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Matrix CRLB Scaling Due to Measurements of
Uncertain Origin
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Abstract—n many estimation situations, measurements are of in which& denotes expectation parametrizedsoyhen, under

uncertain origin. This is best exemplified by the target-tracking  fairly broad regularity conditions, the CRLB has it that
situation in which at each scan (of a radar, sonar, or electro-optical

sensor), a humber of measurements are obtained, and it is not N N T -1

known which, if any, of these is target originated. The source HEZ) —x]x(Z) -x"} = J @
of extraneous measurements can be false alarms—especially in. .
low-SNR situations that force the detector at the end of the signal 1N Which

processing chain to operate with a reduced threshold—or spu-

rious targets. In several earlier papers, the surprising observation J = &{[V,log(p(Z;x))][Vs log(p(Z; x)]*} ©))
was made that the Cramér—Rao lower bound (CRLB) for the

estimation of a fixed parameter vector (e.g., initial position and is Fisher’'s information matrix. Again, under broad regularity

velocity) that characterizes the target motion, for the special case cgnditions. if a maximum-likelihood estimator (MLE) farex-
of multidimensional measurements in the presence of additive ists, then it achieves the CRLB asymptotically.

white Gaussian noise, is simply a multiple of that for the case with

no uncertainty. That is, there is a scalarinformation-reduction . o

factor; this is particularly useful as it allows comparison in terms  B. Measurements of Uncertain Origin

of a scalar. In this paper, we explore this resuit to determine how 1o yaneral multiparameter CRLB s fairly standard: let us

wide the class of such problems is. It turns out to include many . .

non-Gaussian situations. Simulations corroborate the analysis. ~ NOW turn to the case of particular interest: that of measurement
origin uncertainty. Without loss of generality, we define the ag-

l. INTRODUCTION gregate observation from time 1 to tirfié

A. Multiparameter CRLB Z={Z(1),2(2), -, Z(T)} (4)

N many estimation problems, one is faced with the problem . L
that one’s data is of uncertain origin. For example, in the which thetth observation is
target-tracking situation, the data set may consist of “hits” Z(t) = {z;(£)}™ )
(threshold exceedances) indicative of a target’'s presence in a ) Ti=1
particular location at a particular time; however, hits may be @heaning that there are, individual observations that comprise
spurious origin (that is, they afalse alarm$, and indeed, it ;.
may be that the true target is unrepresented in the data Set gh the target tracking scenari@t) is comprised of all ob-
the time in question (anissed detectignAt issue is how well seryations collected at timte and these observations can be all
one can estimate a fixed parameter or parameter vector thke alarms (the detection from the target has been missed) or
characterizes target motion given such uncertainty. can contain exactly one true detection énd — 1) false alarms.

The measure in which we are interested is, not unnaturalfy, thjs sjtuation, it is common to assume that-) is uniform
the mean-squared error (MSE) of the estimate. The classiggkr the observation volume (or gated volume), pg(;) is in-

result for this is known as the Cramér—Rao lower bound (CRL%lapendent ok, and that the number of false-alarms is Poisson,
(e.g., [12], [15]). Let us assume access to an observatitat meaning that (valid forn, > 1)

has probability density function (pdf)Z; x), meaning that the

pdf depends on a parameter vecioto be estimated. Let us _ P (AV)mee=AY P AV (D =AY
assume the existence of anbiasedestimatorx(Z), meaning plme) = (1 = Fa) m,! T4 (my — 1)!
that we have P )\V)(mt—Ue— AV

E{x(Z)} = x (1) e e

are, respectively, tha priori probability that there are, (e
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Althoughm, is, of course, known to the estimator, to computi which
the MSE, it is necessary to average over the possible values of
m.. We further assume that 3, = E{(Va loglp(Z(£); 0)))(Va log[p(Z(1); DT} (9)
Further, since the number of observations is known to the
estimator, we also have

T Jo= " p(m)E{(Veloglp(Z(t);x)))
= L[l <n§=:0p(mt)[]3(2(t)|mt, all false X) . (tvm 10g[p(Z(t); X)])T|mt}
-p(allfalsgm) | = 3 pm)E{(Valoglp({z:(t)}21:%)])
+ p(Z(t)|m+, one true detectiarx) m,=1
.p(one true detectigm,)]) (Ve logp({z:(O)} 20D}
- ﬁ < i p(m) [(1 — e(my)) - le(mt)Jt(mt) (10)
_t;z{ m(tgomt lall false x) in which one should note that the, = 0 term, corresponding
Zj\l)sj=1 X

to the lack of a target-generated measurement, naturally has no
contribution. In the above equation

Ji(me) = E{(Vzloglp({zi(H) }; 21 x)])

my

Am my
+> (T:)P({Zj(t), " |zs(t)from target
i=1

all others clutterx)]) (Vg logp({zi ()} =)'} (11)
g M reflects estimation efficiency at a particular tiréor a partic-
= H Z p(me) H po(z;(t)) ular number of observations;. We have the probability density
t=1 \m= j=1 function of them, observations at timg parametrized by

my

Hpo(zvt(t))] [(1 —e(my))

7 my
" (i) 25 py(m(8) = ()
+ > . (12)
which requires some explanation. First, we assume that condi- my po(zi(t))
tioned onx, {Z(1),---,Z(T)} are independent. Second, we | 19] and [11], a surprising result was obtained. Under

have assumed that given, observations that comprisé(t),
any ofm, + 1 events are possible: Either all, observations
{z;(t)};2, are distributed according ta(-) (which does not
depend orx), or exactly oneof these is distributed according
to p1(-) (whichdoesdepend orx), whereas the rest remain dis- Ji(my) = 5(Py, A\V)J} (13)
tributed according tpq(-), with each of these, events equally ) o )

likely.: Regardless of which event is true, afl, observations wherex is a scalar less than unity (in the literature usually de-

are independent given that event. Third, we have written the dwted ‘g,” for historical reasons), and

the target-tracking assumptions above and further assuming
a Gaussian model for the true-observation pdf-), it was
shown that

pendence of the target-generated observations on the unknown 30 = £{(Valog[p(zi(t) — p(x))])
parametex asy;(x); although variations are possible [7], this (Vi loglp1 (2:(t) — ju(x)])T} (14)
model is most appropriate for a deterministic track (such as = 08P1\%i X

straight-line or ballistic motion) in which the target’s locatioris Fisher's information matrix in scahfor the measurement-

is a function of a few “initial” parameters such as position anecertain case. Assuming, therefore, thBj does not vary with

velocity. Finally, it is important that the dependence of the oh-(this is a reasonable approximation in the far-field tracking

servationz;(t) on ;i (x) is as a direct translation (mean-shift). situation), it therefore follows that the total Fisher information
matrix in the case of uncertain-origin measurements is

C. Information-Reduction Factor

J=rJ° (15)
In order to apply (7) to (2), we first note that due to indepen-
dence amongdZ(t)} and to the logarithm, we have where
T
T JoO=> 739 (16)
3=Y"1J ®) §=I '
t=1

In other words, there is a scalaformation-reduction factok

1The first “all-false” event has prior probabili — ¢(m. )), whereas each (€SS than unity) in the proportionality to account for the esti-
of the others (“one true ana, — 1 false”) has probabilitg (1) /m.. mation algorithm’s need to judge which of its observations (if
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any) are relevant and which are spuri@ughis, in our opinion, characterize problems for which (m;) ~ J? [see (13)], re-
is a remarkable result: The presence of spurious data in ong&dless of the number of observations of the time index.
total information in the observations—which is given by a ma- e
trix—in ascalarway. Thus, the presence of false measurements p({z;(#)}/"*;x) = Hpo(zi(t))]

i=1
‘l‘nent_ha\:e_ an |sotr_op|c effectin the paramet_er space as far as the e(me) T4 p(zilt) — (%))
existing” information about the parameter is concerned. A= elme) + = > ) :

t
=1

eral is (15)? In the following section, we develop some condi- Taking the gradient with respecttoof the logarithm, we get
tions that are sufficient. Specifically, we isolate attention to the

observation set affects observation efficiency, quantified by theWe thus examine (12) and rewrite it as
and, indeed, the possible absence of a target-originated measure- =
The task in the present paper is to expound on this: How gen- po(2i
satisfaction of a condition to be denoted A2) [the other condi* (V= 108[P({2i (1) 12y x))) (Ve log[p({z:(t) )T

tion A1) is trivial], which is a somewhat technical requirement = M7 Fy(m)M, (17)
on the observation distributign (). We further require that the ;, \vhich
“false-alarm” distributionp,(-) be either uniform B1), which
is a sensible condition, or target-centered B2), which is an un- 8/3(x)1 8/3(x)1 %()c)l
likely situation. We finally interpret A2) as C1), C2), or C3). P )((1) P )((2) P X("I)
The last is the most general of these and means that (15) is true felx)2 Pz dReX)2
for anyp, (-) that has elements that die and symmetric or can t= 9%, %3 X, (18)
be made so via a linear transformation. : : :

A key benefit of (15) is in its distillation of the effect of mea- Op(X)n.  Ope(X)n.  Opu(X)n,
surement origin uncertairityto ascalarinformation-reduction 0x; O%a 0%,

factor as compared wiht the origin-uncertainty-free case. Thithe Jacobian matrix gf, (x) (we assume that (¢) andx have
in Section Ill, we explore the result for several non-Gaussiggspective dimensions, andn.) and in which we define (19),

measurement distributions (-) with the goal of seeing their shown at the bottom of the page. We can thus write
relative effects. Section IV corroborates our results via simula-

T oo
tion, and in Section V, we summarize.
t=1 me=1
[I. SOME SUFFICIENT CONDITIONS FOR A T
MuLTIPLICATIVE CRLB — Z M7F,M, (20)
To look for necessargonditions for (15) to be true is likely t=1

to be unrewarding since matrices can always add up in weinthereF, has been defined as the term in brackets. In addition
ways; we will instead develop as wide a classofficientsitu- to the obvious scalar case that = 1, we immediately observe
ations as possible. From (8) and (11), the task is clear: We magtair of sufficient conditions under which (15) can be true.

2Calculation of this proportionality constant is remarkably involved. Unfortu- Al) If n. = 1 andM, does not depend anthen we have

nately, it arises from the need to evaluate a high-dimensional integral. However, T o

the proportionality constant has been tabulated for a number of cases, and since _ Z T Z

it is sparsely parametrized, this is sufficient for many needs. J= M; p(me)Fi(me) | My
t=1 my=1

3|t seems reasonable at this point to remind the ourselves that the “measure-
ment origin uncertainty,” which is referred to in this paper, is not that caused T o0
by corrupting noise directly added to a quantity of interest, but rather by the ap- = Z Z p(mt)Ft (mt) MTM
pearance of spurious irrelevant measurements, by a lack of assuranaeythat = |
measurement at a particular time is relevant, and overall by there being no la- T T
beling among the measurements. x J° (22)

r o e(me) o= Va(p(zi(t) — (%))
) = my e(my) - p1(zi(t) — j1(x))
| [ oo 05 et
] ) &t - men]
) LI:IIPO( Z(t))] [ my ; po(zi(t)) ] (19)
[ﬁpo(m(t))] [(1 —e(my)) + (m) zt: piz(f) - L)L;(X))]

=1
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and (15) is true. This appears to be more interestirig which

than it is since from these conditions, it must follow

that the rank off is one. An example is the estimation [f(m)
of the position of a stationary target from range-only P(xi|Z) =

(27)

measurements—a rather trivial problem resulting in a e(m) &
singularJ, meaning that there is ambiguity. (1—¢e(m))+——= Z Vpi(z;)
A2) If moio

F, = xF° (22)

in which
FO = £{(V.[log(p1(2))])(V[log(p1 ()"}

the

(23)

corresponds to

asJ? = M7 F°M,] and wherex is a proportionality
constant, then (15) is true.
The second case is the interesting one.
To explore (22), we rewrite (19) as

my

_g{gjmmmu>m@»2

. (Vp1(zi(t) — e (D (Vi [p1(zi(t) — pe (x))DT
p1(zi(t) — pe(x))? } (24)
in which
POl Z(t); (%))
[ ((my) pr(zi(t) — pu(x ))}
= M po(zi(t))

(25)

ZZH

k_”m @ﬂ
_ Po ZJ

is recognizable as the posterior probability of the evgnthat

the target-generated observation at tifmie z;(¢), conditioned

on the available datéz; (¢) } /2, and parametrized by, (x) [4].

If (22) is to be true, thelFt(mt) should not depend om;(x),

and it is seen that two possibilities on thgurious-observation

The disappearance pf(x) is obvious, and the time dependence
has been (notationally) ignored. By symmetry, we need only
concentrate on the event that the true measurement is labeled
1 = 1. Further simplification is possible by rewriting (26) as

Fi(m) = c(m)/{(Vz[pl(Zl)])(Vz[pl(zl)])T}

measurement-origin-uncer-
tainty-free case [meaning that (14) can be written

p1(z1)?

P(x1]z1)p1(21)dz; (28)
in which
P(X1|z1)z/ CV.../ B
1 c(m)v
T p1(z1)
. 14 ; |: m :| dZQ---dan.
[(1 —e(m Z Vpi(z;)
(29)
Comparison of (28) with
_ [ [ Valp @)D (Valpi(2)]) "
Fo_ / { L. } p(2)dz  (30)

which is from (23), makes the information reduction from the
measurements of uncertain origin clear.

To haveF,(m) of (26) proportional td'*—that is, to satisfy
condition A2)—is not straightforward. We present three cases
that have so far been found sufficient.

distributionpo(-) are sufficient for this. Cl) Ifn. =1,thenF(m)is a multiple ofF® whose value
B1) po(z:(t)) is uniform, in which case, the substitution depends only omn. Thus, although this condition at
z;(t) = zi(t) — m(x) removes the effect qf,(x) in first appears as the trivial A1), there is in fact no need
the expectation (integration). for a “stationary target,” given th@1, can depend on
B2) po(zi(t)) = po(zi(t) — (x)), in which case, the the time index. This is true regardless of the pgf).
above substitution has the same effect. C2) If all elements ofz; are, giveny;, independent and

Either of the above allows the integration implied by the expec-

tation overZ; to be shifted by:;(x), andu.(x) disappears from

F.(m,). The first case B1) is that most commonly applied, and C3)

we will continue with it being assumed.
Under the assumption of a uniform(-) = 1/V, we write
(24) (fori = 1) as

mezjmmmf{

m

’ Vrn,

(Valpi(2)D (Valp (20)])*
pl(Z1)2

val ZJ

(1—e(m

(26)

identically-distributed (iid), and provided this distribu-
tion is symmetric, then (A2) is true.

If all elements of; can be made to be iid and sym-
metric via a linear transformation, then (A2) is true.

It has been assumed thdn,) (the probability that any given
measurement ouit, is target-generated), from (6), does not de-
pend ort. Intuitively, a time-varying:(m, ) may render observa-
tions from certairt relatively more informative than they would
be without uncertainty in measurement origin, and this can af-
fectJ.

To show C2), note that even symmetry with respect to all
arguments op, (-) means thaP’(x1 |z, ) is even symmetric, and
hence, all off-diagonal terms iR, () are zero. Further, since
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all elements of, are distributed identically, we have tH&(m) uniform or .
; ; ; ; ; 0 . target-centere
is a multiple of the identity matrix, as B". We thus have matrix faloeoalarms
J= Z MT Z mt)Ft (mt)] Mt random
my=1 vector > JaR) > > 20
T with 1id (matrix multiply) z(t)
_ Z MthMt elements
t;I true target  Bernoulli
location detection/miss
T 0
= Z M £E"M, variable
t=1
= xJO. (31) Fig. 1. Schematic diagram of ways to generate observations such that
multiplicative CRLB is obtained.
To show (C3), suppose
I1l. COMPUTATION OF THEINFORMATION REDUCTION FACTOR
z; = Bz; (32) Equations (28) and (29) appear remarkably complicated for

numerical calculation since they require mnfold integral for

with the elements o#; iid. We then have each number of measurements and indeed, exact evaluation

would be a nasty chore. However, under case C2) [or case C3)
Fy(m) = 6(m)/ after linear transformation of the integration], it is only neces-
CINT o . ) L NNT T —1 sary to evaluate one diagonal element of the matrix, and let us
. {(B ) (Vz[pl(le)])N(v;[pl(le)D B } assume this is the first elemeast;. In principle, this still in-
. p1(]~321) volves a difficult integration, but rewriting of (29) as
P(x1|z1)p1(Bzy)|Bldz;
_ P
— <(m)|BI(B)" | b= [ e
(Valp1 (B2)])(Valpi (B2 N ENCTRR, [ e(m) (zl)}
p1(B2z1)? X mn
- P(x1|21)p1(Bz,)dz, B! (33)
(1 — F Z Vpl ZJ
in which
. dZQ e dZmdzlg s dzln: (36)
o=, —-—
1|21 g e for insertion into
Ip1(z
Vm . { (m)Vpl(le)} %
Bum) = [e(m) [ | 2 | Pz mip ea)dzns
m 1411
(1= em) + S v, )
o3 I(n.) @37
B dzy - iy, (34)  reveals that the averaged posterior probability need only be cal-

culated at ane-dimensionall-D) grid of values. This is easily
and efficiently accomplished via a Monte Carlo technique [13].

FO — (B=HT(Vz[p1(B2)])(Vz[p1(Bz))'B~* In the above equatiod(n.) is an identity matrix of size..
N p1(Bz)2 Similarly, we have

We also have

p1(Bz)|B|dz Ip1(21)
3 Z (P11 Z T Z1
= B|(B~ ) {/ (Vz[pl(Bp)l]gl(gvi)gp (Bz))) F° = / p?(ZI) p1(z1)dz1| - I{n;) (38)

- p1(Bz)dz} B~ (35)
and it is easy to see (39), shown at the bottom of the next page.
Comparing (33) and (35) and proceeding as with C2), C3) fol- Since “far out’” measurements are accorded small weight
lows if the elements oZ; are iid. when a reasonable data association algorithm is used, we

Case C3), with an identity linear transformation, becomegstrict our measurements to a validation gate [4], i.e.,
C2), and C2), wittn. = 1, becomes C1). It can be seen that

case C3) includes any case in whigh(-) is Gaussian. How- [2i(t)1 — ()] < gon
ever,p; (-) need not be Gaussian for C3) to be be satisfied: We : (40)
show the class schematically in Fig. 1. 1Zi ()n. — 11t (X)n. | < GO,
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dimensions of measurements, and we take 5. When condi-
tion C2) is met, i.e., all elements @f are iid, then

0881

(41)

01 =02 == 0p, =0.

0.87
Thus, in (36),V can be replaced by the volume of validatior

T Y T T

I L 1 1 (

gateV,, which is defined as 086

2 25 3 35 4

information reduction factorx (P, d=o.5 )‘Vn=1)

45

V, = [ 290: = (290)™. (42) os
=1

04

We discuss the idea of a gate only insofar as itimpacts the Mol assh
Carlo integration necessary to evaluate-strictly speaking,
gating is nevenecessaryor estimation, and for theoretical re- o3}
sults to be best understood, the gate should be ignored. We

T T T T

be interested in the situations where condition C2) or C3) ism

n 1 1 L
0’251 1.5 2 25 3 35 4 45
K

The case where the distribution is Gaussian has been discussea
in [9] and [11], and hence, we will explore non-Gaussian megy 2. information reduction factor as a function of shape paramekefor

surement distributions, ().

A. Generalized Gaussian Distribution

generalized Gaussian noise. Upper pat:= 0.9 andAV, = 0.1. Lower plot:
P; = 0.5andAV, = 1.

This family of symmetric distribution includes the Laplac&hich is Gaussian distribution, and the kurtosigdis= 3. For
and the Gaussian. The density of a generalized Gaussian randorm 4 We get

variable (zero mean) has the following form:

kol/® L
pi(z) = 24 () exp(—alz|”) (43)
whereq is a scale parameter, akdaontrols the shape. In order
to measure the distributional tail weight, we introduce the “ku
tosis,” which is defined as

e
K=

For k = 1, we have
«
pi(z) = 5 exp(—alz) (44)

which is Laplace (double-exponential), and the kurtosis is
6. Fork = 2, we have

(46)

and the kurtosis ig{ = 2.19. The shape parametérmay be
any positive number; in general, the smakes, the larger the
kurtosisK and, hence, the heavier the tail of the distribution.
The results are shown far, = 2 in Fig. 2. It is readily ap-
parent that the information reduction facters more signifi-
cant (lower estimation fidelity) in the lower plot, corresponding
to greater uncertainty (lower probability of detection and more
false alarms). It is also interesting thatncreases with the rel-
ative tail weight of the measurement pdf. Precisely why this is
S0 is open to interpretation, and we offer the following. First, re-
call thatx is the information reduction factoelativeto the case
of no measurement uncertainty but with the same measurement
pdf p1 (-). We therefore speculate that a heavy-tailed distribu-
tion (low values of the shape parametgiis more forgiving of
and robust to outlying observations that may be spurious than

o 9 is a distribution that “expects” all to be reasonably centralized
pi(z) = [ —exp(-az’) (45) " about the mean.
. Ip(z11)
Oz
Z p(m)F(m)/ — U P(x1]211, m)pi(z11)dz1
ot p1(z11)

apl(;‘/l)

(G

2
) P1 (Zl)dzl

(39)
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K=4
K=10
K=20

P2}
Ay

10

L L L L n
-30 =20 -10 0 10 20
z

Fig. 3. The pdf of Johnson random variables for different kurtosis K=(1).

B. Johnson Distribution

Information reduction factorx (P ¢=0.9 ;\Vg=0,1)

0.886
0.8841
0.8821

088
0878
0.876
0.874 1
0.872

L

L L L L L . L L
4 8 8 10 12 14 16 18 20
Kurtosis
Information reduction factork  (P,=0.5 AVq=1)

0.38+
0371
0361
0.351
034
0.33r
0.32r
0.31 b

nlt fls é IJD 1‘2 1‘4 1‘6 1‘8 20
Kurlosis

Fig. 4. Information reduction factar as a function of kurtosis for the Johnson

noise. Upper plotP; = 0.9 andAV, = 0.1. Lower plot: P, = 0.5 and

AV, =1

g =

A Johnson random variable is the result of a nonlinear trans-
formation upon a Gaussian random variable [10]. The densittget from which an unknown narrowband signal emanates; the

of a Johnson r.v. is

6
pi(z) = -
Ty 27 <(i) + 1)
exp ——2 lln <; + (;) + 1)
where

5 2
-V In(v2K —2-1)
202

V2K —-2-2

T =

observations are of angle (as observed from a moving platform)
and frequency (with an implied Doppler shift from the relative
target motion). Our intentions are

i) to simulate this system with missed detections, false-
alarms, and with non-Gaussian noise added to true ob-
servations when present;

i) to estimate the target parameters (initial position, initial
velocities, and emitted frequency) via maximum likeli-
hood,;

iii) to compare the resulting estimation covariance to the
(modified) CRLB theory just developed.

One subtlety encountered is that estimation proceeds by maxi-
mization over a likelihood surface having a reasonably complex
topography with the result that there is an occasional conver-
gence to a “local” likelihood maximum. To avoid having our
results skewed from this, we accept only estimates that pass a
sensible test on residual errors—the theory is nicely confirmed.

in which K denotes the “kurtosis.” Examples are shown in

Fig. 3.

A. Target Model and ML Estimation

Results for the Johnson case are shown in Fig. 4. As for

the generalized Gaussian distribution, the information reduction

factor increases (less information loss caused by measureniBf]

uncertainty) as the tail weight increases; even for quite heaJ31€d DAt seconds. The target motion is parametrized by a

We assume that we havg sets of measurements that are
gxed byt = 1,2,---,7 with succeeding snapshots sepa-

-D vector

tailed distributions (for a kurtosis valug¢ = 20, the tail is very
heavy, and by comparison, the kurtosis of a Laplace random _ Sy
variable is 6). It is interesting that the increase, as opposed to x(1) =) n@) £ 7T (50)

the kurtosis, appears to flatten out. In this paper, we have rfﬂt(SO), we use thét — 1)-element of the quantitie&(t) and

considere_d the questi(_)n, but it is possible th_at an asymptote g) which are the positions of the target in the east and north
reached; it seems unlikely that the value unity is ever reach Pections, respectively, at the tinte ¢ and+ are the corre-

with data uncertainty. sponding velocities, ang is the unknown emitted frequency,

which is assumed constant. This parametrization is possible be-

cause the target is assumed to be moving at a constant velocity,
To corroborate our results, we have performed several simufaeaning that

tions. We explore a situation in whiefy = 2, which is the nar-

rowband sonar case with bearing and frequency measurements

(similarto thatin [11]). Specifically, we have a constant-velocity

IV. SIMULATION RESULTS

£(t) =&(1) + (F - (A
n(t) = n(1) + (¢ = 1)(At). (51)
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Fig. 5. Underlying coordinate frame for simulation.

05t . F
The target is observed from a “platform” whose state at time S
. o . . 1 L) L . . .

t(t=1,---,T)is -1 -08 -06 -04 -02 0 02 04 06 08 1

East (m) X1t

x,(t) = [6,(8) mo(8) E,(8) 7, (D] 52
p( ) [Sp( ) 77p( ) Sp( ) 77p( )] ( ) Fig. 6. In corroborative simulation, the trajectories of target (solid) and

The true noiseless measurements of the target are of bearin Zgg:giégomd)' I:" Initial position of trajectories. “F:" final position of

(53) wherej is the (unknown) index of the “good” measurement,

6,(x) = tan " {M}

£(t) — &(t) .
that is
and of shifted frequency; see (54) at the bottom of the page.
The coordinate frame is shown in Fig. 5, and the trajectories are pler, 1) = m <6_t> m <V_t> (59)
shown in Fig. 6. Although a constant-velocity tarigbbserv- To0~ To Ty

ab]e via a nonmaneuygring platform via bearing and frequenq,yherepl(.) is the pdf of the measurement nois&econd, the
shift measurements (it is not observable from bearing-only m&gise measurements (clutter) are uniformly distributed
surements), a platform maneuver, as here, enhances accuracy.

The range of the measurementfli2~) for the bearing and (B, fr) = { Vo inVexV, (60)
[B,, B:] for the frequency, where the latter is the bandwidth of 0, else

the sonar signal processing filter. We identify a subregion  in the rectanglé&’, x V.5 Substituting these and (6) into (12), we
get the likelihood function of the measurements at the sampling

‘/0 = [AlaAQ] - [Oa 27() (55) tlmet
V,y = [Fl, FQ] C [Bl,BQ] (56) N "
- )\rnt e~ Pd €
for the bearing and frequencies, respectively. We define- p({z;(O}j21x) = i (1-Po)+ By Z
Ve %V, which is our surveillance region. J=1
The set of measurementsia x V., collected at is denoted 1 Brj — 6i(x) frj —n(x) (61)
as ogrpr oy P oy '
Z2(t) = {(Bujs Ju)Y7s (57) From (7). we have
T
wheres andf are the bearing and frequency measurements, re- p(Z;x) = Hp(Z(t)), (62)
spectively. There ar, measurement pairs collected at time t=1

and this set will include the target-originated pair [according g MLE % is found by maximizing (62). We use a simplex al-
(53) and (54)] with probability?; and with a number of false yqrithm to find the maximum—this is not particularly efficient,

alarms having as prior a Poisson distribution with parametgiy; the goal of this section is corroboration and not suggestion
AV. The target-originated measurements are corrupted by ag- technique.

ditional zero-mean and independent noises
4This is condition C2).

Bris = 01(X) + &5 frjo = 1(xX) + 14 (58) 5This is condition B1).

(54)
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Due to the multimodal nature of the log-likelihood ratio, we TABLE |
have to decide whether our estimatis acceptable or not; if it is JoRESULT OF MONTE CaRLO RUNS FoR.
not, then incorporation of the data to our estimate of covariance ‘T s
will corrupt the results. In [9], a statistical test is given to distiny -
guish between a local or global maximum. We perform this te
to accept or reject our estimate Again, multifold integrations

Number of NEES of 99% confidence

accepted estimations | accepted estimations | region of NEES

are needed to get parameters for the statistical test [9]. 3.0 9l 447 [4.19 5.90]
4.7 92 5.10 (4.19 5.89]

B. Simulation Results 6.4 91 4.71 [4.19 5.90]
In narrowband sonar signal processing, different bandsint_ 8.1 97 4.61 (421 5.87]
frequency domain are defined by an appropriate cell resoluti 9.8 94 5.03 [4.20 5.88]
and gcent(_ar frequency about Whic_h these_ bands are located. 115 95 5.30 [4.20 5.88]
recelyed signal is sampled and_flltered m_these bands befi™ 37 97 462 [4.21 5.87]
applying an FFT and beamforming. The signal processor w " " 3 190588
assumed to consist of the frequency band [500 Hz, 1000 F —— - - [4.205.88]
with a 2048-point FFT so that the frequency resolution (cell) _16-6 9% 442 (421 5.87]
18.3 87 5.12 [4.17 5.92]

C, = 500/2048 = 0.25 Hz. (63) 200 96 4.86 4.21 5.87]

For the bearing measurements, we assume that the sonar has 60

equal beams, resulting in an azimuth agil TABLE I
RESULT OF MONTE CARLO RUNS FOR JOHNSON NOISE
P; =05AND AV, = 1.0

Cy = 180°/60 = 3.0°. (64)

Assuming a uniform distribution within a cell, the frequency an Kurtosis Number of NEES of 99% confidence
bearin g measurements have standard deviations accepted estimations | accepted estimations | region of NEES

3.0 79 3.73 [4.13 5.96]

o, =025/v12 = 0.07 Hz 4.7 77 3.74 [4.12 5.98]

gg = 3.0/vV12 = 0.87°. (65) 6.4 86 4.46 [4.17 5.92)

_ _ _ 8.1 85 3.91 (4.16 5.93]

We take the surveillance regions for bearing and frequency & 0.8 %6 45T .17 5.92]

Ve = [-20°,20°] 11.5 82 4.41 [4.15 5.95]

- )

V, = [747 Hz, 753 H]. (66) 13.2 77 4.46 [4.12 5.98]

14.9 84 4.40 [4.16 5.93]

We restrict the validation gate o= 5. In our simulations, we  16.6 80 4.93 [4.14 5.96]

take as ground 'Fruth that the ta_rget moves at 10 m/s headingw ;53 82 4.93 [4.15 5.95]

and 5 m/s heading north, starting from (5000 m, 35000 m). Tl —5 36 446 (417 5.92)

emitted frequency is 750 Hz; therefore, the true target parame <

is x = [5000 35000-10 5 750]. There are 30 measurements

(One each for 30 S), for a total observation interval of 15 min. qu When P; =09 and)\‘/g =1.0, Corresponding to per-reso-

the first 15 scans, the platform moves in the northwest directiqntion-cell (or per test) signal to noise ratio of 16 dBhe NEES

and for the next 15, it moves northeast, both at 7.1 m/s. Figofthe accepted estimations all fall within the 99% confidence

shows the trajectories of target and platform. region. WhenP; = 0.5 and\V, = 1.0, corresponding to a
We examine the case where the noise corrupting the targgér-resolution-cellSNR of 4.8 dB7, eight of NEESs fall in the

generated measurement is Johnson. For Johnson parametgno, confidence regions, whereas three are slightly too small.

as indicated by its kurtosis, we take 100 Monte Carlo runghe deviations are minor, however, and are most likely the re-

An acceptance test automatically selects reasonable estimaigg. of inappropriateness in the Gaussian assumption either in

To verify the theory, we use the normalized estimation errgfe test for acceptance or the NEES confidence values. In any

squared (NEES) [2], which is defined as event, even these small deviations occur for cases thelosest
o . to the previously studied Gaussian situation. In Fig. 7, for a par-
@ =(x—-%)"J(x—%) (67) ticular Johnson parameter value, the results of estimation, along

. . ) . . . with the theoretically predicted covariances, are shown. These
wherex is the estimate, and is the appropriate Fisher infor-
mation matrix (20)_ Assuming the estimation error is approx- 6The SNR numbers are given for reference only, and to calculate them, a
: : : . g . Swerling | target model is assumed. Other definitions of SNR inchedeHertz
Imately Gaussian, the NEES is C_hl squa_lre dIS_trIbUted with (in this case 10 dB) androadband(i.e., over the whole 6—Hz window, in this
degrees of freedom, wherg, = 5 is the dimension of the pa- case 2.4 dB).

rameter being estimated Our results are listed in Tables | and Here, theper HertzSNR is—1.2 dB, and thebroadbandSNR is—9 dB.
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increases—meaning that the degradation in theoretical estima-
tion performance decreases—as the corrupting noise becomes
heavier tailed. Presumably, an (optimal) estimator that is robust
to large amplitude noise is also more forgiving of spurious mea-
surements.

Finally, let us note that there is a rich and interesting tradition
of bounds on estimation performance for dynamic systems (e.g.,
[3], [5], [8]), culminating in the excellent and explicit CRLB for

North  (m)
g
N o
T T
L L

[
T
1

0.5 £ i

0 ‘ . L : . . .
02 04 06 08 1

x10*

0
East (m)

the nonlinear filtering problem in [14]. In this paper, we have
concentrated on results for parameter estimation only (i.e., the
case without dynamics, and without need to resort to the MAP-
estimation CRLB), but we have explored the case that there is
measurement origin uncertainty (which is not treated in [3], [5],
and [8]) and have focussed on thealarinformation reduction
factor. However, it is natural to consider the marriage of these
two formulations, that is, to find bounds on estimation for a
dynamic system with measurement origin uncertainty. This is,

for us, current and future work.

Fig. 7. True and estimated trajectories from 100 Monte Carlo runs for Johnson
noise casé’; = 0.9, AV, = 0.1, and kurtosis= 11.5. Note that in almost all
cases, the estimated values lie within their respective ellipses.

(1]

latter are presented as two ellipses referring to the 99% confi{2]
dence regions of the position estimates at the initial and final(3
sampling instants, based on the CRLB (31). We can see that in
98 out of 100 Monte Carlo runs, the estimated initial and final ]
positions fall into the 99% confidence region.

[5]

V. SUMMARY

Measurements are afncertain originwhen, among those (6]
collected at each time (each “snapshot”), at most one can b¢7]
said to be directly relevant to estimation of a quantity of in-
terest. The remaining measurements have nothing to do withg,
that quantity and can be considered “false alarms.” Indeed, at
a given instant, the measuremerith relevance can be absent, [l
denoting a “missed detection.” The remarkable observation was
recently made that the Fisher information matrix (and multipa{10]
rameter CRLB), for the special case of bearings-only trackingfll]
and corrupting Gaussian noise, is, for the cagh uncertainty
in measurement origin, simply a multiple (tiiformation re-
duction facto) of thatwithoutuncertainty. In this paper, we have [12]
investigated this result in greater depth and have found sufficieqh]
conditions for it to be true.

The interesting sufficient conditions are the following: [14]
i) the probabilities of detection{;s) and false alarm rates
are constant across all observation snapshots; and [15]

i) afalse (irrelevant) measurement has a uniform distribu-
tion; and

iii) the random element to the true (relevant) observation is
additive noise; and either

iv) this noise is iid in each dimension; or

V) there exists a linear transformation by which the nois
could be made to be iid.

Naturally, this includes all Gaussian situations; the class is re
sonably rich but not all-inclusive. We have checked the gener
ized Gaussian and Johnson cases and confirmed the analysi:
simulation. One result is that the information reduction fact
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