered to be finite if the maximum can-
didate model order for selection is greater than 10, where
denotes the number of observations. Finite sample formulae give
empirical approximations for the statistical average of the residual
energy and of the squared error of prediction for several autore-
gressive estimation algorithms. This leads to finite sample criteria
for order selection that depend on the estimation method. The spe-
cial finite sample information criterion (FSIC) and combined in-
formation criterion (CIC) are necessary because of the increase of
the variance of the residual energy for higher model orders that
has not been accounted for in other criteria. Only the expectation
of the logarithm of the residual energy, as a function of the model
order, has been the basis for the previous classes of asymptotical
and finite sample criteria. However, the behavior of the variance
causes an undesirable tendency to select very high model orders
without the special precautions of FSIC or CIC.

Index Terms—Model quality, parameter estimation, spectral es-
timation, system identification, time series.

I. INTRODUCTION

SEVERAL autoregressive (AR) estimation algorithms have
been developed [1], [2]. The asymptotical theory is the

same for all these different estimation algorithms. In practice,
selection criteria have to be used to select an orderfor the
best AR model for given data. Asymptotical criteria are
a first category for order selection. They are derived from
asymptotical expressions for the residual variance and the pre-
diction error or for the variance of estimated parameters. AIC
[3] belongs to this class as do several consistent criteria like
BIC [4] and similar criteria [5], [6]. The statistics of selected
orders and the probability of overfit for asymptotic criteria like
AIC have been evaluated theoretically [7]. Application of those
results to the penalty function in selection criteria gives the
conclusion that the penalty 2 of AIC reduces the probability of
underfit at the cost of overfit [8]. On the other hand, consistent
criteria may produce infinite costs of underfit when the sample
size increases. A compromise between overfit and underfit is
found by taking a constant penalty factor 3 [8].

Samples of autoregressive observations are called finite if the
model orders concerned are not small in comparison with the
sample size , say, for orders greater than . This applies
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to the true order and to orders that are considered to be candi-
dates for order selection. Simulations for finite samples show
that estimated parameters, reflection coefficients, and residuals
depend on the AR estimation method [9]. These differences are
not accounted for in the asymptotical theory; therefore, a finite
sample description is necessary. Finite sample formulae are em-
pirical formulae that describe the variances of estimated param-
eters or reflection coefficients as well as the average variances
of residuals or of predictions for different autoregressive esti-
mation algorithms [9]. They also define a second category of
order selection criteria for finite samples that are adapted to the
method of estimation. An interesting alternative possibility in
this second category is the predictive least squares (PLS) crite-
rion [10]. This criterion computes true or “honest” predictions
from the data themselves, and hence, it is adapted to all pecu-
liarities of estimation methods and to the actual probability dis-
tribution of the data. A lattice implementation of the PLS cri-
terion separates the data in a variable part for parameter esti-
mation and the rest to compute the true predictions for order
selection [11]. The selection with PLS is based on the assump-
tion that the true or best order is a constant and independent
of the sample size used for estimation. Unfortunately, the best
AR order for estimated models of many processes depends on
the sample size. Hence, the best order for “honest” predictions
depends on the variable number of observations that is used to
estimate the parameters in PLS algorithms and is not always a
constant. This limits the processes for which the PLS criterion
can be used. Moreover, separating data in a group for estima-
tion and a group for determining the best order from “honest”
predictions reduces the estimation accuracy. This is not a good
idea in finite samples, certainly not if the maximum candidate
model order is as high as . In general, consistent criteria
and PLS perform well in examples with a finite number of very
significant true parameters and enough samples available for es-
timation.

Recently, a criterion of a third category has been defined as
the finite sample information criterion (FSIC) [12]. FSIC, if ap-
plied to AR estimates with Burg’s method [13], is very sim-
ilar to AIC , which is a corrected version of AIC [14]; remark-
ably, that criterion AIC has been derived with asymptotical
theory. The performance of FSIC remains good for all estima-
tion methods, but AIC loses its good properties when applied
to other than Burg results [12]. The penalty factor that is applied
to additional parameters in a model is no constant for FSIC, like
in the first two categories, but the penalty increases for higher
model orders. Using FSIC, the results of order selection turn
out to become practically independent of the choice of the max-
imum candidate order , even if that is chosen very high. This
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is realized without hampering the ability to select those high
model orders if they are really significant.

In the paper, some finite sample definitions are repeated. A
new formula is given for the variance of the logarithm of the
residual energy as a function of the model order. The increase of
that variance for higher orders gives an explanation for the per-
formance of FSIC. Another criterion for the third category [the
Combined Information Criterion (CIC)] has been introduced to
combine the favorable asymptotical penalty factor 3 with the
increased resistance against the selection of too high model or-
ders in finite samples [15]. Simulations show that the expected
performance of FSIC and CIC is realized for different AR esti-
mation methods and for various sample sizes.

II. FINITE SAMPLE FORMULAE

An AR process and its AR model are given by

(1)

(2)

where is a stationary purely random process with zero
mean and variance . In the Yule–Walker [1] and Burg
[13] estimation methods, the last parameterin a model of
order is also known as the reflection coefficient . The
Levinson–Durbin algorithm [1] describes the relation between
parameters and reflection coefficients. The building blocks
of the AR finite sample formulae are finite sample variance
coefficients ; denotes the order and “” the method of
estimation. The s have been introduced as simple ex-
pressions that approximate the empirical variance ofreflection
coefficientsfor the Yule–Walker and Burg method for orders

, which is the true process order in (1) [9]. Likewise, the
are approximations for the empirical variance of the last

parameter for least squares AR models. The asymptotical
expression for the variance of reflection coefficients (or of the
last parameter) equals for all model orders greater than
the true order and for all estimation methods. Formulae that
give approximations for the empirical variance for orderfrom

observations are given by

YW Yule–Walker

Burg Burg

LSFB two-sided LS

LSF one-sided LS (3)

for four well-known AR algorithms [9]. Further,
if the mean is subtracted and 0 otherwise. Those approximations
are quite accurate for AR processes for , therefore,
for orders that are important for order selection. The formula for
Yule–Walker (also denoted autocorrelation method) is known
from the statistical literature; in Burg and LSF (or covariance
method), the decrease of the degrees of freedom that are avail-
able for estimation can be recognized.

The variance of in (2), is called theresidual variance
RES if the data in the equation have been used to estimate
the parameters. Otherwise, if the estimated parametersand
the realization of the process are independent,is defined
to be theprediction errorPE . For AR models estimated

with the Yule–Walker or Burg method, some theoretical results
have been reported for the statistical expectation of the residual
variance RES and of the squared prediction errors PE[9].
Those expectations, for model ordersequal to the true process
order or higher, depend on the estimation method and are
given by

RES

PE

(4)

Many simulations have been carried out on finite sample
properties [8], [9], [12]. It turned out that the expectations
in (4) are close approximations to the average of RES
and PE in simulations with all four estimation methods
if the appropriate are substituted, as defined in (3).
Therefore, (4) can also be used for the least squares methods,
although the derivation is based on reflection coefficients that
belong only to the Yule–Walker and Burg methods. When
evaluated for different sample sizes, the outcomes of (4) are
approximately nonlinear functions of theratio . This ratio
appears linearly in the well-known asymptotical results, which
include RES for the residual variance
and PE for the squared prediction
error. Those asymptotical relations can be retrieved from (4) by
substituting for all coefficients and then deleting
the terms of order and higher in the product.

Many asymptotical order selection criteria can be written as a
single generalized information criterion (GIC) [9] with different
values for the penalty factor:

GIC RES (5)

To select a model order, GIC is determined for all orders
between 0 and some maximum candidate order. The order

with the minimum value of the criterion is selected. The penalty
factor is 2 for AIC [3], for consistent criteria BIC [4],
[5], for the minimally consistent criterion [6], or some
other constant. The asymptotical criterion GIC is iden-
tical for all AR estimation methods, whereas (4) shows that the
behavior of RES actually is a function of that depends on
the AR estimation method. Therefore, finite sample informa-
tion criteria FIC have been defined as improvements for
the asymptotical criteria GIC as [9]:

FIC RES (6)

with the method dependent sum of instead of in the
finite sample criteria. The penalty factor 2 of AIC reduces the
probability of underfit at the cost of overfit [8]. Consistent cri-
teria, where the penalty factor depends on, may produce infi-
nite costs of underfit for increasing sample size. A compromise
between overfit and underfit is found with the constant 3 for
penalty factor , both in GIC and in FIC .

The quotient of the expectations PE/RES in (4) has
been used to derive the finite sample information criterion
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(FSIC) for order selection [12]. It is a finite sample approxima-
tion to the Kullback–Leibler discrepancy:

FSIC RES (7)

A comparison with (6) reveals that a product containing all pre-
vious appears in FSIC instead of a constant penalty
factor times for order in FIC . The performance
of FSIC is similar to AIC if it is applied to the Yule–Walker
estimation method [12] because the product in (7) is very close
to for all model orders if is substituted.
Asymptotical theory has been used to develop the AICcrite-
rion, which is defined by replacing the term in (5) by

[14]. The criterion AIC is almost identical
to FSIC for the Burg method with Burg from (3) sub-
stituted in (7); for AR estimation methods other than Burg’s,
FSIC and AIC are completely different.

The performance of the criteria can be explained by com-
paring the corrections to RES in the different criteria, as
shown in Fig. 1. GIC criteria have a constant slope, which is 2
for AIC and or 4.61 for the consistent asymptotical cri-
terion. GIC , FIC , and FSIC are almost equal for

, but the difference increases for greater. FSIC
increases especially strongly there.

For new data with unknown characteristics, the maximum
candidate order for selection of the AR model order must
be chosen high enough, certainly higher than the unknown best
model order. Taking a high reduces the possibility of missing
the best order. In practice or in simulations, however, selec-
tion results for all criteria of the first two categories, including
the consistent criteria, are more or less dependent on a proper
choice for . The selected order turns out to depend on the
highest candidate order, especially if that is chosen greater
than, say, . If is taken high, orders close to are often
selected in simulations [9]. FSIC is the only criterion that is
not sensitive for the choice of the highest candidate order for
selection, independent of the AR estimation method. An excep-
tion should be made for the Yule–Walker method, where the in-
fluence of is moderate; this is sufficiently explained by the
similarity between the asymptotical criterion AIC and FSIC
for Yule–Walker. High AR orders may not always be necessary
in AR estimation, but they are certainly required when the AR
model is used as an intermediate stage for MA or ARMA mod-
eling [16], [17]. The influence of is very important for all
asymptotical criteria, remains a nuisance for the finite sample
criteria, and disappears for FSIC in the third category.

III. V ARIANCE OF SELECTION CRITERIA

A fair agreement has been shown between finite sample for-
mulae on the one hand and simulation variances of estimated
parameters, reflection coefficients, residuals, and of prediction
errors on the other hand [9]. This paper presents a recursive fi-
nite sample formula for the variance of RES as a func-
tion of the model order . That variance is also the variance
of the criteria GIC , FIC and of FSIC because

RES is the only stochastic part of these order selec-
tion criteria. For convenience, the analysis is carried out for

Fig. 1. Comparison of order selection criteria. Total penalty of the right-hand
side terms of the criteria (5)–(7) is shown for different values of the penalty
factor as a function of the relative model order.

white noise processes as data. The asymptotical expression for
var RES equals the constant for all orders when
the AR models are estimated from observations of a white
noise process. A recursive formula for the residual variance for
Yule–Walker and Burg estimates of AR processes is given by

RES RES (8)

As all reflection coefficients are uncorrelated for the white
noise process that is considered here, the covariance between
RES and equals zero. An elementary result for uncor-
related variables and is easily derived as

var var var var var

Applying this to (8) gives

var RES RES var

var RES

var var RES (9)

which can still be simplified. By using the normal distribution
to approximate the unknown finite sample distribution for the

for , it follows from the theory and from the definition
of the finite sample coefficients that

var (10)

Substitution of those approximations in (9) produces a recursive
formula

var RES RES

var RES

(11)
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As a starting value, the asymptotical expression for the vari-
ance of the estimated white noise variance RES(0) will be
used, which is given by varRES . In Taylor
expansions, higher powers of are neglected. Finite sample
approximations are completely different because products of

contain higher powers of , which are not neglected.
Nevertheless, an approximate finite sample formula for the
variance of the logarithm of RES will be derived here with
a first-order Taylor expansion as

var RES
RES

var RES (12)

Simulations have to show whether the approximations in (10)
and (12) are a useful description of this variance in practice be-
cause their accuracy cannot be established with theoretical ar-
guments. The distribution of is unknown, and only one Taylor
expansion term is used for (12). Moreover, the derivation starts
with the use of reflection coefficients in (8) that are only appli-
cable in the Yule–Walker and Burg estimation methods. Never-
theless, the result in (12) will also be tested as an approximation
for the one- and two-sided least squares estimation methods.

The accuracy of the variance formula (12) has been studied in
simulations for white Gaussian noise and with different AR
processes for several values of the sample size. Fig. 2 gives
the accuracy for 100 observations of an AR(10) process with
as reflection coefficients , for the
four estimation methods for which empirical variance coeffi-
cients have been defined in (3). The asymptotical theory for a
white noise process yields the constant for all model or-
ders. Clearly, the empirical variance in the simulations depends
on the model order and on the estimation method. Fig. 2 shows
that the white noise approximation with (12) is quite good for
the Burg and Yule–Walker results for the orders above 4. This
order 4 is the best order to be selected for estimated models
from 100 observations of this AR(10) process. The agreement is
less perfect for var RES of the least-squares estimation
methods LSFB and LSF, but (12) is still a much better approxi-
mation than the constant value 0.02 that would follow from the
asymptotical theory for all estimation methods and all model or-
ders.

As always in finite samples, the behavior of the Yule–Walker
method differs quite from the other methods because it is the
only method with less than . The figures show that
the variance of RES for the other methods can become
more than two times greater than the variance at low models or-
ders. As a consequence, RES can become much smaller
than its expectation in a single simulation run at some high
model order , which in turn produces a very low value of the
selection criteria for that order in that specific realization of
the process. This increased variance creates the possibility for
the undesirable selection of very high orders because the order
selection criteria in the categories one and two have been based
only on the average or expectation of RES and not on
its variance. Only for the Yule–Walker method was this not a
serious problem because the increase of the variance at higher
model orders is moderate.

Fig. 2. Variance of the logarithm of the residual energy var[lnfRES(p)g]
as a function of the model order. The four figures each give two results: a
theoretical drawn curve computed with (11) and (12) for white noise and the
dotted measured simulation variance for Yule–Walker, Burg, LSFB, and LSF
estimates, respectively. The variance is measured in 10 000 simulation runs
of 100 observations of an AR(10) process with� = 1 and with reflection
coefficientsk = (�0:6) , 1 = 1; � � � ; 10.

IV. COMBINED INFORMATION CRITERION

With asymptotical arguments, a good balance between the
possibilities of overfit and underfit requires a constant penalty
factor of about 3 in a selection criterion [8]. The same con-
clusion for the penalty has been found with simulations for fi-
nite samples, where the maximum candidate order has been re-
stricted to [8]. On the other hand, the criterion FSIC,
as defined in (7), has a desirable resistance against the selection
of very high orders because it has an increasing penalty at those
higher orders. In agreement with the known theoretical argu-
ments, no examples with a poor performance of FSIChave
been found when very high maximum candidate orders are al-
lowed for selection. The asymptotical equivalent of FSIC,
which describes its behavior at low model orders, is found by
substituting for all coefficients and by removing
terms with powers of and higher from the result. This
leads to the well-known criterion AIC [3], which, here, is
also denoted GIC with penalty 2.

Unfortunately, the properties of an optimal asymptotical bal-
ance between under- and overfit and a good resistance against
selection of high orders are not found in one criterion. It would
be interesting if a single criterion had the penalty 3 at low orders
and the behavior of FSIC at high orders because that crite-
rion can have favorable properties for all possible choices for the
maximum candidate model order for all sample sizes. There-
fore, a new criterion is introduced here that combines those
properties: good asymptotic performance with penalty 3 and
good finite sample performance with the protection of FSIC
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against wrongly selecting too high orders. It is the combined in-
formation criterion [15]:

CIC RES

(13)

The behavior of CIC can be derived from Fig. 1. For lower
model orders, , CIC is equal to FIC be-
cause the sum with penalty 3 is the largest. For higher orders, the
total penalty of FSIC is greater, and CIC becomes equal
to FSIC , thus combining the asymptotical balance between
under and overfit and the finite sample resistance against the se-
lection of model orders that are too high. Asymptotically, or for

, CIC and FIC are equal and almost the same
as GIC because the average of finite sample results differs
only significantly from the asymptotical theory if the ratio
is greater than 0.1.

V. COMPARISON OFESTIMATION METHODS

This paper considers models of stationary stochastic pro-
cesses in their capacity to predict future responses or as spectral
estimators, demanding a selection criterion that is representa-
tive for the overall fit. The true process is known in simulations
and can be used to define the quality of estimated models. A
measure for the fit is the model error ME, which is defined as a
simple function of the expectation of the prediction error [18]

ME
PE

(14)

Pre- and post-multiplying the estimated parameter vector
with the true yields an accurate expectation for the squared
error of prediction PE that can easily be computed. is a

submatrix of the infinite-dimensional true co-
variance matrix of a known AR process, andis the estimated
parameter vector of length in (2), including the constant 1
for the first parameter. Independent and in (2) define the
prediction error PE as , which has the asymptotical expec-
tation for equal to or greater than the true process
order if the parameters had been estimated fromobservations.
Hence, the asymptotical expectation of MEequals , inde-
pendent of the sample size. This value can also be con-
sidered as an asymptotical Cramér–Rao lower bound for the
achievable accuracy of the relative integrated spectrum of the
AR model; see [19]. Finite sample expectations for ME
can be computed with (3) and (4). The model error MEin
(14) has advantages above the prediction error PEin studying
the influence of the sample size on the quality of estimated and
selected models because results for quality are made less depen-
dent on itself and are of a comparable magnitude.

The results of AR modeling are known to depend on the true
process, the sample size, the estimation method, the order se-
lection criterion, and the highest candidate order for selection.
The first two influences are unknown and determined by the

TABLE I
AVERAGE OFME(p) IN SIMULATIONS FOR MODELSSELECTED WITH VARIOUS

CRITERIA, FOR YULE–WALKER, BURG, LSFB AND, LSF ALGORITHMS:
N = 25, L = 15, 500 000 RUNS. AR(10) PROCESS WITHREFLECTION

COEFFICIENTS, k = (�0:6)

data. The latter three are chosen by the data analyst. If the se-
lected model depends on those latter choices, any objective sta-
tistical analysis of time series becomes questionable. Our aim
is maintaining the first two influences of the data and reduc-
tion of the last three influences. Preferences will be formulated
based on theory and simulations. Three rows in Table I present
the average ME of three fixed-order models without order
selection: the true order 10 and the best order for prediction
with estimated AR models, which is AR(3) for 25 samples of
this AR(10) process. The last row gives the finite sample ex-
pectation [ME(10)] for the AR(10) model, which is found by
substituting the finite sample formula (4) for PE with the
different of (3) in the first representation of (14). This
can be compared with the simulation result of the estimated
AR(10) model. The asymptotical theory gives as expectation
10 for all methods, and therefore, the finite sample expression
for [ME(10)] gives a much better representation for the ac-
tual performance of different estimation methods. In addition,
the simulation average ME of models selected with AIC,
FIC , GIC , FIC , FSIC , and CIC is pre-
sented. Many other order selection criteria have been included in
this comparison, but those results are not reported here. Consis-
tent order selection criteria, with penalty or 2 ,
boil down to a fixed penalty factor for a given sample size
(3.22 and 2.34, respectively) for , and they are sim-
ilar to the results of AIC or GIC in Table I. The highest
considered candidate order is 15. It can be taken higher if
FSIC or CIC are used, without influencing the average
ME of selected models; but higher choices forwill influence
the selection results of the other criteria. An additional limita-
tion for candidate orders is that for a certain estimation method
no parameters will be estimated for orders, where of (3)
becomes greater than 0.25. This limitation becomes active for
LSF estimates in Table I. As is an approximation for the
finite sample variance, this value for indicates 0.5 for the
standard deviation of the last parameter, whereas the last param-
eter or the reflection coefficient has to be in the range of1 to

1 for stationary models. Parameters with that amount of statis-
tical uncertainty (more than 50%) are not useful and cannot con-
tribute significantly to our knowledge of the process. In using
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this limitation on , the highest candidate orderis com-
pletely determined by the capacity of an estimation algorithm to
compute useful models. Ifa priori information about an upper
boundary for the model order is available, this can be used to
choose a lower value of.

The selection results for the Yule–Walker method are com-
pletely different from the other methods. The results of FSIC
and AIC in Table I are almost identical for Yule–Walker, like
what is expected in Section II. Bias has not been incorporated in
the finite sample description of AR modeling. It is known that
the Yule–Walker method introduces extra bias terms by using
the biased estimates for the covariance [20]. Due to this spe-
cific Yule–Walker bias, higher order reflection coefficients are
estimated a factor two wrong after a single true reflection co-
efficient with magnitude . More general, the fur-
ther estimates of higher orders after a large reflection coefficient
suffer from a serious bias in the Yule–Walker method, instead of
the smaller bias with magnitude that is present in all other
estimation methods. Hence, the application of the Yule–Walker
method to unknown data may produce erroneous results, even
for a large number of observations. All poles of the AR(10)
process of Table I have the absolute value 0.6; therefore, they
are not close to the unit circle. Hence, the bias problem is not
serious in that example, and under those conditions, the perfor-
mance of Yule–Walker estimates is good.

Table II shows examples with and without serious bias influ-
ence. AR processes with reflection coefficients
have the property that all poles have the radius. With poles
closer to the unit circle, the Yule–Walker method produces very
high values of ME. ME(10) for Burg also becomes a bit higher
for , which is caused by the fact that 25 observations is
much shorter than the correlation length for , causing
still another type of bias. It follows from Table II that the av-
erage performance of Yule–Walker over a variety of examples
is poor due to bias. Therefore, Yule–Walker cannot be recom-
mended for data of unknown processes, and the discussion in
the sequel will be limited to the other three methods.

For estimation methods other than Yule–Walker, a com-
parison in Table I between asymptotical and finite sample
criteria for different values of the penalty factor shows that
the finite sample criteria FIC and FIC have a
better performance than their asymptotical equivalents for
the same value of , AIC, and GIC , respectively.
Furthermore, is a better value for the penalty factor
than . The model error for selection with FSIC and
CIC is smaller than with the other criteria. The difference
between those two criteria is always small in finite samples.
The better performance of finite sample criteria FIC
in comparison with their asymptotical equivalents GIC
is sufficiently explained by the fact that FIC takes into
account the actual expectation of the residual variance and
prediction error as given in (4), whereas GIC is based
on the asymptotical approximations. One aspect had been
neglected: the variance of the logarithm of the estimated
residual variance. The higher variance of RES for
higher model orders gives an increased probability that
those higher orders accidentally yield the minimum value of
the criteria GIC and FIC , thus giving a higher

TABLE II
AVERAGE OFME(10) OF FIXED ORDERAR(10) MODELS FORYULE–WALKER

AND BURG ALGORITHMS: N = 25, AVERAGE OF5000 SIMULATION RUNS OF

AR(10) PROCESSES WITH10 REFLECTIONCOEFFICIENTS, k = (��)

average ME after selection. This effect disappears in
Table I if FSIC or CIC are used. LSFB and Burg are
almost the same if selected with FSIC or CIC .

Substitution of smaller values for in (4) gives a
greater residual variance and, at the same time, a smaller
value for the expectation of the prediction error. The asymp-
totical theory makes no distinction between the residual
variance of different AR estimation algorithms; in addition,
the theoretical prediction error is the same for all methods.
The finite sample formulae, however, show that an estima-
tion method, yielding asmaller residual variance for an
adequate AR model than other estimation algorithms,
will give a higher prediction error. This means that the AR
method estimating parameters of a model of orderwith
the lowest RES gives the worst result in terms of an
objective quality criterion like PE . However, asymptotical
selection criteria would give preference to that method with
lowest residual variance if they would be used to assess the
quality of estimation methods. Hence, those asymptotical
selection criteria are not suitable for a useful comparison of
models obtained with different estimation algorithms. The
finite sample formula for the prediction error PE is for
a fixed order determined by the product of
in (4). This yields as sequence for decreasing accuracy:
Yule–Walker, Burg, two-sided least squares LSFB, and,
finally, one-sided LSF. This agrees with the outcomes
for ME in Table I for the average of AR(2), AR(3), and
AR(10) models. The differences are small for the AR(2)
and AR(3) models because those orders are about , the
value where asymptotical theory and finite sample formulae
start to diverge. This divergence is obvious for the AR(10)
models estimated with the different methods.

Due to bias, the Yule–Walker method gives, in Table II, a
much higher PE than other estimation methods for processes
whose reflection coefficients are not close to zero. Furthermore,
the LSF method has the additional inconvenience that estimated
roots can lie outside the stationarity region, which makes the re-
sulting spectral model quite useless. This applies in a lesser de-
gree to LSFB. According to Table I, to finite sample considera-
tions and to many other simulations, Burg’s estimation method
is a good choice for estimation of AR parameters if the fit of a
selected model is important, e.g., for prediction or as a spectral
estimate. CIC or FSIC are good order selection criteria,
and the maximum candidate ordercan be chosen high enough,
e.g., or even higher. These choices for estimation method,
order selection criterion, and maximum candidate order can be
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made independent of the observations, which gives advantages
in a statistical interpretation.

VI. COMPARISON OFORDER SELECTION CRITERIA

Comparative studies of selection criteria are mostly limited
to a few examples and are therefore difficult for interpretation
without some theoretical guideline. The performance of a se-
lection criterion may depend strongly on the true process, the
estimation method, the sample size, and the highest candidate
order for selection. No single-order selection criterion can per-
form optimal in all possible circumstances. Consider an ex-
ample process where is actually the best model order for a
given sample size; therefore, ME has a minimum for the fixed-
order . Now, taking zero as penalty for all orders below
and as penalty for all orders above , one will certainly se-
lect order , which is the best possible solution for this partic-
ular example. Evidently, this “selection criterion” with zero and
infinite penalties would perform very poorly on data generated
by other processes with a different best order. Hence, the prac-
tical question is not to find thevery bestorder selection criterion
for a givenexample; that will be the criterion with zero and
penalties, as defined above. The search is for an order selection
criterion thatnever failsto select the order of one of the better
fitting AR models that can be computed from the given obser-
vations for all types of processes. This problem will be treated
in two separate stages: asymptotical and finite sample. A useful
criterion will perform well in both conditions. Only results for
Burg’s estimation method are presented here in order to concen-
trate the information on the method that is preferable with the
arguments in Section V.

Table III gives average ME results for a number of criteria
for 10 000 observations of four different AR(10) processes.
FIC and GIC are almost identical for all values of

. Moreover, the selected model with FSIC and AIC have
the same quality as , and CIC gives the same result
as penalty . The conclusion is that penalty , or the
new criterion CIC , is the best in Table III, better than
and , and also better than of the consistent
criteria [8]. The different values of for the simulations in
Table III have been chosen such that overfit and underfit are
both serious possibilities. Those examples are most critical for
the performance of order selection criteria. Taking lower values
for reduces the cost of underfit too much; higher values of
would give all underfitting models of order lower than 10 much
higher residual variances than the AR(10) model such that they
are almost never selected with any criterion. For or

, the average ME values after order selection are
less than the asymptotical value for the true order[ME(10)]

10 because lower order models are selected, and they have
a smaller finite sample expectation than the AR(10) model.
In those asymptotical conditions, the differences between the
four AR estimation methods are negligible as long as the extra
Yule–Walker bias is small.

For the finite sample performance, a similar AR(10) process
has been used in Table IV; the reflection coefficients are powers
of 0.7 here. Table IV demonstrates, only for the Burg method,

TABLE III
ASYMPTOTICAL PERFORMANCE OFCRITERIA: AVERAGE OF ME(p) IN

SIMULATIONS WITH ORDER SELECTION FOR THEBURG ALGORITHM:
N = 10000,L = 20, 1000 RUNS, AR(10) PROCESS WITHREFLECTION

COEFFICIENTS, k = (��)

TABLE IV
AVERAGE OF ME(p) OF SELECTED AND OF FIXED-ORDER MODELS,

ESTIMATED WITH BURG ALGORITHM AS A FUNCTION OF THESAMPLE SIZE.
AVERAGE OF10 000 SIMULATION RUNS OF AN AR(10) PROCESS WITH

REFLECTION COEFFICIENTSk = (�0:7)

the influence of the sample size (with the value as max-
imum candidate order ) on selecting the order with different
criteria. The first column gives results for for

. The difference between the first two columns is only
caused by different maximum candidate orders for selection: 15
and 8, respectively. This demonstrates that only FSICand
CIC are insensitive to extremely high values for the highest
candidate order . The results for the AIC criterion [14] are
close to those of FSIC for all sample sizes; only for orders
as high as or , AIC is not properly defined.

The five AR rows in Table IV with ME for fixed-order
models show that the best order for this AR(10) process depends
on the sample size. Therefore, the ability to select the true order
10 would not be a good quality measure for a comparison of
order selection criteria in this example. The average ME(10)
of the AR(10) model is close to its finite sample expectation

[ME(10)] for all . The best theoretical value for the order of
estimated models as a function of the sample size can be found
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with asymptotical theory. It is determined approximately with
the selection criterion GIC applied to the residual variance
of truncated models that can be computed with the true values
of the reflection coefficients [16]. For small samples,
and in Table IV, the quality of selected models is better
than the quality of the AR(10) model. Hence, order selection
with a good criterion may give better models than knowledge of
the true order in finite samples.

Some artifacts in simulations about order selection are clear
in Table IV. Comparing the results of the criteria GIC and
FIC , the best choice between those would be FIC
for , and , but penalty 4 is slightly
better for . This somewhat irregular behavior is caused
by the interaction between the highest candidate order, the
best order for a given sample size, and the possibility that the
second best model order is one order lower or perhaps one order
higher than the best order. Consistent criteria with al-
ways have a greater ME than FIC in this example for all
sample sizes. However, consistent criteria may outperform other
criteria in examples where the true process has a few very signif-
icant parameters, the number of observations is high, and, at the
same time, the highest candidate orderis not too high. Under
those circumstances, consistent criteria approximate the perfor-
mance of the optimal criterion with zero and infinite penalties
as described in the beginning of this section.

Tables III and IV show that the differences between
GIC and FIC disappear almost completely for
increasing for every value of . CIC and FIC give
exactly the same selection results for ME if the sample size
is 64 or more in Table IV. Based on the finite sample behavior
in this example and in numerous other simulations, the criteria
CIC and FSIC of the third category are preferred. A
slight preference for CIC above FSIC is found with Table
III because the theoretical properties of CICagree with the
best asymptotical choice for the penalty factor. In finite sample
simulations, the comparison between those two criteria depends
on the specific process in the example and slightly on the AR
estimation method as well. Many other simulations with AR,
MA, and ARMA processes of different orders and with small
or very significant values for the true parameters have been
carried out. Normal, uniform, and other probability density
functions have been used for . The criteria have also been
applied to practical data. No single example has been found
where the performance of FSIC or CIC was poor. The
results of the least squares methods LSFB and LSF are similar
and lead to the same conclusions: GIC is very sensitive
for the choice of , FIC is less sensitive, and FSIC
and CIC are almost independent of the choice ofif only
is chosen greater than the best fixed-orderwith the smallest

[ME ] for a given sample size. Moreover, penalty 3 is a
good asymptotical compromise, which means that CICis
also preferred for the least squares AR methods. The results of
these simulations for the Yule–Walker method show that if the
extra bias is not small, no good models are available, and order
selection cannot solve that problem.

A detailed study of the Tables I and IV shows that the ME
for selected models is greater than ME for the best fixed order,
even if the best criterion is used for selection. The difference is

about 2.5 for all sample sizes. This value is very close to the
asymptotical value 2.568 that has been found for selection with
AIC if only the possibility of overfit was taken into account
[8]. The AR(10) example is a difficult one for order selection
because the best order has close competitors of higher and of
lower orders with overfit and underfit. The loss in quality due to
selection is, statistically seen, a consequence of using the same
residual variance for two different purposes: first, for minimiza-
tion to estimate the parameters and afterwards for order selec-
tion with a transformation of the residual variance as a selection
criterion. The model error of models selected with FSICor
CIC is about 2.5 greater than[ME ], where denotes
the best fixed-order model. In other words, even the best selec-
tion criterion is not capable to detect the very best order in every
simulation run in this example.

VII. CONCLUDING REMARKS

A recursive formula gives an accurate description of the em-
pirical variance of autoregressive order-selection criteria that
are based on the logarithm of the residual energy. The empir-
ical variance depends on the estimation method in finite sam-
ples. It has influence on selection results if the maximum candi-
date order for selection is greater than . Such high AR or-
ders are required for subsequent MA or ARMA estimation with
Durbin’s methods.

A new selection criterion called the combined information
criterion CIC that combines the theoretical asymptotical
preference for penalty 3 with the good finite sample charac-
teristics of FSIC is introduced. FSIC and CIC are
selection criteria with an increasing penalty for higher model
orders. This gives protection against abusively selecting those
high orders. The performance of these criteria was always good
in simulations.

Based on statistical arguments, Burg’s AR estimation method
with CIC as order selection criterion and with or higher
as maximum candidate order is a good and safe combination for
the automatic use of autoregressive modeling for time series in
practice.
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