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Blind Source Separation Using Second-Order
Cyclostationary Statistics

Karim Abed-Meraim, Yong Xiang, Jonathan H. Manton, and Yingbo Hua, Senior Member, IEEE

Abstract—This paper studies the blind source separation
(BSS) problem with the assumption that the source signals are
cyclostationary. Identifiability and separability criteria based on
second-order cyclostationary statistics (SOCS) alone are derived.
The identifiability condition is used to define an appropriate
contrast function. An iterative algorithm (ATH2) is derived to
minimize this contrast function. This algorithm separates the
sources even when they do not have distinct cycle frequencies.

I. INTRODUCTION

B LIND source separation has recently become an intense re-
search topic in many applications such as remote sensing,

speech processing, medical diagnosis, and wireless communica-
tions. It is motivated by practical scenarios which involve mul-
tisources and multisensors. A basic model for BSS is that of
statistically independent signals whose(possibly noisy) linear
combinations are observed. Given these observations, BSS aims
to estimate both the structure of the linear combinations and the
source signals. For BSS to be possible, something extra must
be known about the source signals. In this paper, the extra as-
sumption is that the source signals arecyclostationary[1]. This
assumption is reasonable since many man-made signals encoun-
tered in communications, telemetry, radar, and sonar systems are
cyclostationary. Other papers that perform BSS based on this as-
sumption include [2]–[5].

This paper restricts its attention to methods based on second-
order cyclostationary statistics (SOCS). It derives necessary and
sufficientconditions forsuccessfulBSSbasedonSOCSalone. It-
erative and noniterative optimization algorithms for BSS are de-
rived. Simulation results illustrate the validity of these methods.

This work can be seen as a new contribution above and be-
yond the contributions in [4]. More precisely and comparatively
to [4], we can say the following.

• Whereas [4] considers only a scalar signal, our paper con-
siders a vector of signals. This is a significant extension.

• Indeed, when considering a vector of signals, it is nec-
essary to perform source separation. Necessary and suf-
ficient conditions for being able to separate the sources
are given in our paper. These conditions cannot be derived
from [4].
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• Our paper presents methods for 1) recovering a single
source signal of interest and 2) simultaneously recovering
all signals. Since [4] considers only the scalar signal case,
it is not possible to derive a method for [4, Eq. (2)].

• Moreover, different “cost functions” are used in the two
papers. Roughly speaking, our paper finds the matrix that
whitens the cyclic correlations at various lags, whereas
[4] finds the vector that minimizes the least square error
between the signal and its cyclically shifted version.

The rest of this paper is organized as follows. Section II in-
dicates some definitions and introduces the problem of BSS to-
gether with relevant hypothesis. In Section III, a necessary and
sufficient condition for BSS using a set of cyclic correlation co-
efficients is given. Under this condition, two separation criteria
are introduced: first in the case of sources with distinct cycle fre-
quencies and then in the general case of sources sharing same
cycle frequencies. In Section IV, we consider the case where
only one or few signals are of interest. Condition for partial
identifiability, separation criteria, and new noniterative separa-
tion algorithms are given. In Section V, new iterative (and pos-
sibly adaptive) optimization algorithms for BSS using SOCS are
presented. These algorithms minimize a certain contrast func-
tion derived from the separation criteria of Section III using the
technique of natural gradient [10]. Simulation results and con-
cluding remarks are given in Sections VI and VII, respectively.

II. PROBLEM FORMULATION

Assume that source signals impinge on an array ofsen-
sors, where . The output of each sensor is modeled as a
weighted sum of the source signals corrupted by additive noise.
This can be expressed in vector form as follows:

Here, is the complexsource
vector, is the complexnoise
vector, is the unknown full column
rankmixing matrix, and the superscript denotes the transpose
of a vector. The source signal vector is modeled as a cy-
clostationary complex stochastic process. The component pro-
cesses , are assumed to be mutually indepen-
dent with zero mean. In particular, we assume that

if (1)

if (2)

(3)
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Here, , and denotes the time averaging operator
(see [1])

Furthermore, each is a nonzero cycle frequency of source
. The cyclic autocorrelation function is defined to be

and satisfies . The su-
perscript denotes complex conjugate, whereas the superscript

denotes the complex conjugate transpose of a vector. The ad-
ditive noise is modeled as a stationary complex random
process so that [1]

The output cyclic correlation matrix is defined to be

Under the above assumptions, the cyclic correlation matrices of
the array output take the following structure:

(4)

where the sum is over all sources with cycle frequency. In
particular, if all sources have distinct cycle frequencies, i.e.,

for , then only source contributes to
which becomes

(5)

The aim of blind source separation is to find an sep-
arating matrix such that is
an estimate of the source signals. Note that it is not possible
to uniquely identify the separating matrix (or, equivalently,
the mixing matrix ) because the exchange of a fixed scalar
between the source signal and the corresponding column of
leaves the observations unaffected. We take advantage of this in-
determination to assume that the emitter signals have unit-norm
zero-lag cyclic autocorrelation coefficients, i.e.,

(6)

In addition, thenumberingof signals with the same cycle fre-
quency is immaterial. The best that can be done then is to deter-
mine up to a permutation and scaling of its columns [6]. That
is, is a separating matrix if

where is a permutation matrix and a unitary diagonal ma-
trix. Note that if all sources have distinct cycle frequencies, then
the numbering of signals is possible according to the numbering
of the cycle frequencies. In this case,is a separating matrix if

for a given unitary diagonal matrix .

Remarks:

1) For simplicity, we have adopted here the definition of
second order cyclostationarity given in [1]. A more rig-
orous definition can be used as follows: A zero-mean
second order cyclostationary process is character-
ized by the property that its time-varying autocorrelation

varies periodically with re-
spect to time. Thus, it accepts a Fourier series represen-
tation, i.e.,

where the Fourier coefficients are called the cyclic
autocorrelation at cycle frequency, and

and

is called the cycle frequency set of . It is shown in [14]
that if is a mixing process, a consistent and asymp-
totically normal estimator of is given by (the time
averaging operator)

2) In this presentation, we have considered one cycle fre-
quency for each source signal. In practice, the sources’ en-
ergy may be distributed to more than one cycle frequency.
In that case, we can replace by a linear combi-
nation of cyclic correlation matrices that adds coherently1

the energy of the considered source over its different cycle
frequencies. Another possibility, is to use several cycle
frequencies (i.e., several cyclic correlation matrices) for
each source signal. The important point is that such data
preprocessing does not affect the algorithm derivations
given in the sequel.

3) The mutual independence of the sources expressed by (1)
is a fundamental condition for blind source separation. On
the other hand, conditions (2) and (3) are not necessary
and can be relaxed.

In fact, condition (2) is only used to select one partic-
ular source signal by selecting its corresponding cycle fre-
quency. The case where (2) is not satisfied is equivalent to
that where several sources share a same cycle frequency.
This case is treated in Theorems 2 and 4 of this paper.

Condition (3) is only used to constrain the separating
matrix output to have nonzero cyclic correlation coeffi-
cients. Thus, it can be replaced by the condition

(7)

which is always satisfied if is cyclostationary with
cycle frequency . For simplicity, we keep using (3) but

1For example, ifC denotes the cycle frequency set of sourcei and ifC \
C = ; for i 6= j, then we can coherently combine cyclic correlation ma-
trices according toR (�) = � R (�), where� is the largest
(nonzero) eigenvalue ofR (�).
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will indicate briefly in Sections IV and V how the pro-
posed algorithms are modified if we replace (3) with (7).

III. CONDITION FOR IDENTIFIABILITY

This section states and proves a necessary and sufficient con-
dition for blind source separation via second-order cyclosta-
tionary statistics of the array output. The definitions and nota-
tion in the previous section are used.

Recall that is the cyclic autocorrelation function of
the th source signal. For a given set of nonzero time lags

, the cyclic autocorrelation vector
is defined to be

The following is a necessary and sufficient condition for
BSS using only the cyclic correlation matrices

at time lags .
Identifiability Condition: For any , blind source sep-

aration can be achieved using the output cyclic correlation ma-
trices if and
only if there do not exist two distinct source signals and

whose cycle frequencies are the same ( ) and whose
cyclic autocorrelation vectorsand are linearly dependent.2

The sufficiency of the above condition follows from Theo-
rems 1 and 2 below. A proof of its necessity is now given.

Proof: Without loss of generality, assume that the source
vector is such that and . For any mixing
matrix , define another mixing matrix

, where

Similarly, define another source vector by
, where

Then, it is readily verified that the output vectors
and have the same cyclic

correlation matrices at time lags as well as the
source vectors and .

The following theorem gives a separation criterion for when
the source vector has distinct cycle frequencies.

Theorem 1: Assume that the cycle frequencies of the source
signals are distinct. For any matrix, define to be the
vector given by . In addition, define its cyclic

cross-correlation . Then, is
a separating matrix if and only if

and (8)

for all .

2Note that with the scaling convention (6),��� and��� are linearly dependent
iff ��� = ��� .

Proof: Define so that
. It follows from the mutual independence of

the source signals and the stationarity of that
. Because is a separating matrix if and only if

is a unitary diagonal matrix, it is sufficient to show that (8) is
equivalent to being unitary and diagonal. This readily follows
from the fact that for all . In particular, if is
unitary and diagonal, then for all , and

if . This implies (8). Conversely, if (8) is true,
then , and for all , that is, is unitary
and diagonal.

Theorem 2 is a generalization of Theorem 1.
Theorem 2: Assume that the identifiability condition is satis-

fied, that is, if , then , and are linearly independent.
Then, is a separating matrix if and only if

and (9)

for all and .
Proof: We extend the proof of Theorem 1. Recall

that . Write it as . Consider
any source . Let be all the sources (including
) with the same cyclic frequency as source. Define

as the corresponding column
vectors of i.e., , and

where the last equality comes from (4). The superscriptde-
notes the complex conjugate transpose of a matrix. Using these
matrix notations, (9) leads to

Otherwise, is unitary (and thus, in particular, is full
column rank), and

is diagonal for

We can then conclude that , where is a permutation
matrix, and , where is an unitary
diagonal matrix by using [6, Th. 2].

Iterative algorithms based on the criteria in Theorems 1 and
2 are derived in Section V.

IV. CONDITIONS FORPARTIAL IDENTIFIABILITY

The identifiability condition in the previous section assumes
that all the source signals are to be separated. This section gen-
eralizes the results of the previous section to when only certain
sources are to be separated. Furthermore, explicit formulae are
given for determining the separation matrix.

We first assume that the source signals have distinct cycle fre-
quencies. Let be an vector. Analogously to Theorem 1,
it can be shown that the scalar random variable
is an estimate of [that is, for some
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unit-norm scalar ] if and only if the following two conditions
hold:

(10)

(11)

This leads to the following theorem for separating a single
source signal when each source has a distinct cycle frequency.

Theorem 3: Define the vector , where
is the conjugate transpose of , and

is the pseudo-inverse of an square root of
. The vector is the least eigenvector

of , where .
Then, separates source, that is, is an
estimate of .

Proof: We seek a solution to (10) and (11). Observe that
(10) and (11) are equivalent to

and

Therefore, if we define the vector , the
problem becomes

and

whose solution is given by the least eigenvector of
.

We now consider the general case where we permit the source
signals to have common cycle frequencies. The following no-
tation is used. Assume there aredistinct cycle frequencies

and for each, there are precisely source signals
with cycle frequency . (Clearly, .) We write

, where each vector contains
the source signals with cycle frequency. Similarly, we par-
tition the mixing matrix as .

The following result is an extension of Theorem 2 and can be
proved in a similar fashion. Let be a
random vector satisfying

(12)

(13)

is diagonal (14)

for . Then, is an estimate of [that is,
, where is a permutation matrix, and

a nonsingular diagonal matrix]. This leads to the following gen-
eralization of Theorem 3 for separating sources with a common
cycle frequency.

Theorem 4: Define the matrix ,
where is defined as in Theorem 3, is an
matrix whose column vectors form an orthogonal basis of
Ker , where
, and is a unitary matrix that jointly diago-

nalizes3 the matrices for , where

, and
. Then, separates out the source signals with

common cycle frequency , that is, is an
estimate of .

Proof: We seek to solve (12)–(14). Observe that (12) and
(13) are equivalent to

and

Therefore, if we define the matrix , the
problem becomes

and

This shows that can be taken to be any orthogonal basis
of Ker . should be chosen to satisfy
(14). In other words, is a unitary matrix that joint diago-
nalizes [i.e., such that are diagonal] for

.
Remarks:

1) The number of sources can be estimated as the number
of nonzero eigenvalues of , e.g., [11]. Similarly, the
number of sources with cycle frequency can be esti-
mated as the dimension of the kernel of .

2) In the case where (2) is not satisfied, we replace (11)
by . As a consequence, the con-
straints and are replaced4 by

and , respectively,
where denotes the matrix of the principal left
singular eigenvectors of . Using the new constraints, the
separating vector and the separating matrix are ob-
tained by replacing in their respective expressions
by , i.e., and .

V. IMPLEMENTATION

The algorithmic implementations of Theorems 3 and 4 can
be obtained easily from the theorems themselves. This section
derives an iterative optimization algorithm based on Theorem
2. An implementation of Theorem 1 follows readily from this
because Theorem 1 is essentially Theorem 2 with .

Based on Theorem 2, we define the following contrast func-
tion [12]:

(15)

where . Note that other contrast functions are possible;
turns out to be a convenient choice. The separation crite-

rion of Theorem 2 takes the form

is a separating matrix (16)

3An efficient joint diagonalization algorithm is presented in [6].
4The proof is similar to that of Theorems 3 and 4 and thus is omitted for

simplicity.



698 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001

where . The following method of solving
was inspired by [7]. It is a block algorithm based

on the natural gradient technique [10]. Solutions are obtained
iteratively in the form

(17)

(18)

At iteration , the matrix is determined
from a local linearization of . It is an approximate
Newton technique with the benefit that is simple to com-
pute (no Hessian inversion) under the additional assumption that

is close to a separating matrix. The derivation of is now
given.

At the th iteration, we approximate

by its sample estimate

(19)

where is the number of observations. When , by using
(18), we have

By assumption, is close to being a separating matrix. This
implies that the following terms are negligible: ,

for , and
for . A first-order approximation

of is thus given by

(20)

When , is chosen to be the solution of the following
least squares (LS) minimization problem obtained by substi-
tuting (20) into (15)

where

(21)

(22)

Here, and denote the real and imaginary parts of
the complex variable . The solution of the LS minimization
problem is

(23)

where the superscript denotes the pseudo-inverse of a matrix.
Similarly, for , we obtain

(24)

When , we can further simplify (20) by using the
fact that . The approximation

becomes . Substituting this
into (15) leads to

(25)

In summary, the iterative algorithm for Theorem 2 is as fol-
lows. Use (19) to compute defined in (22). Compute the
diagonal elements of the matrix by (24) and the off-diag-
onal elements by (23) if or by (25) if . Finally,
update and by (17) and (18).

The iterative algorithm for Theorem 1 is the same as for The-
orem 2 with the simplification that the off-diagonal elements are
computed by

(26)

Remarks:

1) Adaptive versions of the above algorithms for Theorems 1
and 2 can be derived following the approaches presented
in [8], [9], and [13].

2) Similarly to the previous algorithms, we can generalize
the iterative algorithm to the case where (3) is not satis-
fied. In that case, we replace in (8) and (9) by

, which leads to the same updating equations
(17)–(26) except that (24) is replaced by

VI. NUMERICAL SIMULATIONS

This section presents simulation results for the four algo-
rithms derived from Theorems 1 to 4. These algorithms are, re-
spectively, called ATH1, ATH2, ATH3, and ATH4 for conve-
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Fig. 1. Performance of ATH1 versus SNR.

Fig. 2. Performance of ATH1 versus sample size (SNR= 0 dB).

Fig. 3. Performance of ATH1 versus iterations for different initiations ofB,
where SNR= 25 dB.

Fig. 4. Performance of ATH3 versus SNR.

Fig. 5. Performance of ATH2 versus SNR.

nience. The performance of each algorithm is measured by its
“mean rejection level” performance index [6] defined as

It is estimated by averaging 100 independent trials. Each simu-
lation is based on the following model. A five-element (
) uniform linear array with half wavelength sensor spacing

receives two signals ( ) in the presence of stationary
complex temporally white but spatially colored noise. The two
signals are first-order autoregressive Gaussian processes [with
coefficients and ]
modulated by sinusoids and , respectively. The
sources are thus cyclostationary with cycle frequenciesand

(see [1]). The sources arrive from the directions
and . The snapshot size is samples. The
signal-to-noise ratio (SNR) is defined as SNR ,
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Fig. 6. Performance of ATH4 versus SNR.

Fig. 7. Performance of ATH2 versus delays (lags), where SNR= 0 dB.

where is the noise variance. The noise covariance is assumed
to be of the form , where is given
by .

Example 1: The cycle frequencies of the two sources are
and . Figs. 1–3 show the

mean rejection levels of ATH1 against, respectively, the SNR,
the sample size, and the number of iterations. It is clear from
Fig. 1 that ATH1 performs well at moderate and high SNRs.
Fig. 2 shows that as is to be expected, the greater the number
of samples, the smaller the rejection level. Each of the three
traces in Fig. 3 corresponds to a different initialization scheme
for the separating matrix . The solid line represents the case
when is a random matrix. The dashed line corresponds to

, where and are the eigenvector ma-
trix and diagonal eigenvalue matrix of the autocorrelation ma-
trix of the array output. The circles correspond to the choice

, where denotes a small perturbation ma-
trix.5 The figure shows the robustness of ATH1 to different .

The performance of ATH3 against SNR is shown in Fig. 4.
Simulation results of ATH3 are similar to those of ATH1.

Example 2: The cycle frequencies of the two sources are
. Figs. 5 and 6 show the mean rejection levels

of ATH2 and ATH4 versus SNR. The number of time lags used
was . Both ATH2 and ATH4 achieve good separation
performance for moderate to high SNRs. Fig. 7 shows the per-
formance gain caused by increasing the number of lags. We
have found experimentally that the gain in performance is most
notable in difficult environments such as poor SNR, small spec-
tral difference, ill-conditioned mixture matrix, etc.

VII. CONCLUSION

This paper studied the blind source separation (BSS) problem
with the assumption that the source signals are cyclostationary.
Identifiability and separability criteria based on second-order
cyclostationary statistics (SOCS) alone were derived. The iden-
tifiability condition was used to define an appropriate contrast
function. An iterative algorithm (ATH2) was derived to mini-
mize this contrast function. This algorithm separates the sources
even when they do not have distinct cycle frequencies. If the
cycle frequencies are distinct, then ATH2 simplifies to ATH1.
Because these algorithms separate all the source signals they
may be inefficient if only a small number of sources are of in-
terest. A noniterative algorithm (ATH4) is derived to separate
only those sources of a particular cycle frequency. When all
source signals have distinct cycle frequencies, ATH4 simplifies
to ATH3. Simulation results showed the performance of these
BSS algorithms.
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