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Spectral Arrangement and other Topics in First-Order
Bandpass Sampling Theory

Jianhua Liu, Xiyuan Zhou, and Yingning Peng

Abstract—A problem of first-order bandpass sampling is that the
indifferent disposition of the baseband spectrum may cause inconvenience
in practical applications. To overcome it, we modify the first-order
bandpass sampling theory according to the spectral arrangement of the
sampled signal. We consider two situations on the arrangement of the
shifted replicas of the bandpass signal spectrum: the normal and the
inverse placement of the spectrum. The positive spectrum of the bandpass
signal is placed in the lowest positive part of the sampled signal in the
normal placement situation and in the lowest negative part in the inverse
situation. The sampling frequencies are formulated in a cluster of lower
and upper bounds in both situations, and robust sampling frequencies are
given. Topics of the modified theory related to applications are addressed.

Index Terms—Bandpass signals, first-order sampling, sampling theory.

I. INTRODUCTION

Bandpass signals are frequently encountered in theoretical research
and engineering, and the first-order sampling theory of bandpass sig-
nals has drawn considerable interest in a variety of areas such as com-
munications, radar, sonar, measurement, optics, etc.

A real bandpass signalf(t) can be defined as follows. Let the real
positive numbers!C and2!B satisfying!C � !B represent the cen-
tral frequency and bandwidth of the bandpass signalf(t), respectively,
and let!L = !C�!B and!U = !C+!B denote the lower and upper
cutoff frequencies, respectively. Assume thatS(!) is the spectrum of
a baseband complex signals(t) that satisfies

jS(!)j = 0; 8j!j � !B: (1)

The spectrum off(t) is defined as

F (!) = S(! � !C) + S�(�! � !C) (2)

as shown in Fig. 1(a), where(�)� stands for complex conjugate.
The band position is defined as!L normalized by2!B . A special

case is integer band positioning that occurs when!L and2!B satisfies
!L = 2c!B for c = 0; 1; 2; � � �. It is obvious thatc = 0 is the lowpass
case, and hence, the lowpass signal is just a special case of a bandpass
signal.

First-order sampling is characterized by a uniform sampling interval;
it is different from the second-order sampling [1] and other nonuniform
sampling [2]. Kohlenberg [1] showed that for first-order sampling, the
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Nyquist criterion!S � 2!U (where!S is the sampling frequency)
[3] only holds for the equality in the case of integer band positioning,
and for other cases, the criterion can be attained only by nonuniform
sampling.

Several text books, such as [4], state that for general cases, the min-
imum sampling frequency is

!S =
2!U
!U
2!B

(3)

wherebxc stands for the largest integer not bigger thanx.
Actually, (3) only gives the lowest sampling frequency, and aliasing

may occur for higher sampling frequencies. Gaskell [5] modified (3) to
yield the range of sampling frequencies for which no aliasing occurs

2!U
n

� !S �
2!L
n� 1

(4)

wheren is an integer given by1 � n � !U=(2!B).
Although the aliasing problem is solved perfectly in (4), the indif-

ferent disposition of the baseband spectrum may cause inconvenience
in practical applications such as digital demodulation of single side-
band (SSB) signal because the placement of the baseband spectrum
may be inverted. We have therefore modified the sampling conditions
for obtaining the normal and inverse spectral placement situation in [6].
The essence of our former results are presented here.

Vaughanet al.[7] noted that frequencies satisfying the equality in (4)
exhibit high sensitivity to change and improved the theorem of Gaskell
by adding a guardband to make the sampling more robust. They also
suggested obtaining the sampling frequency as

!S =
!U
n

+
!L

n� 1
(5)

to increase the robustness.
Equation (5) implies asymmetric sampling frequency tolerances pro-

vided that the guardbands are symmetric. We propose robust sampling
frequency formulas in the above mentioned two cases to guarantee
symmetric sampling frequency tolerances in the case of symmetric
filter stopband attenuation.

In addition, several important topics of the modified first-order band-
pass sampling theory related to applications such as phase-difference
extraction, effect of time delay, and effect of the sampling stability are
addressed.

II. THEORY OFFIRST-ORDER BANDPASSSAMPLING

Demodulating theory of first-order bandpass sampling is modified in
this section based on the observation that the sampled baseband signal
may have two kinds of spectral structure according to the sampling
frequency chosen.

A. First-Order Sampling

First-order sampling of a bandpass signalf(t) is implemented by
multiplying f(t) by a periodic train of uniform impulses�T (t) with
intervalT (the sampling interval). LettingfS(t) andFS(!) stand for
the sampled (discrete) signal and its spectrum, respectively, we have

fS(t) =

1

k=�1

f(t) � �(t� kT ) (6)
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Fig. 1. Spectrum of signals. (a) Bandpass signal. (b) Sampled signal of normal spectral placement. (c) Sampled signal of inverse spectral placement.

and

FS(!) =
1

T

1

n=�1

F (! � n!S): (7)

We can see from (7) thatFS(!) consists of replicas ofF (!) shifted
by n!S , wheren = 0;�1;�2; � � �1 To demodulate correctly from
FS(!), it is essential that there is no aliasing inFS(!). AsF (!) has
two separated parts of spectrum,FS(!) must be an ordered placement
of F (!), i.e., the positive and negative parts ofF (! � n!S), n = 0,
�1,�2; � � � should be placed on the! axis alternatively.

B. Spectral Placement

In many cases, the signal of interest obtained by first-order sampling
of a bandpass signal is the signal associated with the pair of the lowest
spectral bands as shown in the dashed-lined box in Fig. 1(b) and (c).

If the sampled signal is required to possess the same spectral struc-
ture as the bandpass signal, the positive spectrum of the bandpass signal
should be placed in the lowest positive part, as shown in Fig. 1(b). We
call this situation the normal spectral placement.

In some circumstances, it is not necessary for the sampled signal
to possess the same spectral structure as the bandpass signal; in this
case, the positive spectrum of the bandpass signal can be placed in
the lowest negative part, as shown in Fig. 1(c). We call it the inverse
spectral placement.

The inverse spectral placement is necessary in some practical situa-
tion, for example, when the bandpass signal possesses the inverse spec-
tral structure after processing in an intermediate frequency (IF) stage.

The ranges of sampling frequencies that guarantee that no aliasing
occurs can be obtained from (4) by requiringn to be odd for normal
spectral placement and even for inverse spectral placement. To high-
light the fact that we have normal and inverse placement of the base-
band spectrum, we give a complete derivation of sampling frequencies
below.

1A positiven means right shift, and a negative one means left.

C. Sampling Frequencies for Normal Placement

As the positive and negative parts of the bandpass signal spectrum
should be placed alternatively when sampled, the necessary condition
to avoid aliasing is that the maximum numberm of the positive spec-
trum of the bandpass signal placed in the interval[0; !C �!B ] should
be limited as

m =
!C � !B

4!B
: (8)

When the integern (we call it frequency shift coefficient) satisfies
0 � n � m, thenth left shift of the positive spectrum ofF (!) can
be placed in the lowest positive part of the sampled signal. Because
of the periodicity ofFS(!), the aliasing will occur periodically if the
sampling frequency is not carefully selected. To avoid the aliasing in
the case of normal spectral placement, the upper limit of the sampling
frequency is determined by locating the2nth left shift of the positive
spectrum ofF (!) to the right side of the negative part ofF (!)without
aliasing

(!C � 2n!S)� (�!C) � 2!B:

Thus, we have

!S �
!C � !B

n
(9)

and the lower limit of the sampling frequency is determined by locating
the2n+ 1th left shift of the positive spectrum ofF (!) to the left side
of the negative part ofF (!) without aliasing

(�!C)� (!C � (2n+ 1)!S) � 2!B

and we have

!S �
2(!C + !B)

2n+ 1
: (10)

Therefore, the available range of the sampling frequencies is

2(!C + !B)

2n+ 1
� !S �

!C � !B

n
: (11)
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As we know, the practical bandpass filters do not have infinite stop-
band attenuation; therefore, to reduce the aliasing to the minimum and
to overcome the problem of asymmetric sampling frequency tolerances
in the case of symmetric stopband attenuation on the two sides of the
bandpass filter in (5), the robust sampling frequency should be chosen
to put the negative spectrum ofF (!) in the center of the2nth and
2n + 1th left shift of the positive one

(!C � 2n!S) + (!C � (2n+ 1)!S) = �2!C

which means

!S =
4!C

4n+ 1
: (12)

The allowed areas of sampling frequencies determined by (11) and
the robust sampling frequencies determined by (12) are shown in
Fig. 2(a).

D. Sampling Frequencies for Inverse Placement

Similar to the situation of normal spectral placement, the necessary
condition to avoid aliasing in the case of inverse spectral placement is
that the maximum numberm of the positive spectrum of the bandpass
signal placed in the interval[0; !C + !B ] should be limited as

m =
!C + !B

4!B
: (13)

When the frequency shift coefficientn satisfies1 � n � m, thenth
left shift of the positive spectrum ofF (!) can be placed in the lowest
negative part of the sampled signal. To avoid the aliasing in the case of
the inverse spectral placement, the2nth and2n � 1th left shift of the
positive spectrum ofF (!) should be located without any aliasing at
the left and right side of the negative spectrum ofF (!), respectively,
as

(�!C)� (!C � 2n!S) � 2!B

(!C � (2n� 1)!S)� (�!C) � 2!B:

Therefore, the available range of the sampling frequency is

!C + !B

n
� !S �

2(!C � !B)

2n� 1
: (14)

As above, the most robust sampling frequency can be obtained by
putting the negative spectrum ofF (!) in the center of the2n � 1th
and2nth left shift of the positive one

(!C � (2n� 1)!S) + (!C � 2n!S) = �2!C

that is

!S =
4!C

4n� 1
: (15)

The allowed areas of sampling frequencies determined by (14) and
the robust sampling frequencies determined by (15) are shown in
Fig. 2(b).

III. OTHER TOPICS OF THESAMPLING THEORY

We address several important topics of the modified first-order band-
pass sampling theory related to applications such as phase-difference
extraction, effect of time delay, and effect of the sampling stability in
this section.

Fig. 2. Allowed areas of the sampling frequencies (dotted areas) and the robust
sampling frequencies (thin lines). (a) Case of normal spectral placement. (b)
Case of inverse spectral placement.

A. Phase-Difference Extraction

Consider two bandpass signalsf(t) andg(t) with spectrum

F (!) = S1(!� !C) + S
�

1 (�! � !C)

G(!) = S2(!� !C) + S
�

2 (�! � !C)

respectively, whereS1(!) andS2(!) satisfy (1). Because of the con-
jugate symmetry, we may consider only the positive spectrum of the
signal to calculate the phase difference. The phase difference between
f(t) andg(t) is

�(!) = arctanF (!)G�(!); ! 2 [!L; !U ]: (16)

In the case of normal spectral placement, the phase difference be-
tween the sampled baseband signal is

�P (!) = arctanS1(! � !C � n!S)S
�

2 (! � !C � n!S);

! 2 [!L � n!S ; !U � n!S ]: (17)
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While in the case of inverse placement, the phase difference between
the sampled baseband signal is

�I(!) = � arctanS1(�! � !C + n!S)S
�

2 (�! � !C + n!S)

! 2 [n!S � !U ; n!S � !L]: (18)

From the above equations, we know that�P is the same as� and that
�I is the inverse of�.

B. Effect of Time Delay

Obviously, the effect of time delay only exists in the phase. As above,
we may consider only the positive spectrum of the bandpass signal to
determine the effect. Supposef(t) is a bandpass signal with spectrum
defined by (2) andg(t) = f(t� � ). The positive spectra off(t) and
g(t) are

F (!) = S(! � !C) (19)

G(!) = S(! � !C)e
�j!�

: (20)

In the case of normal spectral placement, the lowest positive spectra
of the sampled signals are

F0(!) = S(! � !C + n!S) (21)

G0(!) = S(! � !C + n!S)e
�j(!+n! )� (22)

where

! 2 [!C � !B � n!S ; !C � !B � n!S ]:

Hence, the phase-difference between the sampled signals is

�P = arctanF0(!)G
�

0(!) = (! + n!S)�

! 2 [!L � n!S ; !U � n!S ]: (23)

In the case of inverse spectral placement, the lowest negative spectra
of the sampled signals are the same as (21) and (22), and hence, the
phase difference is

�I = �(! + n!S)�; ! 2 [!L � n!S ; !U � n!S ]: (24)

It should be noted that the ranges of! in (23) and (24) are not the
same because the sampling frequencies are different in the two cases.

Equations (23) and (24) are especially useful in the case of delayed
sampling, which may occur in sampling several bandpass signals using
one A/D or obtaining the desired phase shift for beamforming by con-
trolling the sampling delay [8].

C. Effect of Sampling Stability

Vaughanet al.analyzed the effect of sampling stability thoroughly.
We add a result of the effect of sampling stability on the precision of
frequency analysis.

From the derivation of (11) and (14), we can see that an error�!S
on the sampling frequency will cause a total drift of

�! = n�!S (25)

in the lowest pair of spectrum of the sampled signal. This means that the
analyzing error of the sampled baseband signal isn times the sampling
oscillator perturbance.

IV. CONCLUDING REMARKS

Demodulating theory of first-order bandpass sampling is modified
in this correspondence based on the observation that the sampled
baseband signal may have two kinds of spectral arrangement, i.e.,
the normal spectral placement and the inverse spectral placement,
according to the sampling frequency chosen. The robust sampling is
improved to have the same sampling frequency tolerances in two sides
of the guardband.

In addition, we addressed several important topics of the modified
first-order bandpass sampling theory related to applications such as
phase-difference extraction, effect of time delay, and effect of the sam-
pling stability in the context.
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