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Finite Sample Criteria for Autoregressive Order
Selection

Piet M. T. Broersen

Abstract—The quality of selected AR models depends on the to the true order and to orders that are considered to be candi-
true process in the finite sample practice, on the number of ob- dates for order selection. Simulations for finite samples show
servations, on the estimation algorithm, and on the order selection 4+ estimated parameters, reflection coefficients, and residuals

criterion. Samples are considered to be finite if the maximum can- . . .
didate model order for selection is greater thanV/10, where NV depend on the AR estimation method [9]. These differences are

denotes the number of observations. Finite sample formulae give NOt accounted for in the asymptotical theory; therefore, a finite

empirical approximations for the statistical average of the residual sample description is necessary. Finite sample formulae are em-
energy and of the squared error of prediction for several autore- pirical formulae that describe the variances of estimated param-
gressive estimation algorithms. This leads to finite sample criteria eters or reflection coefficients as well as the average variances

for order selection that depend on the estimation method. The spe- f idual f dicti for diff t aut . i
cial finite sample information criterion (FSIC) and combined in- of residuals or of predictions for difierent autoregressive esti-

formation criterion (CIC) are necessary because of the increase of Mmation algorithms [9]. They also define a second category of
the variance of the residual energy for higher model orders that order selection criteria for finite samples that are adapted to the
has not been accounted for in other criteria. Only the expectation method of estimation. An interesting alternative possibility in
of the logarithm of the residual energy, as a function of the model this second category is the predictive least squares (PLS) crite-

order, has been the basis for the previous classes of asymptotical . 101. Thi iteri tes t “h v dicti
and finite sample criteria. However, the behavior of the variance rion [10]. IS Criterion computes true or “nonest” predictons

causes an undesirable tendency to select very high model ordersfrom the data themselves, and hence, it is adapted to all pecu-

without the special precautions of FSIC or CIC. liarities of estimation methods and to the actual probability dis-
Index Terms—Model quality, parameter estimation, spectral es- trioution of the data. A lattice implementation of the PLS cri-
timation, system identification, time series. terion separates the data in a variable part for parameter esti-

mation and the rest to compute the true predictions for order
selection [11]. The selection with PLS is based on the assump-
tion that the true or best order is a constant and independent
EVERAL autoregressive (AR) estimation algorithms havef the sample size used for estimation. Unfortunately, the best
een developed [1], [2]. The asymptotical theory is thAR order for estimated models of many processes depends on
same for all these different estimation algorithms. In practicthe sample size. Hence, the best order for “honest” predictions
selection criteria have to be used to select an ogdfar the depends on the variable number of observations that is used to
best ARp) model for given data. Asymptotical criteria areestimate the parameters in PLS algorithms and is not always a
a first category for order selection. They are derived fromonstant. This limits the processes for which the PLS criterion
asymptotical expressions for the residual variance and the ptan be used. Moreover, separating data in a group for estima-
diction error or for the variance of estimated parameters. Alfbn and a group for determining the best order from “honest”
[3] belongs to this class as do several consistent criteria lipeedictions reduces the estimation accuracy. This is not a good
BIC [4] and similar criteria [5], [6]. The statistics of selecteddea in finite samples, certainly not if the maximum candidate
orders and the probability of overfit for asymptotic criteria likanodel order is as high as5N. In general, consistent criteria
AIC have been evaluated theoretically [7]. Application of thosand PLS perform well in examples with a finite number of very
results to the penalty function in selection criteria gives th@gnificant true parameters and enough samples available for es-
conclusion that the penalty 2 of AIC reduces the probability dimation.
underfit at the cost of overfit [8]. On the other hand, consistent Recently, a criterion of a third category has been defined as
criteria may produce infinite costs of underfit when the samptie finite sample information criterion (FSIC) [12]. FSIC, if ap-
size increases. A compromise between overfit and underfitgbed to AR estimates with Burg's method [13], is very sim-
found by taking a constant penalty factor 3 [8]. ilar to AIC, which is a corrected version of AIC [14]; remark-
Samples of autoregressive observations are called finite if thiely, that criterion AIG has been derived with asymptotical
model orders concerned are not small in comparison with theeory. The performance of FSIC remains good for all estima-
sample siz&V, say, for orders greater thanl N. This applies tion methods, but AlG loses its good properties when applied
to other than Burg results [12]. The penalty factor that is applied
Manuscript received December 10, 1998; revised August 22, 1999. The as@)—additional parameters in a model is no constant for FSIC, like
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is realized without hampering the ability to select those highith the Yule—Walker or Burg method, some theoretical results

model orders if they are really significant. have been reported for the statistical expectation of the residual
In the paper, some finite sample definitions are repeated.vAriance REy) and of the squared prediction errors(BH9].

new formula is given for the variance of the logarithm of th&hose expectations, for model ordgrsqual to the true process

residual energy as a function of the model order. The increaseoofler K or higher, depend on the estimation method and are

that variance for higher orders gives an explanation for the pgiven by

formance of FSIC. Another criterion for the third category [the v

Comb_med Information Criterion (_CIC)] has been mtroduped to E{RESp)} ~ 0_621—[{1 — (i, )}

combine the favorable asymptotical penalty factor 3 with the

=0
increased resistance against the selection of too high model or- p> K. (4)
ders in finite samples [15]. Simulations show that the expected o = .
performance of FSIC and CIC is realized for different AR esti- E{ PHp)} ~ o2 H){l +oli )}

mation methods and for various sample sizes.
Many simulations have been carried out on finite sample
Il. FINITE SAMPLE FORMULAE properties [8], [9], [12]. It turned out that the expectations
in (4) are close approximations to the average of RES
and PHEp) in simulations with all four estimation methods
Yn + @1 Ynot + + AR Yn—K =En (1) if the appropriatev(i,-) are substituted, as defined in (3).
Therefore, (4) can also be used for the least squares methods,
2 e . 7
although the derivation is based on reflection coefficients that
where e, is a stationary purely random process with zerbelong only to the Yule-Walker and Burg methods. When
mean and variance?. In the Yule-Walker [1] and Burg evaluated for different sample siz85 the outcomes of (4) are
[13] estimation methods, the last parametgrin a model of approximately nonlinear functions of thatio p/N. This ratio
order p is also known as the reflection coefficieky. The appears linearly in the well-known asymptotical results, which
Levinson—Durbin algorithm [1] describes the relation betwednclude E{RES(p)} = ¢2(1 — p/NN) for the residual variance
parameters and reflection coefficients. The building bloclend E{PE(p)} = o2(1 4+ p/N) for the squared prediction
of the AR finite sample formulae are finite sample variancerror. Those asymptotical relations can be retrieved from (4) by
coefficientsu(i, -); ¢ denotes the order and”the method of substitutingl /N for all coefficientsv(s,-) and then deleting
estimation. Thew(4,-)s have been introduced as simple exthe terms of ordet/N?> and higher in the product.
pressions that approximate the empirical variancefiéction ~ Many asymptotical order selection criteria can be written as a
coefficientsfor the Yule—Walker and Burg method for ordersingle generalized information criterion (GIC) [9] with different
i > K, which is the true process order in (1) [9]. Likewise, th&alues for the penalty factar:
v(t,-) are approximations for the empirical variance of the last
parameter:; for least squares AR) models. The asymptotical GIC(p, @) = n{RESp)} +ap/N. ®)

expression for the variance of reflection coefficients (or of thg seject a model order GI(8, «) is determined for all orders
last parameter) equaly/ N for all model orders greater thanp between 0 and some maximum candidate ofdeFhe order

the true ordet” and for all estimation methods. Formulae thaj iy the minimum value of the criterion is selected. The penalty
give approximations for the empirical variance for ordéom ¢ o401, is 2 for AIC [3], In V for consistent criteria BIC [4],

An AR(K) process and its AR) model are given by

Yn + CAllynfl +---+ &pynfp :én

N observations are given by [5], 21n1n IV for the minimally consistent criterion [6], or some
v(i, YW) = (N — i)/N(N + 2) Yule—Walker qther constant. T_he a_symptotical criterion GICe) is iden-
) ) tical for all AR estimation methods, whereas (4) shows that the
v(i, Burg) =1/(N+1-4)  Burg behavior of RE®p) actually is a function of that depends on
v(é, LSFB) =1/(N +1.5—1.5))  two-sided LS the AR estimation method. Therefore, finite sample informa-
v(i, LSF) = 1/(N 4 2 — 24) one-sided LS (3) tion criteria FIQp, «) have been defined as improvements for

) the asymptotical criteria GI@, «) as [9]:
for four well-known AR algorithms [9]. Furthe;(0,-) = 1/N

if the mean is subtracted and 0 otherwise. Those approximations Lo

are quite accurate for AR) processes foi > K, therefore, FIC(p, o) = n{RESp)} + Z v(i; ) ©)

for orders that are important for order selection. The formula for =0

Yule—-Walker (also denoted autocorrelation method) is knownth the method dependent sum«gf, -) instead ofp/N in the

from the statistical literature; in Burg and LSF (or covariancnite sample criteria. The penalty factor 2 of AIC reduces the

method), the decrease of the degrees of freedom that are ayaibbability of underfit at the cost of overfit [8]. Consistent cri-

able for estimation can be recognized. teria, where the penalty factor depends®ymay produce infi-
The variance of,, in (2), o2 is called theresidual variance nite costs of underfit for increasing sample size. A compromise

RESp) if the datay,, in the equation have been used to estimateetween overfit and underfit is found with the constant 3 for

the parameters. Otherwise, if the estimated paraméteasd penalty factory, both in GIQp, «) and in FIGp, «).

the realizationy,, of the process are independest,is defined The quotient of the expectations REYRESp) in (4) has

to be theprediction errorPE(p). For AR(p) models estimated been used to derive the finite sample information criterion
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(FSIC) for order selection [12]. It is a finite sample approxima- Normalized penalty of selection criteria for Burg estimates, N = 100
3

tion to the Kullback—Leibler discrepancy: ‘ ‘ ‘ ' ' ' ! ‘ oy
/
FSIC(p) = In{RE | ERR > ot
Clp) = In{RES(p)} + H T—u(i,) O 25 A 1
=0 o FC{(p3)

) _ o — FsK(p) / +++

A comparison with (6) reveals that a product containing all pre ot
vious v(7,-) appears in FSIQ) instead of a constant penalty ’ / R

factora timesuv(p, -) for orderp in FIC(p, «). The performance o of

of FSIC(p) is similar to AIC if it is applied to the Yule—Walker
estimation method [12] because the product in (7) is very clos
to 1 + 2p/N for all model ordery if (¢, YW) is substituted.
Asymptotical theory has been used to develop theAttite-
rion, which is defined by replacing the terap/N in (5) by
2p/(N — p — 1) [14]. The criterion AIG; is almost identical
to FSIQp) for the Burg method with(é, Burg) from (3) sub- 05k
stituted in (7); for AR estimation methods other than Burg’'s
FSIC(p) and AIC: are completely different.

The performance of the criteria can be explained by conm s '

=
0

o
.
+ 7 of
+ o
[ + 00 4
++ &

penalty on log(RES)

-
T
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paring the corrections tm{RESp) } in the different criteria, as relative model order p /N

shown in Fig. 1. GIC criteria have a constant slope, which is 2

for AIC andln(100) or 4.61 for the consistent asymptotical criFig. 1. Comparison of order selection criteria. Total penalty of the right-hand

terion GlQp 2) FIC(p 2) and FSKCP) are almost equal for side terms of the criteria (5)—(7) is shown for different values of the penalty
. ? 1 bl L]

. . factor as a function of the relative model order.
p/N < 0.1, but the difference increases for greagieFSIQ(p)

increases especially strongly there. . . . .
For new data with unknown characteristics, the maximuMyhite noise processes as data. The asymptotical expression for

candidate ordet. for selection of the AR model order mustVa1n{RES(p)}] equals the constagy N for all ordersp when

be chosen high enough, certainly higher than the unknown b AR(») models are estimated fron observations of a white
model order. Taking a high reduces the possibility of missing 0!S€ Process. A recursive formula for the residual variance for
the best order. In practice or in simulations, however, seledlé-Walker and Burg estimates of AR processes is given by
tion results for all criteria of the first two categories, including _ 9

the consistent criteria, are more or less dependent on a proper RESp) = RESp - 1)(1 - k). (8)
choice for L. The selected order turns out to depend on tf)@s

. . ; . . all reflection coefficientg:; are uncorrelated for the white
highest candidate orddr, especially if that is chosen greate

"oise process that is considered here, the covariance between

than, sayN/{l. If L_ is taken high, .orders closellbgre oftep RESp — 1) andk, equals zero. An elementary result for uncor-
selected in simulations [9]. FS(@) is the only criterion that is related variablea andb is easily derived as
not sensitive for the choice of the highest candidate order for

selection, independent of the AR estimation method. An excep- var{ab} = E?(a)var(b) + var(a)E>(b) + var(a)var(b).
tion should be made for the Yule—Walker method, where the in-

fluence of L is moderate; this is sufficiently explained by theapplying this to (8) gives

similarity between the asymptotical criterion AIC and FGIC

for Yule—Walker. High AR orders may not always be necessary ~ var{RESp)} = F*{RESp — 1)}var{k§}

in AR estimation, but they are certainly required when the AR + E?{1 - kg}var{RESZp -1}
model is used as an intermediate stage for MA or ARMA mod- 9

eling [16], [17]. The influence ofL is very important for all +var{l -k, vaRESp — 1)} (9)

asymptotical criteria, remains a nuisance for the finite samp|.i-, can still be simplified. By using the normal distribution
criteria, and disappears for FS6) in the third category. to approximate the unknown finite sample distribution for the
k; fori > K, it follows from the theory and from the definition
of the finite sample coefficients that

A fair agreement has been shown between finite sample for-
mulae on the one hand and simulation variances of estimated E{k}} m (i, -), var{k}} ~ 204, -)*. (10)
parameters, reflection coefficients, residuals, and of prediction = . . . .
errors on the other hand [9]. This paper presents a recursiveSbeSt't“t'O” of those approximations in (9) produces a recursive
nite sample formula for the variance bff RESp)} as a func- ormula
tion of the model ordep. That variance is also the variance o2 L2
of the criteria GIQp, «), FIC(p, «) and of FSIGp) because va{RESp)} ~2E"{RESp — 1)}v(i, )
In{RESp)} is the only stochastic part of these order selec- +[1 = 204, ) + 3v(i, )*var{RES(p — 1)}.
tion criteria. For convenience, the analysis is carried out for (1D

I1l. V ARIANCE OF SELECTION CRITERIA
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As a starting value, the asymptotical expression for the va
ance of the estimated white noise variance RES(0) will t
used, which is given by VARES0)} = 202%/N. In Taylor 004
expansions, higher powers bfV are neglected. Finite sample ™
approximations are completely different because products§
v(1, -) contain higher powers df//N, which are not neglected. 0@

. .. £
Nevertheless, an approximate finite sample formula for tt= .\

variance of the logarithm of RES) will be derived here with

a first-order Taylor expansion as o

3553

0 10 20 30 10 20 30 40 £0
An{RESPH ~ b VARESHY.  (12) = ol
varln )}~ —————val )} . _
' ~ E{RESp)} ' s . /
004 R 004 -
Simulations have to show yvhether th_e approxim_ations i'n (17 s / / 005 s
and (12) are a useful description of this variance in practice k% R4 /
cause their accuracy cannot be established with theoretical i o e 00 /
guments. The distribution &f, is unknown, and only one Taylor Ems- o st /
expansion term is used for (12). Moreover, the derivation sta // //
with the use of reflection coefficients in (8) that are only appli o 0@
cable in the Yule-Walker and Burg estimation methods. Neve o 10 2 m © 0 10 2 2 0 0

theless, the resultin (12) will also be tested as an approximati

for the one- and two-sided least squares estimation methods.
The accuracy of the variance formula (12) has been studiedif: 2. Variance of the logarithm of the residual energy[VgiRESp)}]

. . . . . f . as a function of the model order. The four figures each give two results: a

simulations for white Gaussian noise and with dﬁferent@(ﬁ theoretical drawn curve computed with (11) and (12) for white noise and the

processes for several values of the sample Aiz&ig. 2 gives dotted measured simulation variance for Yule-Walker, Burg, LSFB, and LSF

the accuracy for 100 observations of an AR(10) process WR imates, respectively. The variance is measured in 10000 simulation runs
. y . . P ( ) P oﬁloo observations of an AR(10) process with = 1 and with reflection
as reflection coefficients; = (—0.6)', ¢ = 1, ---, 10 forthe coefficientsk; = (—0.6), 1 = 1, ---, 10

four estimation methods for which empirical variance coeffi-
cients have been defined in (3). The asymptotical theory for a
white noise process yields the constapv for all model or-
ders. Clearly, the empirical variance in the simulations dependsWith asymptotical arguments, a good balance between the
on the model order and on the estimation method. Fig. 2 shopassibilities of overfit and underfit requires a constant penalty
that the white noise approximation with (12) is quite good fdiactor of about 3 in a selection criterion [8]. The same con-
the Burg and Yule—Walker results for the orders above 4. Thitusion for the penalty has been found with simulations for fi-
order 4 is the best order to be selected for estimated modeite samples, where the maximum candidate order has been re-
from 100 observations of this AR(10) process. The agreemenstsicted toN/3 [8]. On the other hand, the criterion FS}g,
less perfect for vain{ RESp) }] of the least-squares estimatioras defined in (7), has a desirable resistance against the selection
methods LSFB and LSF, but (12) is still a much better approxaf very high orders because it has an increasing penalty at those
mation than the constant value 0.02 that would follow from th@gher orders. In agreement with the known theoretical argu-
asymptotical theory for all estimation methods and all model aments, no examples with a poor performance of KgjGave
ders. been found when very high maximum candidate orders are al-
As always in finite samples, the behavior of the Yule—Walkdowed for selection. The asymptotical equivalent of FGIC
method differs quite from the other methods because it is thdich describes its behavior at low model orders, is found by
only method withu(z, -) less tharl /N. The figures show that substitutingl/N for all coefficientsv(¢,-) and by removing
the variance ofn{RESp)} for the other methods can becomeerms with powers ofi /N2 and higher from the result. This
more than two times greater than the variance at low models teads to the well-known criterion Al@) [3], which, here, is
ders. As a consequende{RESp)} can become much smalleralso denoted GI(®, 2) with penalty 2.
than its expectation in a single simulation run at some high Unfortunately, the properties of an optimal asymptotical bal-
model ordem, which in turn produces a very low value of theance between under- and overfit and a good resistance against
selection criteria for that order in that specific realization of selection of high orders are not found in one criterion. It would
the process. This increased variance creates the possibility Berinteresting if a single criterion had the penalty 3 at low orders
the undesirable selection of very high orders because the orded the behavior of FSI@) at high orders because that crite-
selection criteria in the categories one and two have been based can have favorable properties for all possible choices for the
only on the average or expectationlef RESp)} and not on maximum candidate model order for all sample sizes. There-
its variance. Only for the Yule—Walker method was this not f@re, a new criterion is introduced here that combines those
serious problem because the increase of the variance at higheperties: good asymptotic performance with penalty 3 and
model orders is moderate. good finite sample performance with the protection of R$IC

model order p model order p

IV. COMBINED INFORMATION CRITERION
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against wrongly selecting too high orders. It is the combined in- TABLE |

; it . AVERAGE OFME(p) IN SIMULATIONS FOR MODELS SELECTED WITH VARIOUS
formation criterion [15]: CRITERIA, FOR YULE-WALKER, BURG, LSFB AND, LSF ALGORITHMS:
N = 25,L = 15, 500000 RINS. AR(10) FRROCESS WITHREFLECTION

CIC(p) = In{RESp)} COEFFICIENTS k; = (—0.6)°
. 1+ U(iv ) : .

tmax |[[ 5 —1,3) v(,)|. (13) Y-W___BURG ___LSFB LSF

1= ) prd AIC 530 2692 125.10 66.18

FIC(p,2) 5.54 14.37 42.86 34.35

The behavior of CICp) can be derived from Fig. 1. For lower  GIC(p,3) 5.86 14.39 98.43 55.19

model ordersp/N < 0.3, CIC(p) is equal to FICp, 3) be- FIC(p,3) 5.61 7.28 13.93 17.16

cause the sum with penalty 3 is the largest. For higher orders, the FSIC(P) 5.25 6.03 6.02 7.03

total penalty of FSICp) is greater, and CI(®) becomes equal CICkp) 362 644 640 7.33

to FSIQp), thus_ combining _the asymptotk_:al balance_between AR(2) 433 439 4.40 447

under and overfit and the finite sample resistance against the se- or3) 3.86 3.98 4.04 4.23

lection of model orders that are too high. Asymptotically, or for  AR(10) 9.03 16.58 20.71 39.39
p < 0.1N, CIC(p) and FIGp, 3) are equal and almost the same

as GIQp, 3) because the average of finite sample results differs E[ME(10)] 8.23 15.63 18.97 25.41

only significantly from the asymptotical theory if the rafig/N

is greater than 0.1.
data. The latter three are chosen by the data analyst. If the se-

lected model depends on those latter choices, any objective sta-
tistical analysis of time series becomes questionable. Our aim
This paper considers models of stationary stochastic pig-maintaining the first two influences of the data and reduc-
cesses in their capacity to predict future responses or as specitdl of the last three influences. Preferences will be formulated
estimators, demanding a selection criterion that is represerifased on theory and simulations. Three rows in Table | present
tive for the overall fit. The true process is known in simulationthe average M) of three fixed-order models without order
and can be used to define the quality of estimated models.s@lection: the true order 10 and the best order for prediction
measure for the fit is the model error ME, which is defined aswith estimated AR models, which is AR(3) for 25 samples of
simple function of the expectation of the prediction error [18]this AR(10) process. The last row gives the finite sample ex-
pectation£[ME(10)] for the AR(10) model, which is found by

V. COMPARISON OFESTIMATION METHODS

ME(p) = N [PE(P) _ 1} - N o — a2 substituting the finite sample formula (4) for BB with the
o2 o? different v(4,-) of (3) in the first representation of (14). This
a) R(p) a, — o2 can be compared with the simulation result of the estimated
=N .2 (14) AR(10) model. The asymptotical theory gives as expectation

10 for all methods, and therefore, the finite sample expression
Pre- and post-multiplying the estimated parameter vegjor for £[ME(10)] gives a much better representation for the ac-
with the trueR(p) yields an accurate expectation for the squareadal performance of different estimation methods. In addition,
error of prediction PEp) that can easily be computeR(p) isa the simulation average M) of models selected with AIC,
(p+1) x (p+ 1) submatrix of the infinite-dimensional true co-FIC(p, 2), GIC(p, 3), FIC(p, 3), FSIC(p), and CICGp) is pre-
variance matrix of a known AR process, aijfis the estimated sented. Many other order selection criteria have beenincluded in
parameter vector of lengilh+ 1 in (2), including the constant 1 this comparison, but those results are not reported here. Consis-
for the first parameter. Independeit andy,, in (2) define the tent order selection criteria, with penaliy(V) or 21nln(N),
prediction error PEp) assZ, which has the asymptotical expec-boil down to a fixed penalty facto for a given sample size
tationa2(1+p/N) for p equal to or greater than the true proces8.22 and 2.34, respectively) fa¥ = 25, and they are sim-
order if the parameters had been estimated ffobservations. ilar to the results of AIC or GI(p, 3) in Table I. The highest
Hence, the asymptotical expectation of M equalsp, inde- considered candidate ordéris 15. It can be taken higher if
pendent of the sample siZ€. This valuep can also be con- FSICp) or CIC(p) are used, without influencing the average
sidered as an asymptotical Cramér—Rao lower bound for thE of selected models; but higher choices fowill influence
achievable accuracy of the relative integrated spectrum of tte selection results of the other criteria. An additional limita-
AR(p) model; see [19]. Finite sample expectations for (dE tion for candidate orders is that for a certain estimation method
can be computed with (3) and (4). The model error(MEn no parameters will be estimated for ordgresherev(s, -) of (3)
(14) has advantages above the prediction errdplPid studying becomes greater than 0.25. This limitation becomes active for
the influence of the sample size on the quality of estimated ah8F estimates in Table I. Ag(<, -) is an approximation for the
selected models because results for quality are made less defiaite sample variance, this value fof, -) indicates 0.5 for the
dent on/ itself and are of a comparable magnitude. standard deviation of the last parameter, whereas the last param-
The results of AR modeling are known to depend on the trigter or the reflection coefficient has to be in the range- dfto
process, the sample size, the estimation method, the order-s&-for stationary models. Parameters with that amount of statis-
lection criterion, and the highest candidate order for selectidital uncertainty (more than 50%) are not useful and cannot con-
The first two influences are unknown and determined by thgbute significantly to our knowledge of the process. In using
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this limitation onw(%, -), the highest candidate ordéris com- TABLE I

pletely determined by the capacity of an estimation algorithm {oYERAGE OFME(10) OF FIXED ORDER AR(10) MODELS FORY ULE-WALKER
L . AND BURG ALGORITHMS: N = 25, AVERAGE OF5000 SMULATION RUNS OF

compute useful models. # priori information about an upper  Ar(10) FrocessEs WITHLO REFLECTION COEFFICIENTS k; = (—3)

boundary for the model order is available, this can be used to

choose a lower value df. B Yule-Walker Burg

The selection results for the Yule-Walker method are com- 2 8.83 16.82
pletely different from the other methods. The results of F5)C 4 878 16.77
and AlQ(p) in Table | are almost identical for Yule—Walker, like 6 9.03  16.58
what is expected in Section II. Bias has not been incorporated in ‘; ;gg; i;?g
the finite sample description of AR modeling. It is known that :9 675:55 2763

the Yule—Walker method introduces extra bias terms by using
the biased estimates for the covariance [20]. Due to this spe-
cific Yule—Walker bias, higher order reflection coefficients araverage MHEp) after selection. This effect disappears in
estimated a factor two wrong after a single true reflection c@able | if FSIQp) or CIC(p) are used. LSFB and Burg are
efficient k,, with magnitudell — p/N|. More general, the fur- almost the same if selected with FSG or CIC(p).
ther estimates of higher orders after a large reflection coefficientSubstitution of smaller values fos(i,-) in (4) gives a
suffer from a serious bias in the Yule—Walker method, instead gffeater residual variance and, at the same time, a smaller
the smaller bias with magnitudg’V that is present in all other value for the expectation of the prediction error. The asymp-
estimation methods. Hence, the application of the Yule—Walki@tical theory makes no distinction between the residual
method to unknown data may produce erroneous results, evanance of different AR estimation algorithms; in addition,
for a large number of observations. All poles of the AR(1Qhe theoretical prediction error is the same for all methods.
process of Table | have the absolute value 0.6; therefore, thiye finite sample formulae, however, show that an estima-
are not close to the unit circle. Hence, the bias problem is nain method, yielding asmaller residual variance for an
serious in that example, and under those conditions, the perfadequate ARp) model than other estimation algorithms,
mance of Yule—Walker estimates is good. will give a higher prediction error. This means that the AR
Table 1l shows examples with and without serious bias influnethod estimating parameters of a model of orgdewith
ence. ARp) processes with reflection coefficients = (—3)* the lowest RE&) gives the worst result in terms of an
have the property that all poles have the radiusVith poles objective quality criterion like Pfp). However, asymptotical
closer to the unit circle, the Yule—Walker method produces vesglection criteria would give preference to that method with
high values of ME. ME(10) for Burg also becomes a bit highdowest residual variance if they would be used to assess the
for B = 0.9, which is caused by the fact that 25 observations gality of estimation methods. Hence, those asymptotical
much shorter than the correlation length for> 0.7, causing selection criteria are not suitable for a useful comparison of
still another type of bias. It follows from Table Il that the avimodels obtained with different estimation algorithms. The
erage performance of Yule—Walker over a variety of exampléeite sample formula for the prediction error BE is for
is poor due to bias. Therefore, Yule—~Walker cannot be recom-fixed order p determined by the product of + v(i,-)
mended for data of unknown processes, and the discussionnin(4). This yields as sequence for decreasing accuracy:
the sequel will be limited to the other three methods. Yule-Walker, Burg, two-sided least squares LSFB, and,
For estimation methods other than Yule-Walker, a corfinally, one-sided LSF. This agrees with the outcomes
parison in Table | between asymptotical and finite sampfer ME in Table | for the average of AR(2), AR(3), and
criteria for different values of the penalty factor shows tha&R(10) models. The differences are small for the AR(2)
the finite sample criteria FI(®, 2) and FIGp, 3) have a and AR(3) models because those orders are abd¥, the
better performance than their asymptotical equivalents fealue where asymptotical theory and finite sample formulae
the same value ofx, AIC, and GIGp, 3), respectively. start to diverge. This divergence is obvious for the AR(10)
Furthermore,o« = 3 is a better value for the penalty factormodels estimated with the different methods.
than « = 2. The model error for selection with FSif) and Due to bias, the Yule—Walker method gives, in Table II, a
CIC(p) is smaller than with the other criteria. The differencenuch higher PEp) than other estimation methods for processes
between those two criteria is always small in finite sampleshose reflection coefficients are not close to zero. Furthermore,
The better performance of finite sample criteria BCa) the LSF method has the additional inconvenience that estimated
in comparison with their asymptotical equivalents GiC«)  roots can lie outside the stationarity region, which makes the re-
is sufficiently explained by the fact that F& «) takes into sulting spectral model quite useless. This applies in a lesser de-
account the actual expectation of the residual variance agwke to LSFB. According to Table I, to finite sample considera-
prediction error as given in (4), whereas GiC«) is based tions and to many other simulations, Burg’s estimation method
on the asymptotical approximations. One aspect had bderm good choice for estimation of AR parameters if the fit of a
neglected: the variance of the logarithm of the estimateglected model is important, e.g., for prediction or as a spectral
residual variance. The higher variance mf{RESp)} for estimate. CICp) or FSIQp) are good order selection criteria,
higher model orders gives an increased probability thahdthe maximum candidate ordecan be chosen high enough,
those higher orders accidentally yield the minimum value efg.,N/2 or even higher. These choices for estimation method,
the criteria GIGp, «) and FIGp, «), thus giving a higher order selection criterion, and maximum candidate order can be
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made independent of the observations, which gives advantages TABLE Il
in a statistical interpretation. ASYMPTOTICAL PERFORMANCE OFCRITERIA: AVERAGE OF ME(p) IN
SIMULATIONS WITH ORDER SELECTION FOR THEBURG ALGORITHM:
N = 10000, L = 20, 1000 Runs, AR(10) FROCESS WITHREFLECTION
COEFFICIENTS k; = (—8)°

VI. COMPARISON OFORDER SELECTION CRITERIA B 0 04 Y 07

Comparative studies of selection criteria are mostly limited ?Ilg((g);)GIC(p,Z) 2'33 7/'22 }}'gg gig
to_ a few examples an_d are t_her(_efore difficult for interpretation FSIC(p) and AICc 408 754 1200 1244
without some theoretical guideline. The performance of a se-
lection criterion may depend strongly on the true process, the GIC(p3)and FIC(p,3)  3.31  6.57 1147 1144
estimation method, the sample size, and the highest candidate CIC(p) 331 657 1147 1144
order for selection. No single-order selection criterion can per-  GIC(p.4) 334 679 12.02 1160
form optimal in all possible circumstances. Consider an ex- FIC(p.4) 334 680 1202 1160
ample process wher® is actually the best model order for a GIC(p,InN) 492 9.04 1599 1582
given sample size; therefore, ME has a minimum for the fixed-  FIC(p,InN) 492 9.04 1600 1583
order M. Now, taking zero as penalty for all orders beld#
andoo as penalty for all orders abov, one will certainly se- TABLE IV

lect orderM, which is the best possible solution for this partic-  Averace oF ME(p) OF SELECTED AND OF FIXED-ORDER MODELS,

ular example. Evidently, this “selection criterion” with zero andESTIMATED WITH BURG ALGORITHM AS A FUNCTION OF THE SAMPLE SiZE.
AVERAGE OF 10 000 SMULATION RUNS OF AN AR(lO) PROCESS WITH

infinite penalties would perform very poorly on data generated REFLECTION COEFFICIENTSE; = (—0.7)!
by other processes with a different best order. Hence, the prac-
tical question is not to find theery besbrder selection criterion N 16 16 64 256 1024
for agivenexample; that will be the criterion with zero and L 15 8 32 128 512
penalties, as defined above. The search is for an order selection AIC 15345 1730 2720 1871 1291
criterion thatnever failsto select the order of one of the better ~ FIC(p.2) 99.15 13.51 1297 11.94 12.80
fitting AR models that can be computed from the given obser-  GIC(p,3) 145.49 1390 11.12 1114 12.30
vations for all types of processes. This problem will be treated FIC(p,3) 3408 1089 992 1113 1230
. A . . GIC(p,4) 13111 1222 1059 11.81 13.04
in two separate stages: asymptotical and finite sample. A useful FIC(p,4) 2373 1063 1070 1187 13.06
criterion will perform well in both conditions. Only results for GIC(p,InN) 14888 14.62 1072 1347 14.07
Burg’s estimation method are presented here in order to concen- FIC(p,InN) 60.81 11.18 10.86 13.59 14.11
trate the information on the method that is preferable with the FSIC(p) 874 874 9.63 1131 1265
arguments in Section V. CIC(p) 931 931 992 1113 1230
Table Il gives average ME results for a number of criteria  AlCc oo 907 988 1147 1270
for 10000 observations of four different AR(10) processes. AR(3) 6.05 605 11.10 3431 12748
FIC(p, a) and GIQp, «) are almost identical for all values of ~ AR(5) 797 797 710 11.95 32.52
. Moreover, the selected model with F$$ and AlCc have AR(7) 12.89 1289 812 859 12.89
the same quality as = 2, and CIGp) gives the same result ﬁg’())) ;éz; ;1;3; i?‘;g lg'gg lg'gg
as penaltyy = 3. The conclusion is that penalty = 3, or the EIME(10)] 3368 2268 1164 1037 10,0

new criterion CIGp), is the best in Table Ill, better than= 2

anda = 4, and also better than = 1n NV of the consistent

criteria [8]. The different values of for the simulations in the influence of the sample siZé (with the valueN/2 as max-

Table Il have been chosen such that overfit and underfit araum candidate ordek) on selecting the order with different

both serious possibilities. Those examples are most critical f@iteria. The first column gives results fd&r = N — 1 for

the performance of order selection criteria. Taking lower valugé = 16. The difference between the first two columns is only

for /3 reduces the cost of underfit too much; higher value8 of caused by different maximum candidate orders for selection: 15

would give all underfitting models of order lower than 10 muchnd 8, respectively. This demonstrates that only Fgi@nd

higher residual variances than the AR(10) model such that theyC(p) are insensitive to extremely high values for the highest

are almost never selected with any criterion. Boe= 0.2 or candidate ordef.. The results for the AIg criterion [14] are

B = 0.4, the average Mfp) values after order selection areclose to those of FSI@) for all sample sizes; only for orders

less than the asymptotical value for the true orBEME(10)] as high asV — 2 or V — 1, AIC is not properly defined.

~ 10 because lower order models are selected, and they havghe five AR(p) rows in Table IV with ME for fixed-order

a smaller finite sample expectation than the AR(10) modehodels show that the best order for this AR(10) process depends

In those asymptotical conditions, the differences between tbe the sample size. Therefore, the ability to select the true order

four AR estimation methods are negligible as long as the extt@ would not be a good quality measure for a comparison of

Yule—Walker bias is small. order selection criteria in this example. The average ME(10)
For the finite sample performance, a similar AR(10) procesd the AR(10) model is close to its finite sample expectation

has been used in Table 1V; the reflection coefficients are powet$ME(10)] for all V. The best theoretical value for the order of

of —0.7 here. Table IV demonstrates, only for the Burg methodstimated models as a function of the sample size can be found
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with asymptotical theory. It is determined approximately witlabout 2.5 for all sample sizes. This value is very close to the

the selection criterion GI(, 1) applied to the residual varianceasymptotical value 2.568 that has been found for selection with

of truncated models that can be computed with the true valukkC (p) if only the possibility of overfit was taken into account

of the reflection coefficients [16]. For small samplés,—= 16 [8]. The AR(10) example is a difficult one for order selection

andN = 64 in Table 1V, the quality of selected models is bettebecause the best order has close competitors of higher and of

than the quality of the AR(10) model. Hence, order selectidawer orders with overfit and underfit. The loss in quality due to

with a good criterion may give better models than knowledge eélection is, statistically seen, a consequence of using the same

the true order in finite samples. residual variance for two different purposes: first, for minimiza-
Some artifacts in simulations about order selection are cldamn to estimate the parameters and afterwards for order selec-

in Table IV. Comparing the results of the criteria GIC«) and  tion with a transformation of the residual variance as a selection

FIC(p, «), the best choice between those would be(BlG) criterion. The model error of models selected with FGICor

for N = 64, N = 256 and N = 1024, but penalty 4 is slightly CIC(p) is about 2.5 greater thali[ME (p’)], wherep’ denotes

better forN = 16. This somewhat irregular behavior is causethe best fixed-order model. In other words, even the best selec-

by the interaction between the highest candidate ofgehe tion criterion is not capable to detect the very best order in every

best order for a given sample size, and the possibility that thienulation run in this example.

second best model order is one order lower or perhaps one order

higher than the best order. Consistent_crite_ria with In NV al- VIl. CONCLUDING REMARKS

ways have a greater ME than K€ 3) in this example for alll _ _ o

sample sizes. However, consistent criteria may outperform othe/ recursive formula gives an accurate description of the em-

criteria in examples where the true process has a few very sig,m[ical variance of autqregressive ordgr-selection criteria thgt

icant parameters, the number of observations is high, and, at@@ based on the logarithm of the residual energy. The empir-

same time, the highest candidate ordlés not too high. Under ical variance depends on the estimation method in finite sam-

those circumstances, consistent criteria approximate the perfjs- It has influence on selection results if the maximum candi-

mance of the optimal criterion with zero and infinite penaltiedate order for selection is greater thalf4. Such high AR or-

as described in the beginning of this section. ders are required for subsequent MA or ARMA estimation with
Tables Ill and IV show that the differences betweeRurbin’s methods. o _

GIC(p, a) and FIQp, ) disappear almost completely for _A new selection criterion called the complned mforma’qon

increasingV for every value of. CIC(p) and FIGp, 3) give ~Cfiterion Cldp) that combl_nes the theo_re.t|cal asymptotical

exactly the same selection results for ME if the sample aize Preference for penalty 3 with the good finite sample charac-

is 64 or more in Table IV, Based on the finite sample behavi#istics of FSIGp) is introduced. FSI(p) and CIGp) are

in this example and in numerous other simulations, the critefig/ection criteria with an increasing penalty for higher model

CIC(p) and FSIGp) of the third category are preferred. Ao_rders. This gives protection against abl_sz_er selecting those

slight preference for CI() above FSICp) is found with Table h|gh orders. The performance of these criteria was always good

Il because the theoretical properties of CiCagree with the in Simulations. o

best asymptotical choice for the penalty factor. In finite sample Based on statistical arguments, Burg’s AR estimation method

simulations, the comparison between those two criteria deped§ CIC(p) as order selection criterion and wi¥y/2 or higher

on the specific process in the example and slightly on the A3® maximum candidate order is a good and safe combination for

estimation method as well. Many other simulations with ARNe agtomatic use of autoregressive modeling for time series in

MA, and ARMA processes of different orders and with smaffractice.
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