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Deterministic Blind Modulation-Induced Source
Separation for Digital Wireless Communications

Geert Leus, Piet Vandaele, and Marc Moonen

_Abstract—in this paper, we present a new simple deterministic not necessarily converge to the global minimum. Interesting
blind source separation algorithm, which is based on modulating noniterative algorithms are the analytical constant modulus
the same data symbol sequence with different code sequences,|qqrithm (ACMA) [3] for constant modulus constellations and

and transmitting the resulting modulated data symbol sequences . .
through different antennas. The algorithm does not exploit the e real analytical constant modulus algorithm (RACMA) [4]

finite alphabet property of the data symbols. As a result, no itera- and the algorithm presented in [5] for a BPSK constellation.
tions are required, and convergence is not an issue. InstantaneousAlthough near-optimum, these approaches are computationally
mixtures (frequency-flat fading), as well as convolutive mixtures expensive. Finally, a simple recursive noniterative algorithm
(frequency-selective fading), can be handled. In the case of afyr 5 BPSK constellation can be found in [6].

convolutive mixture, the difficulties that occur when the users | dditi f uti it det inisti
have unequal channel orders are avoided. Moreover, the proposed I addition; 10 aconvollutive MIXIUIESome aeterminisuc

algorithm is robust against channel order underestimation. blind source separation algorithms have already been pre-
sented. Extensions of the ILSP algorithm [1] and the hypercube
algorithm [2] to convolutive mixtures can be found in [7] and
[8], respectively. In addition, the subspace intersection (SSI)
algorithms presented in [9] and [10] are very popular. When

. INTRODUCTION the users have equal channel orders, these algorithms consist

HE BLIND separation of different digital signals, of whichOf two steps. First, the convolutive mixture is transformed
only an instantaneous (frequency-flat fading) or convolidto an instantaneous mixture using a direct blind symbol
tive (frequency-selective fading) mixture is observed, is consifistimation approach (only an instantaneous mixture of the
ered here. Compared wittochasticblind algorithms,deter- digital signals is identified). Note, however, that this can also

ministicblind algorithms can be applied on much smaller blocka done by using a blind channel estimation approach (only an

blind source separation in this work. by a channel inversion, as mentioned in [9] (see [11] and
For aninstantaneous mixtureseveral deterministic blind [12] for an extensive treatment of deterministic blind channel

source separation algorithms have already been presented@Slimation in a multiuser system). Next, one of the above algo-

well-known iterative algorithm that exploits the finite alphabefithms for instantaneous mixtures is used. When the users have
property of the digital signals is the iterative least squaré§i€qual channel orders, difficulties occur, and a cumbersome
algorithm with projection (ILSP) [1]. However, this algorithmiterative procedure is required. The major drawback of the

does not necessarily converge to the global minimum. Hen&! algorithms presented in [9] and [10] is that they are rather

to find the actual global minimum, the ILSP algorithm requiregensitive to channel order mismatch.

several random initializations or an initialization based on a !N this paper, we show that by modulating the same data

noniterative algorithm (see below). Another iterative alggiymPol sequence with different code sequences and transmit-
rithm that exploits the finite alphabet property of the digitaing the resulting modulated data symbol sequences through
signals is the hypercube algorithm [2]. This algorithm, whicHifferent antennas, we can develop a new simple deterministic
sequentially estimates each signal, is less complex than Bligd source separation algorithm. This algorithm does not ex-

ILSP algorithm. However, like the ILSP algorithm, it doedloit the finite alphabet property of the data symbols. As a re-
sult, no iterations are required, and convergence is not an issue.
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Fig. 1. Multiuser system based on code modulation.

develop is deterministic. Of course, there also exist other typElse modulated data symbol sequengg k] is then transmitted
of coding that do not decrease the information rate. In [15], fthrough thepth transmit antenna at the data symbol rgté&’,
example, correlative coding is used to solve the source sepav@iere?’ is the data symbol period. Next, if we sample the
tion problem. However, this algorithm is rather complex andeceive antennas at the data symbol €, the received se-
like the algorithms presented in [13] and [14], it is stochastic.quence at thenth receive antenna{ = 1, 2, ---, M) is given
In Section I, we introduce the data model. In Section III, wby
then state the source separation problem under consideration. J P tee
The proposed deterministic blind source separation algorithm )y (m) N m
is presented in Section IV. Simulation results are given in Sec- ! )[k] N Z:l z—:u;: 95.p b = Kz p K]+ e )[k]
tion V. We end with some conclusions in Section VI. T
wherec(™[k] is the discrete-time additive noise at tigh re-
[I. DATA MODEL ceive antenna, ar‘gg";) [k] is the discrete-time channel from the

We first introduce some basic notation. We use lower-cakl! fransmit antenna of thith user to thenth receive antenna,

boldface letters to denote vectors and upper-case boldface letfafiiding the transmit and receive filters. Stacking the received
to denote matrices. In addition samples from thé/ receive antennas

. T N
()7 transpose; | Y = O @ o ORI
() Hermitian transpose;
|-|  absolute value; we obtain
|| -1| Frobenius norm. J P oo
ITet us thgn consider a system dfusers.andM (b_age sta- y[k] = ZZ g ok — Ka; p[K] + e[k]
tion) receive antennas, where each user is transmitting through s e

P transmit antennas (see Fig. 1). At thih transmit antenna

(p=1,2,---, P), thejthuser § = 1, 2, ---, J) modulates Wheree[k] is similarly defined ag/[k], andg; ,[k] is the dis-
his data Symbo| Sequen@@[k] (Wlth data Symb0|s in some fi- crete-timeM x 1. vec;tor_channel for thﬁth transmit antenna of
nite alphabef?) with the code sequeneg ,[k], leading to the thejth user, which is given by

following modulated data symbol sequerice: T
.okl = (g0 o2k - o) IK]]

©j plk] = sj[Kle; p[]- @ Remark 1: Note that a similar data model is obtained if the
To avoid introducing (additional) modulus variations, we a spatial oversampling under consideration is replaced by or com-

sume that the code sequendes; [k} 1P . are constant ined with temporal oversampling, i.e., sampling at a mL_JItipIe
modulus with modulusql' de8 oMb of the data symbol rate. Hence, the results presented in this paper

can easily be generalized for such a scenario.
le; o[kl =1, for j=1,2,---,J We make the _assumption that every vector channel from the
andp=1,2 - P @ se_t{gjjp[k]}f);l is an FIR vector filter of the same ordér;
T with the same delay indeX (g; »[k] # 0 for & = 6; andk =
1in the DS-CDMA jargon, this means that we use a spreading factor of 1. §; +L;, andg; ,[k] = 0fork < 6, andk > 6;+L;). Although
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this is not strictly necessary, it simplifies the description of the

proposed algorithm. We further assume w.l.0.g. that O for
j=1,2,---,J.
Foraburstlength ak (s,[0], s;[1], - - -, s;[K —2] ands,;[K —

1] are the data symbols of interest for tfth user), the matrix

221

I1l. PROBLEM STATEMENT

Foraburstlength ak (s,[0], s;[1], - - -, s;[K —2] ands,;[ K —
1] are the data symbols of interest for tfth user), let us define

that plays a central role in the next sections is the following

(Q + 1)M x K output matrix:

Y

y[k] ylk+1] ylk+ K —1]

yk+Ql yk+Q+1 - yE+Q+K 1]

where @} determines the amount of temporal smoothing. This

output matrixY; can be written as

7 r
Y IZZgj,pXj,p,k + E;

j:l p=1

®3)

whereE;, is similarly defined a&’;, G, , isthe(Q +1)M x r;

s;i=[s;0] 5[] - s[K-1]]. W)
Using (1), we then know that; ,, given by
Xj,p =[2,p0] ;1] zj, p[K —1]]

can be written as a function ef;, shown in (8) at the bottom
of the page, wher€; ,, is the X' x K code matrix for thesth
transmit antenna of thgth user, which is given by

c;,pl0] ¢, p[1]
Cjp= - )
cj, pl & — 1]
From (4) and (6), it is then clear that every vector from the set
{xjp= stjjp}gzl is a row of every input matrix from the set
{Xk}fi_Q and is therefore “contained” in every output matrix

(rj = Q + 1+ L;) channel matrix for theth transmit antenna from the set{Yk}fifQ [see (5)]. The problem addressed here

of the jth user, which is given by

gj,p
;0L T g;.»[0] 0 . 0
_ 0 8L gipl0] - 0
0 T 0 gip[L] g;,5[0]

andX; , i is ther; x K input matrix for thepth transmit an-
tenna of thejth user, which is shown in (4) at the bottom of the

page. Note that (3) can also be written as
Y. = X + Eg ()

whereG isthe(Q+ )M xr (r= P E}’zl ;) channel matrix,
which is given by

G=[G11 Gip| ]Gy G rl

andXjy is ther x K input matrix, which is given by
Xk

T
_ T T
- |:X1,1,k : XJ,P,k:| :

(6)

T T
Xl,P,k “XJlk

is to compute the vectay; from the set{Y, };2 , with

Q<A <AL (10)

based only on the knowledge of the set of code sequences
{c;,p[K]}]=, . Note that we defined as the number of output
matrices taken into accounti(= A, — A; + 1), which means
that

1<A<Q+ L+ 1

To solve this problem, we make the following rather standard
assumptions.

Assumption 1: The channel matrig has full column rank
(r is then called the system order).

Assumption 2:Every input matrix from the se{Xk};jiAl
has full row ranks .

Note that Assumption 1 is equivalent with the assumption that
the FIR matrix filter

[gl,l[k] gJ,P[k]]

is irreducibleandcolumn reducedsee [11]) and that

g1, plk] |- |8 1[k]

J
(Q+1DM>r=(Q+1)JP+P> L

i=1

X

J,p k=

zj plk — L] @y plk — Ly +1]

ik + Q] @[k +Q+1]

.TLP[/C—L]'—FK— 1]
: (4)
$j7p[]€+Q+K— 1]

x5,p = [55[0]¢;, p[0]  s;[1]ej, p[1]

si[K = 1)ej p[K — 1] =5;C;j (8)



222 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

The latter indicates that we should uk& > .JP. Assumption of the lastK' — » columns ofV}, we can then write that
2 requires that

row{X;} = row{V;”} & row{X;} = (row{V}jH})L
J

(11)
K>r=(Q+1)JP+ PZ L;. where(-)L represents the orthogonal complement. Sirge
j=1 (p=1,2---, P)is arow ofX;, we obtain
. sH R nH L
V. DETERMINISTIC BLIND SOURCE SEPARATION ALGORITHM Xjp € rOW{V’“ } & Xjp € (rOW{V’“ }) ) (12)

Before discussing the proposed deterministic blind sourB&causes; , = s,C; , andC;,,CJl, = I [this is due to (2)],
separation algorithm in detail, we explain the main idea Hy2) can be rewritten as

means of a simple example. SH —~H HaeH 1L
. . . s; €row{V;"C: 1l &s; € (row{V."C: .
Example 1: We consider an instantaneous mixture £ 2 J (Vi Cip} & sj € (row{VE"CjL })

andL, = L, =0), M = 6 receive antennas adt= 2 transmit  This can be derived for evepy(p = 1, 2, - - -, P) and for every
antennas per user and tae= 0 (temporal smoothing has nok (k. = A;, A, + 1, ---, A»). All these results can then be
use for an instantaneous mixture). Hence, we can only examignbined, leading to

Ay = A, = 0 for every user. Focusing on the first user, the

problem under consideration then is to compute the vector P
sH —~H
sie () [)row{Vvi*cl,}

S = [81[0] 81[1] s Sl[K — 1]] k=4, p=1 N
Az P
from Y, based only on the knowledge of the set of code se- &€ U U row{vViHct 1] . (13)
quences{c; 1[k], c1,2[k]}. If we assume no additive noise is ke, petl .

resent,Yy can be written as - :
P 0 A vector that satisfies (13) can be found by computing the

ryDo] gy P[] - yWK —1] left singular vector ofC,; V™ corresponding to the smallest
y @] 4[] - yI[K -1] singular value (which is equal to 0) or, equivalently (see [9,
Yo= : : : Appendix A]), by computing the left singular vector €f; V*
) (6) O corresponding to the largest singular value (which is equal to
L0 v yOLK = 1] VK), whereC; is the K x APK matrix given by
=[G Gi2/G21 Gopl C = [C CiploC Ci ) (14)
;=[Cj1Cip|l|Cj1-Cjp
_81[0]6171[0] 81[1]6171[1] s Sl[K— 1]6171[K— 1] ! ! ! ! !
51[0]c1,2[0] s1[1l]er2[1] -+~ s1[K — 1er o K — 1] V"*isthe APK x AP(K — r) matrix given by
82[0]6271[0] 82[116271[1] Tt SQ[K - 1]6271[K - 1] ' _VZI 1
_82[0]0272[0] 82[1]0272[1] e SQ[K - 1]0272[K - 1] . o o
The key observation then is that if we multip¥ to the right "
with, respectivelyC{’; andC{’, [see (9)], the intersection of
the row spaces of the obtained matrices contains the veptorVn = 0] 0]
In other words, we have "
Ag
s1 € row{Y,C{', } nrow{Y,C{',} o o
where row -} represents the row space. This may uniquely de- L Vi, |
termines; (up to a complex scaling factor). (15)

We now discuss the proposed deterministic blind source sep- _ o
aration algorithm in detail. For the sake of clarity, let us firs@ndV? is the APK x APr matrix given by
assume that no additive noise is present. Calculating the sin- V5, 7
gular value decomposition (SVD) [16] &f (k = Ay, A1 + - _
1, .-+, A,) leads to B o o
Vi,

Y, =U, X, VH

Vo= () ()

whereX; is a diagonal matrix (diagonal elements in descending
order) of the same size a§&,, andU; andV, are square unitary Vi,
matrices. Because of Assumptions 1 an&?2,has rank-, and

row{X;} = row{Y}. L Vi, |

Defining the K’ x + matrix V3, as the collection of the first (16)
columns ofV,, and theK x (K —r) matrixV} as the collection  Let us then introduce the following assumption.
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Assumption 3:For any vectos’; in CY*K linearly indepen- which indicates that” > 2 should be used. To support this

dent ofs;, there exists an input matriX; with 4; <k < A,
and a code matrixC; , with 1 < p < P such that

S;'CLP
Xk

has full row rankr + 1.

Using this assumption, we have the following identifiabilitya row of every input matrix from the s¢&Xj}-*

result.

claim, it is shown in the next remark that Assumption 3 is most
likely not satisfied forP = 1.

Remark 2: Let us takeP = 1 and focus on the first user. If
we assume thak; < L;, with j # 1, we know thatk; ; =
s;C;,1 is arow of every input matrix from the séX,. };L_.
This means that if we tak¢/ = s;C; 1C{}, s;Cy 1 is also
o (because
s1C1 1 = 5;C; 1 = x;.1). If we further assume that, ; is

Theorem 1:Under Assumptions 1 and 2, we can state théidependent fronx; ;, we further know thas) is independent
(13) uniquely determines; (up to a complex scaling factor) if from s;. Hence, Assumption 3 is then not satisfied, irrespective

and only if Assumption 3 is satisfied.

Proof: Under Assumptions 1 and 2, we know tlatsat-

of Ay andAQ, with —Q <A <A, < Ly,
Note that robustness against channel order underestimation is

isfies (13). We now prove that Assumption 3 is a necessary adltained by the fact that Assumption 3 can very well be satisfied
sufficient condition fos, to be uniquely determined by (13) (upfor A> < Lj.

to a complex scaling factor).

We first prove that Assumption 3 is a necessary conditioBVD of Yy, (k= A1, A1 +1, -,
Suppose that there exists a vectpin CY*¥ linearly indepen-

dent ofs; such that

S;'CLP
Xk

has a rank lower than + 1 for £ = A4y, 4; + 1,

andp =1, 2, -

actually ber). From (112), it is then clear that
siC;,p € row{Vi"} & s e row{V;"Cl

forp=1,2,..-, Pandk = Ay, A1 +1, -+, As.

This means that (13) is also satisfied &r

, P (due to Assumption 2, the rank WI|| then

Let us then assume additive noise is present. Calculating the
Ao) then leads to

Yy, = UV

where3:,, is a diagonal matrix (diagonal elements in descending
order) of the same size &5;, andU; and'V}, are square uni-
tary matrices. For an estimafeof the system order, let us
then define theX' x (K — #) matrix V7 as the collection of

the lastK — 7 columns oka and theK X 7 matrix VS as

the collection of the firs¢ columns ofVy. In correspondence
with the noiseless case, we then compute the left singular vector
of CJV" corresponding to the smallest singular value (noise-
subspace version of the proposed algorithm) or, equivalently
(see [9, Appendix A]), we then compute the left singular vector

We then prove that Assumption 3 is a sufficient conditioraf C;V* corresponding to the largest singular value (signal-
Suppose that there exists a veatpin CLXX linearly indepen- subspace version of the proposed algorithm), whéfeis the

dent ofs; such that (13) is also satisfied fgf. This means that APK x AP(K

s; erow{V;"Cll } & s/C; , e row{V;"}

forp=1,2,---, Pandk = Ay, A; +1, ---, As.
From (11), it is then clear that
e
Xk
has arank lower thant1fork = Ay, A1 +1, ---, Asandp =

1,2, -,
ber). This concludes the proof. [ |
Assumption 3 is satisfied if there exists an input mafXix
with 4; < k < A, such that
C;1
X

Cjr

— ) matrix, which is defined in a similar
fashion asv™ [see (15)] usrngVn instead ofVy, andV* is

the APK x AP+ matrix, which is defined in a similar fashion
asV? [see (16)] usingﬁfz instead oV} Note that ifK —# < 7,

the noise-subspace version is less complex than the signal-sub-
space version, whereashf — # > 7, it is the other way around.

The proposed deterministic blind source separation algorithm
is summarized in Table I. The corresponding parameter restric-
tions are summarized in Table II.

P (due to Assumption 2, the rank will then actuallya Fyrther Discussion

1) The effect of the additive noise ¥} and Vi can be
computed using the first order perturbation analysis [17].
The result can be used to derive a statistically optimal
weighting matrix. However, as demonstrated in [18] in a
somewhat different context, applying this weighting ma-
trix should be avoided.

2)
Xk
has a one-dimensional (1-D) left null space or, equivalently, has
rank K + Pr — 1. For random complex or real code sequences
and random complex or real data symbol sequences, this is thed)
case with probability 1 if

KP-1)>Pr—1

When we taker equal to the number of rows oY,

(* = (Q + 1)M), we can calculatd/} or V; from a
QR decomposition (QRD) [16] o¥. This results in a
significant complexity reduction.

Following a similar approach as in [19], where a
single-user system without coding is considered, and
[20], where a multiuser DS-CDMA system is considered,
it is also possible to derive a direct blind equalizer
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TABLE | RLS scheme. We therefore refer to [20], where a sim-

DETERMINISTIC BLIND SOURCE SEPARATION ALGORITHM ilar problem is discussed in the context of a multiuser
DS-CDMA system. To exploit the finite alphabet prop-

1. for k= Ay, A +1,..., Ay erty of the data symbols, [20] also describes a Viterbi

« compute the SVD of Yi: Yy = UpSVE algorithm, which can easily be adapted for the_ multiuger

system under consideration. Note that an interesting
Viterbi algorithm for a multiuser system employing
eif K -7 < linear block coding is introduced in [21] (see also [22]).

* collect the last K — # columns of Vy: V}c’

o estimate the system order r: 7

) B. Modifications for a Real Constellation
else:

When the data symbols belong to a real constellation, the re-

7 f Vi Vi . . L
* collect the first £ columns of Viy: Vi alness of the constellation can be exploited. When no coding is

2fK-F<F used, this is usually done by splitting the received sequence in

o construct V" (see (15)) and C; (see (14)) its real and imaginary part, hence doubling the number of obser-

o solve min{]|s;C;V7|}, s.t. [lsl|? =1 vations prior to any other opt_aration (see [1], [4], [9], and [23]).

% Here, we use a somewhat different approach.
else: When the data symbols belong to a real constellation and we
o construct V* (see (16)) and C; (see (14)) assume no additive noise is present, we can rewrite (13) as
o solve - max{|ls;C;V°’}, st [lsj|* =1 . ﬁ ﬁ - { [ R{VE} S{Vy } r
J _ <y s s
ke, p=1 S{Vit ®{Vi}
TRICs,} HCT |
TABLE I
PARAMETER RESTRICTIONS 1}
Ao r T
R{VEE SV
L Q<A <A< s: € row [ k k
= J ! U L_J _%{Vk} m{vk}
2. (Q+)M2r=(Q+1)JP+PY_Li=M>JP k=4, p=1
L
3 K>2r=Q+1)JP+PY_ L r
4 K(P-1)>Pr—1=P>2 [R{Ci S{C,]
17)

estimation algorithm that is related to the proposed direct L )

blind symbol estimation algorithm. A vector that satisfies (17) can be found by computing the left
4) Instead of working with the SVDs [or QRDsiif= (Q + singular vector of

1)M] of the (@ + 1)M x K output matrices from the set ny QYR

{Yk}fiAl, we could also follow the approach presented [R{C;} S{C;}] {_iizn% ;Riznﬂ

in [9] and [10] and work with the SVD [or QRD i =

(Q+1DHM]ofthe(Q+ 1)M x (K —Q — Jimin) output corresponding to the smallest singular value (which is equal to

matrix 0) or, equivalently (see [9, App. A]), by computing the left

- - singular vector of
y[Lmin] y[Lmin + 1] T Y[K - Q - 1] g

. . . . 29 . §R{Vs} %{Vs}
Y[f’min + Q] Y[f’min + Q + 1] T Y[K - 1] [§R{CJ} {CJ}] |:_3{VS} §R{V5}:|

wherel.... is an estimate of the minimal channel Ordegj)ﬂesponding to the largest singular value (which is equal to

L,;» smaller than or equal tbyy,;, (ﬁmm < Liyi,). How-

ever, when calculating the SVD [or QRDf = (Q + Letus th(_an |nt.roduce the foIIo/w_mg ?fﬁ,“f_“p“"”-_
1)M] of one output matrix from the s¢fY;};2 , and g Assumption 4:For any vectos; in R =™ linearly indepen-
calculating the SVDs [or QRDs if = (Q + 1) M] of the ent ofs;, there exists an input matriX with 4, < & < A,
other output matrices from that set using an adaptive S\ﬁpd a code matri;,, with 1 < p < P such that
algont_hm [or adaptlv_e QRD algonthmff:. (Q+1)M], $R(C;,) §/3{C;,}
there is not much difference in complexity between the Xy ) (X3}
approach we follow and the approach presented in [9] and _@{Xk} §R{Xk}
[10]. Moreover, the approach we follow lends itself better S S
to a possible adaptive implementation (see the next poirttas full row rank2r + 1.
5) The noise-subspace version of the proposed algorithmUsing this assumption, we have the following identifiability
can also be implemented in an adaptive way using aesult.
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Theorem 2:Under Assumptions 1 and 2, we can state thi BPSK modulation, M=4, N=1, J=1 and Q-1

(17) uniquely determines; (up to a real scaling factor) if and ' ' T grglposed algorithm
only if Assumption 4 is satisfied. TToTOTmessesormenemon) O S o )
Proof: The proof is similar as the proof of Theorem . - — scenario 2
Assumption 4 is satisfied if there exists an input mafXix E
with 4; < k£ < A, such that
[R{C;1p - ®{Cip} | S{Cin} - S{Cyp}]
R{Xx} S{Xx}
R{Xr} S{Xx} :
—3{X} R{Xx}
i _S{X, ) RIX,} | eSNR (dB)s 10 14

has a 1-D left null space or, equivalently, has rdak- 2Pr —
1. For random complex code sequences and random real
symbol sequences, this is the case with probability 1 if

Fig. 2. BER as afunction of the SNR for two different algorithms (convolutive
@%@e-user system, BPSK modulation, one transmit antenna).

K(2P-1)>2Pr—1 We next assume that 1[k] = 1 (no coding) and apply the
SSI algorithm presented in [19] (note that this SSI algorithm

Note that robustness against channelorderunderestimatioir"?i§Iightly different from the SSI algorithms presented in [9]

obtained by the fact that Assumption 4 can very well be satisfi@dd [10]). To exploit the reainess of the constellation, we split
for As < L;. the received sequence in its real and imaginary part. We only

considerr = » = 6.
Note that considering = » = 6 actually means that we know
thatL; = 4 (since we take&) = 1). Hence, scenario 2 maybe
We assume that the data symbol sequeregfi]}/_; are seems somewnhat artificial. However, the conclusions we draw
mutua"y independent and zero-mean white with variance 1. %m the simulations (See next paragraph) also hold when we
further assume that the additive noige§™ [n]}7_, are mutu- consider > = 6, in which case, scenario 2 does make sense.
ally independent and zero-mean white Gaussian with variancerig. 2 shows the BER as a function of the SNR for the two

which indicates that ang? > 1 can now be used.

V. SIMULATION RESULTS

o7. For simplicity, we also assume that algorithms. First of all, we see that if we use the correct channel
L; order, the performance of the proposed algorithm is much better

Z lles. o[KlI? = 1, forj=1,2,---,J than the performance of the SSI algorithm presented in [19].

k=0 Next, we observe that if we underestimate the channel order,
andp=1,2,---, P. the proposed algorithm still works, whereas the SSI algorithm

Using (2), the signal-to-noise ratio (SNR) for every user at tlpéesented in [19] does not.
input of the receiver can then be defined as

P . . . . .
SNR= —— In this subsection, we perform some simulations on an in-

M2’ .
. ) . e . ) stantaneous mixture/(= 4 andlL; = L, = Ly = Ly = 0).
For all simulations, we will conduct 2000 trials, using bursts Qfe consider BPSK modulation/ = 6 receive antennas, and
K = 100 data symbols. P =1 transmit antenna per user and take= 0 (temporal
smoothing has no use for an instantaneous mixture). Hence, we

_ ) ) _ can only examinei; = A, = 0 for every user. The condition
In this subsection, we perform some simulations on a CoRgmper ofG is 2.9238.

volutive single-.user system](_: landL, =4). We considgr We first assume thaty 1 [k], c2,1[k], cs.1[k], ande, 1 [k] are

B. Instantaneous Mixture

A. Convolutive Single-User System

antenna and tak@ = 1. We examine two scenarios. gorithm. To exploit the realness of the constellation, we use
1) Ay =-Q =-1landAy = L; = 4. the modifications discussed in Section 1V-B. We only consider
2)A1=—Q=—1andA2=0. P =7r =4.

The condition number of is 6.8907. We nextassume that 1[k] = c2,1[k] = c3,1[k] = ca,1[K] =

We first assume that; [k] is a random complex code se-1 (no coding) and apply the ILSP algorithm [1] and the RACMA
guence and apply the proposed algorithm. To exploit the realgorithm [4]. To exploit the realness of the constellation, we
ness of the constellation, we use the modifications discussedpiit the received sequence in its real and imaginary part. For
Section IV-B. We only considet = » = 6. the ILSP algorithm, we consider different numbers of random
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Fig. 3. Average BER per user as a function of the SNR for three differe
algorithms (instantaneous mixture, BPSK modulation, one transmit antenna
user).

jg. 4. Average BER per user as a function of the SNR (convolutive mixture,
t’rSK modulation, one transmit antenna per user).

Fig. 4 shows the average BER per user as a function of the SNR

initializations (one, two, and three random initializations). Fdor this setup.
the RACMA algorithm, we only considér= r = 4. We next consider QPSK modulatiop/ = 8 receive an-

Fig. 3 shows the average BER per user as a function of ttenas, and® = 2 transmit antennas per user and téke= 4.
SNR for the three algorithms. We observe that the performané& examine three scenarios.
of the ILSP algorithm strongly depends on the number of 1) 4, = —Q = —4and A4, = L, = 4 for the first user and
random initializations. We also see that for a small number of 4, = —(Q = —4 and A4, = L, = 2 for the second user.
random initializations and a high SNR, the ILSP algorithmmay 2) 4, = —Q = —4 andA; = L,,;, = 2 for every user.
not find the global minimum. The good performance of the 3) 4, = —Q = —4 and A, = 0 for every user.

ILSP algorithm (for a large number of random initializations,rhe condition number ofG is 15.1524. We assume that

and a low SNR) and the RACMA algorithm can be explained bé/ L[K], e2.1[K], e1.2[k], andes o[&] are random complex code

the fact that these two algorithms jointly det_ect aII_ tr_ansmitt 7quences and apply the proposed algorithm. We consider two
data symbol sequences and that they exploit the finite alpha, ghies off

property of the data symbols. Although the proposed algorithm
does not have these properties, its performance is fairly close ) r=r =32
to the performance of the ILSP algorithm (for a large number 2) 7 = (Q+1)M = 40.
of random initializations and a low SNR) and the RACMAFig. 5 shows the average BER per user as a function of the SNR
algorithm. for this setup.

We again observe that the proposed algorithm is robust
against channel order underestimation. Moreover, we see that

) ] ] ] _itis also fairly robust against system order overestimation.
Finally, we perform some simulations on a convolutive mix-

ture (/ =2,L; =4 andL, = 2).

We first consider BPSK modulatiof/ = 4 receive antennas, VI. CONCLUSIONS
and P = 1 transmit antenna per user and take= 4. We ex-
amine three scenarios.

C. Convolutive Mixture

We have presented a new simple deterministic blind source
i separation algorithm, which is based on modulating the same
1) A1 =-Q=-4andd; = L, = 4forthefirstuserand j,;, symbol sequence with different code sequences and trans-
A; = -Q = —4andA, = L, = 2 for the second user. mitting the resulting modulated data symbol sequences through
2) A1 =-Q = —4dandA; = Ly = 2 for every user. different antennas. The algorithm does not exploit the finite al-
3) A4 = -Q = —4andA, = 0 for every user. phabet property of the data symbols. As a result, no iterations are
The condition number of is 12.6795. We assume that 1 [k] required, and convergence is not an issue. Instantaneous mix-
andcs, 1 [k] are random complex code sequences and apply Hfiges (frequency-flat fading), as well as convolutive mixtures
proposed algorithm. To exploit the realness of the COnSte”atiqnequency-selective fading), can be handled. In the case of a
we use the modifications discussed in Section IV-B. We cogonvolutive mixture, the difficulties that occur when the users
sider two values of. have unequal channel orders are avoided. Moreover, the pro-
1) # = r = 16. posed algorithm is robust against channel order underestima-
2) = (Q@+1)M = 20. tion.
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QPSK modulation, M=8, N=2, J=2 and Q=4
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Fig. 5. Average BER per user as a function of the SNR (convolutive mixture,
QPSK modulation, two transmit antennas per user).
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