
2356 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 10, OCTOBER 1991 

Let us discuss the efficiency of the algorithm in the case of the 
second degree kernel contribution. The number of operations using 
(1) is proportional to 

Our derived algorithm requires in the case of one processor with 
FFT structure , 

N 2  + N 
2 

NO 5 ~ + N . [2  . [2N log, 2 N ] ]  

+ N * 2 N + 2 N l o g 2 2 N  (28) 

If we use N processors with FFT structure we get the efficiency 
operations. 

expressed by the number of operations of one processor as 

NO N + 2[2N log2 2 N ]  + 2N + 2 N  log, 2N.  (29) 

Comparing (28) and (27) one observes that the number of the op- 
erations required to calculate the contribution of the second degree 
kernel can be considerably reduced when we use the processor with 
FFT structure. Another enormous reduction of the necessary exe- 
cution time given by (29)  is possible through the use of a parallel 
architecture of processors. 

To estimate the efficiency of the described procedure we can 
continue in the same way also in the case of higher degree kernels. 
It is evident that the number of the required processors working in 
parallel to calculate the contribution of the k th  degree kernel is 

N 

NP = c i k - ’ .  
, = I  

Then the time to perform the calculation is given by (29) ,  i.e., the 
same as in the case of the second degree kernel. 

V.  CONCLUSION 

The derived algorithm of nonlinear digital filtering considerably 
reduces the execution time, which is achieved thanks to the follow- 
ing facts: 

1 )  We itemized the calculation process to independent subpro- 
cesses. It makes the use of a parallel SIMD architecture of proces- 
sors possible. 

2 )  The individual subprocesses represent the operations of linear 
convolutions (see (13)). One can apply to these subprocesses the 
well-known, today already classical, FFT method or any other from 
the variety of algorithms, which emphasize the speed as well as the 
precision of calculation. 

As regards the precise linear filtering methods we recall the usage 
of the number-theoretical transforms (Fermat, Mersenne) and the 
polynomial transforms [8]. 

The method presented in this correspondence demonstrates that 
the fast computation of the output signal of the digital filter is pos- 
sible not only in the case of linear systems but also in nonlinear 
systems, which is of great importance mainly in their real-time ap- 
plications. 
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Correction to “The PDF of Adaptive Beamforming 
Weights” 

Allan 0. Steinhardt 

In the above correspondence,’ on page 1233, (6) is missing, on 
the right-hand side, a factor of 

This missing phase factor eventually cancels and the final pub- 
lished pdf is correct as it stands. (Alternatively, one can absorb the 
missing phase into Q ,  whereupon Q is no longer Hermitian.) 
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Discrete Hartley Transform in Error Control Coding 

Ja-Ling Wu and Jiun Shiu 

Abstract-A new class of real-valued linear code obtained by using 
the discrete Hartley transform (DHT) is defined in this correspon- 
dence. We have derived the limitation on the choice of parity frequen- 
cies so as to define DHT codes with the cyclic-shift property. Then, by 
introducing the well-established encoding/decoding algorithm for 
cyclic codes in error control coding, we have constructed the en- 
coder/decoder for the DHT cyclic codes. 

I. INTRODUCTION 

As noticed by Marshall [ 11 in the theory of error control coding 
(ECC), an (N, K) linear code is simply a K dimensional subspace 
of an N dimensional vector space which is defined by the set of 
N-tuples over a field which is finite conventionally. It is possible, 
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d b d - a c O c a d b  d 
a -a -a a a -a -a a a -a -a 
c 0 C - a  d b d - a  c 0 c 
0 a - b  a 0 - a  b - a  0 a -b 
c - b  C - a  d 0 d a c b c 

-a a -a a -a a -a a -a a -a 
d 0 d - a  c - b  C - a  d 0 d 
b - a  0 a - b  a 0 - a  b - a  0 
d b d - a  c 0 c a d - b  d 

-a -a a a -a -a a a -a -a a 
c 0 C - a  d b d - a  c 0 c 
0 a b a 0 - a - b - a  0 a b - 

in spite of the common assumption of binary source codewords 
given in the theory of ECC, to define error control codes for real- 
valued data. 

Since the rows of an N-point discrete transform matrix are a set 
of N linearly independent vectors with N components, they form a 
basis of the N dimensional vector space over the infinite field of 
real numbers and any K rows of the matrix span a K dimensional 
subspace which is, by definition, an (N, K) linear code. According 
to such a methodology, two classes of real-valued linear codes using 
the Hadamard transform (HT) and the discrete Fourier transform 
(DFT) had been defined by Marshall in [ 11. In this correspondence, 
we use the discrete Hartley transform (DHT) to define a new class 
of real-valued linear codes DHT codes, and derive the cyclic-shift 
property of them which leads us to the condition for constructing 
cyclic DHT codes. 

11. DHT LINEAR CODES 
The DHT of a data sequence 

x = [XO, . XN-11 

is defined as [2] 

where 

27r 
N 

+(e) = cas - B. 

The N x N matrix in (2) is the so-called N-point DHT matrix. 
Select any K rows of the N-point DHT matrix, say j o ,  j , ,  * . . , 

jK -  I, as the rows of a K x N matrix G. Then G will be a matrix 
of rank K and will generate an (N, K) linear code [3]. The encoding 
procedure is the same as that described in [ 11. 

Let the (N - K) x N matrix H consist of the remaining (N - 
K) rows, say jK,  jK + ,, . . . jN -, which are called the parity frequen- 
cies. Because the DHT matrix is an orthonormal matrix [2], any 
two rows of it are orthogonal. Therefore, it is easy to verify that 

G H ~  = o 
G G ~  = 

where ZK is the Kth order identity matrix. 

matrix G T  is the right inverse of the generator matrix G. 
Thus, matrix H is the parity check matrix [3] of the code, and 

111. DHT-BASED CYCLIC CODES 
where cas t = cos t + sin t. 

Writing these N equations in matrix form, one gets By introducing a limitation on the selection of parity frequen- 
cies, we can define, via the DHT matrix, cyclic codes [3] which 
are linear code with the following cyclic-shift property: 

I f y = [ y o , y I ; * * , y N - , ] i s a c o d e v e c t o r , t h e n y ’  = [ Y N - ~ ,  
yo, y,, . ., YN-Z], a cyclic-shifted version of y ,  is also a code 
vector. 

Theorem (cyclic shift property of DHT codes): An (N, K )  DHT 
linear code is a cyclic code if and only if the following condition 
is satisfied: 

If “p” is a parity frequency, then “(N - p )  mod N ”  must be 
one of the parity frequencies. 

The proof of this theorem is given in the Appendix. Now we will 
construct a (16, 13) DHT code as a concrete example to clarify 
what we have done. 

By selecting rows 0, 1 ,  and 15 of a 16-point DHT matrix as the 
parity frequencies, we have the generator matrix G and parity check 
matrix H a s  follows: 

1 1  1 

1 +(N - 1) +(2(N - 1)) +((N - 

(2) 

generator matrix GI3 * 16 row - 
a b a 0 - a  
a c 0 C - a  
a a -a -a a 
a d - b  d a 
a 0 -a b -a 
a d 0 d - a  
a -a a -a a 
a c b c a  
a -b a 0 -a 
a c 0 C - a  
a -a -a a a 
a d - b  d a 
a 0 -a -b -a - 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

row 

:] a d 0 -d -a -c -b -c -a -d 0 d a c b 
a a a a a a a a a a a a a a a  
a c b c a d 0 - d - a - c - b - c - a - d  0 d 1 

b = 0.353553 
d = 0.135299. c = 0.326641 

where a = 0.25 
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- 
1 -a ’  a ’  -1 0 0 0 0 
0 1 - a ’  a ‘  - 1  0 0 0 
0 0 1 - a ’  a ’  - 1  0 0 
0 0 0 1 - a ’  a ’  - 1  0 
0 0 0 0 1 - a ’  a ’  - 1  
0 0 0 0 0 1 - a ’ a ‘  
0 0 0 0 0 0 1 - a ’  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
i 
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IV. CONCLUSIONS AND DISCUSSIONS 

We have defined a new class of real-valued linear codes called 
DHT codes by using the discrete Hartley transform (DHT). In or- 
der to construct DHT cyclic codes we have derived a restriction on 
the selection of parity frequencies. The generator matrix G has been 
transformed by some elementary row operations to get the equiv- 
alent codes which can be described by a generator polynomial g(x). 
The encoders and decoders are essentially IIR filters which imple- 
ment the divide-g(x) circuits. 

Since the proposed DHT codes have nearly the same parameters 
as the DFT codes defined in [ 11, the following question arises nat- 
urally: Whether the DHT codes have any advantages or disadvan- 
tages as compared with the DFT codes. In the following, our view 
to this question will be presented: 

1) The limitation on selection of parity frequencies of the DHT 
codes is equivalent to the symmetric index constraint of the DFT 
codes [ 1 J ,  which is required to form a real-number DFT code. Thus, 
the ranges of parameters permitted in both codes are the same. 

2) It was established in [ 1 J that real-number maximum distance 
separable DFT codes exist for all choices of parameters. Since there 
are not specific restrictions in the construction of the DHT codes, 
it follows that the DHT codes exist for all (N, K) and the codes 
can detect errors equal in number to the rank of G, the maximum 
permitted by the Singleton bound [3]. 

3) The dynamic range of the codewords and the encoding ac- 
curacy in the presence of noise provide an basis for comparing real- 
number codes. Generally speaking, the DHT codes will outperform 
the complex codes in these areas because only real arithmetics are 
involved for the former [2], [4]. 

4) In transform coding applications, there are many consecutive 
zeros above the cutoff frequency, due to the energy packing prop- 
erty of orthogonal discrete transforms [5] .  These consecutive zeros 
in the transform domain can be used for error control as suggested 
by the definition of transform-based real-number codes. Since the 

0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

- 1 0 0 0 0 0 0 0  
a ’ - 1  0 0 0 0 0 0 

- a ’  a ‘  - 1  0 0 0 0 0 
1 - a ’  a ’  - 1  0 0 0 0 
0 1 - a ’  a ‘  - 1  0 0 0 
0 0 1 - a ‘  a ’  - 1  0 0 
0 0 0 1 - a ’  a ’  -1 0 
0 0 0 0 1 - a ’  a ’  - 1  

DHT has better performance in the transform coding application 
than the DFT [ 6 ] ,  it is our belief that the DHT provides a good 
opportunity and a useful tool for unifying the problems of source 
coding and channel coding. 

APPENDIX 

In this Appendix we will prove the cyclic shift property of DHT 

Lemma- A. 1 : 
codes. Let us first take 4 lemmas. 

+(A!!) = 1 ,  f E Z .  

Lemma A .  2 : 

27rf 2rf  
+((i + Z)f) = cos - +(if) + sin - +(- i f ) .  N N 

Lemma A .  3 :  

27rif 
+(-i f)  = +(if) - 2 sin-. 

N 

Lemma A.4:  

N - l  27rif 
sin - = 0. 

i = O  N 

Now we are going to derive the necessaq limitation on the se- 
lection of a set of parity frequencies fK, fK+ * * . , fN- I to con- 
struct a DHT with cyclic-shift property, that is: 

a ,  yN - I ] is a code vector, then y’ = [ YN-  1 ,  

yo. y l ,  * . . , Y ~ - ~ ] ,  a cyclic-shifting version of y ,  is also a code 
vector. 

If y = [ yo, y I ,  * 

Since y is a code vector, there must be a K-tuple 

x = [XO, XI, . ’ * t  XK-11  

such that y = xG, or 
K -  1 

f i y i  = C x,+(if) ,  i = 0, 1, * ,  n - 1. (A.I) 
m = O  

And by the definition of syndrome vector [3], we have 

S = [So, SI, * e ,  S N - K - 1 1  = yHT = 0 
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or 
N- I 

1=0 

N- I 

1 = O  

f i s r  = Y i 6 ( i f K + r )  

= Y 1 6 ( @ r )  = 0, P r  = f K + r t  

r = O , I ; . - , N - K -  1 .  

(A .2 )  

The condition for y‘ to be a code vector is equivalent to that for S’ 
= y ’ H T  = 0, that is, 

N - 2  

f i S :  = Y N + I  + y,+((i  + l ) p , ) ,  by Lemma A . l  
1=0 

N- I 

= c y,+((i  + l ) p , ) ,  by Lemma A.2  
I = o  

2xp, N- I 2?rpr - ‘ 
= COS - ,C y i4( ip , )  + sin - C y i4 ( - ip r )  N I = O  N i = O  

by (A.2)  and Lemma A.3 

by (A.2)  and (A.1) 

Since x = [xo, xI, * . * , xK - I ] is an arbitrary K-tuple, the equation 
above will be zero only when the inner summation is zero. By this 
observation, we can derive further 

2sip,  
C 6(ifm) sin - 
N- I 

i = O  N 
N -  1 2?r& 2ripr N - l  2?r& 2?rip, 

= C cos - sin - + C sin - sin - 

2?ri(f, + pr )  N-’ 2ri(fm - P r )  

r = ~  N N I = O  N N 
N- I 

N 
- C sin 

+ C cos - C cos 

 sin 2 1=0 t = O  

N -  I 2?ri(f, - p , )  N - l  2Ti(f;+ Pr)] , 
1 = O  1 = O  

by Lemma A.4 

2?ri(fm - P , )  
N ‘  

cos - - - -  
2 r = O  

By Lemma A.4 ,  we know that the above equation will be zero if 

f m + P r = f m + f K + r  # O m d N  

forallm = 0, 1, . . 0 ,  K, r = 0,  1 ,  
that this condition is exactly equivalent to that in our theorem. 

* - ,  N - K - 1. It isobvious 
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Constrained Notch Filtering of Nonuniformly Spaced 
Samples for Enhancement of an Arbitrary Signal 

Corrupted by a Strong FM Interference 

Dov Wulich, Eugene I. Plotkin, and M. N. S.  Swamy 

Abstract-The novelty of the proposed method is based on exploring 
the concept of constrained notch filtering (CNF) as applied to any given 
arbitrary signal with time varying parameters. First, it is shown that 
any signal with a constant envelope such as FM may be transformed 
to a discrete sinusoidal one by applying nonuniform sampling strategy. 
Second, a signal buried under a strong FM interference is retrieved by 
applying CNF in the transformed time domain. The main assumption 
made is that there exists an auxiliary input which provides information 
about the instantaneous frequency of the interference. 

I. INTRODUCTION 

The problem of retrieving a signal from an additive mixture is 
of a general interest. It is made possible by the existence of some 
additional information about the signal and/or interference. The 
classical situation is where the signal and interference possess dif- 
ferent but known power spectral densities, leading to Wiener fil- 
tering. Another situation assumes that there exists an auxiliary in- 
put which is correlated with the interference and uncorrelated with 
the signal. This approach is related to the adaptive filtering first 
proposed by Widrow et al. [ l ] .  In such a case it is possible to 
retrieve the signal even if the interference is more powerful than 
the signal. There exists another approach, based on constrained 
adaptive notch filters (CANF), where sinusoidal signals are re- 
trieved in the presence of background noise [ 2 ] .  It has also been 
shown in [2 ]  that this approach can be used even if the frequencies 
of the sinusoidal signals vary slowly with time. 

In this correspondence we propose an algorithm for the retrieval 
of an arbitrary signal corrupted by a strong interference, which may 
be modeled by a sinusoidal signal with arbitrary frequency varia- 
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