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Bayesian interpretation of periodograms

Jean—Francois IBVANNELLI and JérdmendiER

Abstract— The usual nonparametric approach to spectral Moreover, [5] suffers from a twofold limitation. On the
analysis is revisited within the regularization framework. Both  one hand, the proposed model relies on discrete frequency
usual and windowed periodograms are obtained as the squared heregs the frequency is a continuous variable. On the other
modulus of the minimizer of regularized least squares critéa. s . .

Then, particular attention is paid to their interpretation within hand, restriction to separable regularization functiomesschot
the Bayesian statistical framework. Finally, the questionof un- allow spectral smoothness to be accounted for. The present

supervised hyperparameter and window selection is address. contribution overcomes such limitations.

It iS_ shown that max?mum likelihood solution is both formally It takes advantage of a natural model in spectral analysis

achievable and practically useful. of complex discrete-time series: the sum of side by side pure
Index Terms— Quadratic regularization, penalized criterion, frequencies. Two cases are investigated:

spectral analysis, periodograms, windowing, zero-paddig, hy- 1) the continuous frequency (CF) case which relies on an

perparameters, window selection. infinite number of pure frequencies € [0,1] with

amplitudesa(v), a € L?
2) the discrete frequency (DF) one which relies on a finite
NOTATIONS number, sayP (usually large), of equally spaced pure

FT Fourier Transform frequenciess, = p/ P, with amplitudess,. Let us note
IFT Inverse Fourier Transform a = [ag,...,ap_1] € CP andy = vo,...,vp_1] €

CF Continuous Frequency [0,1[P.
DF Discrete Frequency
upP Usual Periodogram
WP  Windowed Periodogram

For N complex observed samplas = [yo,...,yn—1] €
€V, such models read

1
2 2 .
L Lz ([0, 1]) CF. y, = / a(v)e* ™" dy + b,
H?  HE([0,1]) 0
e (3,(Z) ~1/2 -« 2impn/P @)
F Discrete time FT 2 — L?) DF: yn = P Z;) ap € +0n,
Wy  Truncated IFT 2 — CY) P=
wi  Adjoint operator ofW, whereb = [by,...,by_1] € CV accounts for model and
F, Square Fourier matrix@{” — CPF) observation uncertainties. Let us introdudg, and W :
Wyr Truncated IFT matrix Q7 — CV, N < P) CF: Wy: L? — CV, )
1. Hermitian matrix of W, DF: Wyr: CF — CV, (2)
Ny {0,1,...,N -1} the CF and DF truncated IFT so that
|. INTRODUCTION CFy = Wya+b, 3)
DF: y = Wypa+b.

PECTRAL ANALYSIS is a fundamental problem in
Signa| processing_ Historical papers such as [1]’ tuterial The current prOblem consists in eStimating the amplitudes
such as [2] and books such as [3, 4] are evidences of the basignd/ora. Thanks to the linearity of these models w.r.t. the
role of spectral analysis, whether parametric or not. amplitudes, the problem clearly falls in the class of linear
Nonparametric approach has recently prompted renewegfimation problems [7-9]. But, in practice, estimatiohese
interest [5] (see also [6]) within the regularization frameek 0N a finite, maybe small, number of da¥a As a consequence,
and the present contribution brings a new look at theddthe CF case, a continuous frequency functidging in L?
methods. It provides statistical principles rather thampigical must be selected from only data. Such a problem is known
ones in order to derive periodogram estimators. From tH® be ill-posed in the sense of Hadamard [8]. In the same way,
standpoint, the major contribution of the paper is twofoldinder the DF formulation, since the amplitudes outnumber th
Firstly, it proposes new coherent interpretations of éxjst available data, the problem is underdeterminate.
periodograms and modern justification for windowing tech- This kind of problem is nowadays well identified [8, 10]
niques. Secondly, it introduces a maximum likelihood mdth@nd can be fruitfully tackled by means of the regularization
for automatic selection of the window shape. approach. This approach rests on a compromise between
fidelity to the data and fidelity to some prior information
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proposes to account for spectral smoothness as a functiomqoédratic “separable regularization”, the correspondrig
autoregressive coefficients. Otherwise, high resolutjpecs criterion is

tral estimation has been addressed within the regulamizati B " t
framework, founded on the Poisson-Gaussian model [14]. The ~ @u(@) = (¥ = Wyra)'(y — Wyra) + Aa'a,  (7)
present paper deepens Gaussian models and is organizegifts optimum given in the next Proposition.

follows.

Section[dl focuses on the interpretation of usual peri- N .
odograms (UP) and Sectiéillll deals with the interpretatidrroPosition 2 — (DF/UP). For any A > 0, the unique
of windowed periodograms (WP) both using penalized aplinimizer of [7) reads
proaches With_quadratic regularization. Results are eaqbps @ =1+ N "'Fgp, 8)
in four Propositions and the corresponding Proofs are given
in Appendix.. A Bayesian interpretation is presented iwheregp denotes the vectay zero-padded up to siz.
Section[ IV while the problem of parameter estimation and
window selection are addressed in Secfion V. Finally, con- Proof: See appendikIB. [ |
clusions and perspectives for future works are presented in
Section V.

C. Usual periodogram: concluding remarks

Il. USUAL PERIODOGRAM In the CF cases, the squared modulus of the penalized
: Al 1D .
A. Continuous frequency soll_Jt|ons|a (V)] is propAclrtlopal to t_he ugual zero—.padded
. L 5 periodogram. Moreoverla*|? id] a discretized version of
The problem at stake_ c0n5|sts_ in estlmatmg_ L* given la*(v)]? over the frequency gridv. So, within the proposed
datay such that[(B). A first possible approach is founded opamework, separable quadratic regularizatioteads to the

the Least Squares (LS) criterion usual zero-paddingechnique associated with the practical

N-1 1 . 2 computation of periodograms. Moreover, whantends to
(y — Wya)' (y = Wya) = Z Yn — / a(v)e*™™dy| | zero, the proportionality factor tends to one. It is notlea
n=0 0 that, in this case, the criterial(4) arid (7) degenerate it th

but, sinceW, is one-to-many and not many-to-one, ther@inimizer does not: they are the solution of the constraint
exists an infinity of solutions inZL2. Here, the preferred Problems
solution for raising the indetermination relies on Regakd 1
Least Squares (RLS). The simplest RLS criterion is founded ~ CF: HEHan/ la(W)Pdv st y=Wya,
on quadratic “separable regularization”: ¢ 0

1 DF: min a'a st. y=Wyra.

Qu(@) = (5= Wxa) (5 = Waa) +A [ fa)Pav, (@ actr
0 i.e., solution of the noiseless problems adressed in [5, 6].

where “u” stands for usual. The regularization parameter
A > 0 balances the trade-off between confidence in the data
and confidence in the penalization term. For any 0, the
Proposition below gives the minimizér* of ().

Il. WINDOWED PERIODOGRAM

The previous section investigates the relationships betwe
the separable regularizers and the usual (non-windowed) pe
odograms. The present section focuses on smoothing regular
Proposition 1 — (CF/UP). For any A > 0, the unique izers and windowed periodograms (see [15] which analyzes

minimizer of [(#) reads dozens of windows to compute smoothed periodograms).
N-—1 )
AP) =140 ype (5) A. Continuous spectra
n=0

This subsection generalizes the usual normLinto the
Sobolev [16] regularizer:

1 Q
RQ(Q) :/ Zaq
B. Discrete frequency 0 g=0

This subsection investigates the DF counterpart of ti¢hich can be interpreted as a measure of spectral smoothness

previous result. In the DF approach, the LS criterion readsThe a, are positive real coefficients and can be generalized
to positive real functions [8]R, is defined onto the Sobolev

(y — Wara)'(y — Wyra), (6) space [16]H% c L2. Note thatH® = L? and that the usual

but, sinceWy . is one-to-many and not many-to-one, there i ,, ¢ P, |2
also exists an infinity of solutions it”’. According to the component ofu.

Proof: See appendikJA.
dla 2

dvt

(¥)

denotes the vector of the squared moduli of the
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norm invoked in subsection THA is the regularizBy with C. Windowed periodograms: concluding remarks

=1
o Hence, in the CF case, the squared modulus of the penalized
. : : solution a“ is the windowed periodogram associated with
Remark 1 — Strictly speakingRq(a) is not a spectral window w,,. Moreover, the DF solutiom™ is a discretized

smoothness measure, since it is not a functiofu@f)| but a version ofa“, as soon as the, are identified with the,,.

function ofa(v), including phase. A true spectral smoothnes&s a conclusionquadratic smoothing regularizermterpret
measure does not depend on the phase(oj and does not

. T windowed periodogramsMoreover, it is noteworthy that
yield a quadratic criterion. The same remark holds for the,, o
definition of spectral smoothness proposed by Kitagawa aﬁd(y) anda only depend o, ande, for n € Ny.

Gersh [11].

) Remark 2 — Empirical power. One can easily show:
Accounting for spectral smoothness by meansRef(a)

yields a new penalized criterion
Qs(a) = (y - WNa)T(y - WNa) + )‘RQ (a) 9 (9)

where the index “s” stands for smoothness.

1
. N—
oF: [awPd = SI@nl g
0 N-1
DF: a'a Sco Wilynl*.

Hence, the empirical power of the estimated spectra is gmall

N ) ) than the empirical power of the observed data and equality
Proposition 3 — (CF/WP). With the previous notations andpogs if and only if\ = 0.

definitions, the minimizer of](9) reads

N-1 . . .
@ (v) = Z wnyne” 2T (10) Example 1 — _Zero_—order _ pe_nal|zat|on. Thg most simple
oy example consists in retrieving the non-windowed case of
_ ) ) ) sectior1I-A andI-B. Let us apply the previous Proposish
i.e., a windowed FT. The window shape is and[2 with regularizers
wn = (14 Xep)7h, (11)

1
Q CF: / la(v)|*dv ie, Q=0 and ag =1,
i = 2q 0 (16)
with e, qZO aq(2mp)™ forp e L. (12) DF: a'a ie., I, =1Ip.
_ ) Then, we have,, = e,, = 1, the criteria [9) and[(IB) respec-
Proof: See appendikIC. u tively becomel{4) and{7) and the solutiohs] (10) dnd (14) re-
spectively becomg](5) ard (8): as expected, the non-wirdlowe
. ) solutions are retrieved. A more interesting example is the o
B. Discretized spectra given below.
This subsection is devoted to the generalization of crite-

rion () to non-separable penalization , L L
Example 2 — First-order penalization. Let the penalization

Qs(a) = (y — Wypa)' (y — Wypa) + Aa'll,a.  (13) term be

1
Given that the sought spectrum is circular-periodic, theagbe CF: / la’ (V) dv,
ization term has to be designed under circularity congtrain S (17)
As a consequencd], is a circular matrix, its eigenvalues, DE: lpz Z lax — ap_1|? .
denotede,,p € Np, can be calculated as the FT of the first 2 Pt

row of II,. Moreover, without loss of generality, we assume

that the diagonal elements &F, ' are equal to one and anywith ap = a, for notational convenience of the circularity

scaling factor is integrated in the parameker assumption. Application of Propositiohs 3 dnd 4 respebtive
yieldse,, = 47?n? (CF case) anct,, = (1 —cos27n/P) (DF

- o case). The corresponding windows read
Proposition 4 — (DF/WP). The minimizer of[{13) reads

CF: w, = (1+4n?n?)\)71,

a* =Fpy, (14) DF: w, = (1+\— Acos2mn/P)!.

(18)

where they, = w,7, for p € Np and
e ror P " In the following, we refer to them as the Cauchy and the

w, = (1+ Xep) ™t inverse cosine windows. Moreover, for a finer discretizatio
of the spectral domaifimp_,, e, = ¢, and one can retrieve
Proof: See appendixD. m the Cauchy window as the limit of the inverse cosine window.
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Fig. 1. Inverse cosine window (lhs) and Cauchy window (rlss@dunction

1
of A. In both cases) = 0 yields a constant shape. Furthermore, for any 05 A 05
wp = wo = 1. Otherwise, as\ increases the window shape decreases faster .
to zero and the corresponding spectrum is smoothed. oo 50 o6 0 100 o2 oa o5 o8 &

0.5 0.5

)
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IV. BAYESIAN INTERPRETATION

0

This section is devoted to Bayesian interpretations of the 700 50 0 50 100 0 0z 042808
penalized solutions presented in PropositibhE]1.] 2, 3[&and 4.
Moreover, since usual non-windowed forms are particulﬁig. 2. Usual windows and the corresponding correlatiortg fs column
cases of windowed forms. we focus on the latter shows the time window and the rhs column shows the assoaiateelations.

. i o . . [From top to bottom: the Hamming, the Hanning, the inverseéneoand the

Since the considered criteria are quadratic, their Bayesi@angular.
interpretations rely on Gaussian laws. Therefore, the Baye
interpretations only require the characterization of nseamd
correlation structures for the stochastic models at work. II, = Ip. Finally, interpretations of the RLS solutiorls (8)
and [14) themselves, result from the choice of the Maximdum
Posteriori (MAP) as a punctual estimate. Moreover, thanks to
the Gaussian character pbsteriorlaw, other basic Bayesian

In the DF casej.e., in the finite dimension vector space ggtimators such aBosterior Mean (PM) and Marginal MAP
the Bayesian interpretation of the criterld (7) ahd] (13) aS(RMIMAP), are equal to the MAP solution itself.

posterior Co-Log-Likelihood is a classical result [10]. Within
this probabilistic framework, the likelihood of the paraers
a attached to the dataq is

A. Discrete frequency approach

B. Continuous frequency case

1 1) General theory:In the CF case, the Bayesian inter-
f(yla) = (7ry) N exp —(y — Wypa)'(y — Wyra). pretation is more subtle since it relies on continuous index
T stochastic processes. Indeed, pwsterior likelihood for the
From a statistical viewpoint, it essentially results frohret parametera is available. So, there is no diregiosterior
linearity of the model[(8) and from the hypothesis of a zergnterpretation of the criterid14) andl(9), nor MAP interpre
mean, circular (in the statistical sense), stationaryfevahd tation of the estimated](5) and{10). Roughly speaking, the
Gaussian noise vectd, Wlth variancery. o posterior law vanishes everywhere. Nevertheless, there is a
Moreover, in order to interpret the regularization termproper Bayesian interpretation of the estimafés (5) anjl (10
of (I3), a zero-mean, circular, correlated Gaussian pritt w as PM or MMAP as shown below.
covarianceR, = r,II;! is introducel. Matrix 11, is the Let us introduce a zero-mean, circular (in the statistical
normalized covariance structuies., all its diagonal elements sense) and Gaussian prior law [17] fer This law is fully
are equal to 1, while, stands for the prior power. So, thecharacterized by its correlation structuyg(v),v € [—1,1],

prior density reads which is entirely described by its values fore [0, 1] thanks
N -1 . to Hermitian symmetry. Furthermore, the usual circular-
fla) = (7ra) ™" det Iy exp Ea lea. periodicity assumption fou(v) results in another symmetry

. I roperty:v,(1/2 4+ v) = v,(1/2 — v) for anyv € [0,1/2].
The Bayes rule ensures the fusion of the likelihood and tﬁeBy assumingy, € Lo, the latter can be expanded into a

prior into the posterior density Fourier series-

-1 .
f(aly) ocexp r_st(a) 5 Ya(V) = Z Ya(p)e 2P 1y € [0, 1]
€7
where Qs is given by Eq.[(IB). The regularization parameter . _ Z_p i _
M is clearly A = 7y,/7,. with Fourier coefficientsy, € /5 given by:
Thus, we have a Bayesian interpretation of the critefial (13 . ainup
related to windowed periodograms. Interpretation of the cr Ya(p) = /[0 . Ya(V)e ' PEL.

terion (1) related to usual ones results from a white prior: i _
Let us notec, (v) = 7.(v)/r, the normalized correlation and

2Rigorously speaking, this is possible onlyIif, is invertible. ¢, € U5 the corresponding Fourier sequence.
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Proposition 5 — With the previous notations and priorfor any v,/ € [0,1],» > /. According to the sufficient

choice, the posterior mean ofv) is: factorization of the correlation function proposed in [R(64],
N_1 it turns out thata(v) is a Markov chain.
E[a(u)|y] = @) = Z wnyme 2T (19) b) Limit case asv; — 0: As «; tends tq zero, it is easy
= to show that for eachv €]0, 1], the correlationy,(v) tends
with w, = [1+ )\Coa(n)_l]fl . (20) to zeroi.e., there is no more correlation betwee(w;) and

a(vy) as soon as; # vy and (v1,v2) # (0,1). Moreover,
v.(0) and~,(1) tend to infinity while the integral of;, over
[0,1] remainsl/ag. Roughly speaking, the limit correlation
Comparison of [(1I9)E(20) and (1d)-(11) immediately givets a Dirac distribution atz = 0 andv = 1 with weight1/2a
the Bayesian interpretation of windowed FT asﬁ?p;?]z(n) — i.e., the limit process is a circular white Gaussian noise with
1, i.e., identification of the Fourier coefficients of the prior‘pseudo-power’l/ay.
correlationc, (v) and the FT of the discrete correlatidh,. c) Limit case asag — 0: This case is more complex
2) Example 3: The present subsection is devoted to #1an the previous one sind® € [0, 1], v,(v) tends to infinity
precise Bayesian interpretation of deterministic exasfle asao tends to zero. So, we propose a characterization of the
and2. As we will see, there is a new obstacle in the Bayesitiftit processvia its increments. Lety,vo,v,v5 € [0,1],
interpretation of these examples because the underlying oo < 2 < v; < v5. Let us also note the frequency increments
relations do not lie inL,. In order to overcome this difficulty 7 = v2—v1 andr), = v3—14 and the vector of the increments
we first interpret the penalization of both zero-order angt-fir themselvesi = [a(v2) — a(v1),a(vs) — a(v3)] € C?. This

Proof: See appendik]E. [

order derivative: vector is clearly Gaussian and zero-mean. Furthermors, it i
1 , 1 , shown in AppendiX G.2]lc that its covariance matrix reads
Ra(a) = ao/o |a(l/)| dv + al/o |a/(1/)| (V) dv. (21) R L (1 — Tl/) 27_1/7_; 26)
YT 2, 27,7, (1 —=1])

The case of pure zero-order and pure first-order are obtained

in sectiongTV-B.Zb anf1V-B.2lc as limit processes. It turns out that the procesgr) = a(v) —a(0) is a Brownian
As seen in Propositiof] 3, Eq_{12), the associated co#fidge [21, p.36].

ficients areie, = ag + 4n%a1p?, p € Z. According to

» . . - V. HYPERPARAMETER AND WINDOW SELECTION
Proposition[b, the Fourier series coefficients for(v) are

Fa(p) = 551_ It is clear thaty, € ¢, hencey, € L, and The problem of hyperparameter estimation within the regu-
larization framework is a delicate one. It has been extehgsiv
Ya(v) = Z % e 2™p 1 el0,1]. (22) sStudied and numerous techniques have been proposed and
vz 0 +4mlaup compared [22—-27]. The Maximum Likelihood (ML) approach

) ) ) ) is often chosen associated with the Bayesian interpretatio
It is shown in Appendix G.2la that, with = \/ag/c1 and | the following subsections, we address regularization pa

o/ = \/aoa1, 7a(v) reads rameter estimation and automatic window selection using ML
cosha(|lv| —1/2) estimation.
alV) = ,ve |—-1,1], 23
Ya(v) 2/ sinh a/2 vel ] (23)

A. Hyperparameters estimation

In our context, the ML technique consists in integrating the
amplitudes out of the problem and maximizing the resulting
marginal likelihood w.r.t. the hyperparameters. Thanktht®
linear and Gaussian assumptions, the marginal law for the
data, namely the likelihood function, is also Gaussian

and several analytic properties are straightforwardlyuded.
In particular,y, has a continuous derivative ovier1, 1] — {0}
and the slopes at = 0~ andv = 0" are respectivelyl /a;
and —1/a;. v, is minimum aty = 1/2 and maximum at
v =—1,v =0 andv = 1. Moreover its integral from 0 to 1
remains constant and equalsay.

a) Markov property: The present paragraph addresses f(y; 7a,m) o< (det Ry) ™t exp —yTRgly. (27)
the Markov property of the underlying prior process) [18,
19]. This process cannot Is&ricto senswa Markov chain since as shown in the two following sections.

itis circular-periodic: “future” frequency and “past” l@ency 1y pjscrete frequency marginal covarianckn the present
cannot be independent. However, we show the Markov progsse since all random quantities are in a finite dimensional

erty for the conditional process(v) = [a(v)|a(1)]veo,1- It |inear space, the covariance is clearly
is shown in Appendik G.2lb that its correlation structurads
Ry = 1a(WxpII "W, + MN) = 1,5y .

N N Ya()va () 24 , ,
Ya(v, V') = valv —1v") — 0 (24)  Accounting for the circular structure of the matrik,, we
sinha/ sinha(l — v) have II, = FPAHFL where Ap; is the diagonal matrix
= Tk , (25) of eigenvaluese,,p € Np. Given the property[{33) in
@ siia Appendix(E, %, is shown to be diagonal

Moreover, the covariance structuRg, can be easily derived,

3Sincea(v)|y is a scalar Gaussian random variaBlfa(v)|y] is also the

MMAP. Sy =diag[A+e,'], n € Ny. (28)
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2) Continuous frequency marginal covariancén the 0

. . . 200 0
present case, the marginal covariance maltjxhas already o 10 MMWMN

been derived in AppendxXIE, Eq.(32). Hendg, and%,, are

dlagonal 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
" 300
1 . 1 200 o M
Yy = ERy = dlag[)\ +e, ], n € Ny. (29) . 10
0
Remark 3 — In both casesy, only depends on,/s,, for w2 08 08 2 0 02 o4 06 08 ¢
n € Ny. Consequently the likelihood function and the ML "
parameter only depend on thg first coefficients. 100 WW
3) Maximization: The opposite of the logarithm of the % 02 o4 o5 o8 1 o 02 04 06 08 1

likelihood, namely the Co-Log-Likelihood (CLL)

200 /\/K 10° m

1
CLL(rq,\) = Nlogr, +logdet Xy + EyTZ;Iy7 (30) 100

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Reduced frequency Reduced frequency

must be minimized w.r.tr, and \. Partial minimization is
) A o -
tractable w.r.tr, and yields?, = yTEy y/N. Substitution Fig. 3. Qualitative comparison. True spectra (dotted Jiresd estimated

of 7, in Eq. (30) gives: ones (solid lines). The lhs column gives linear plots andrtisecolumn gives
1 logarithmic plots. From top to bottdinusual periodogramsi2 , 415D, and
CLL(\) = logdet Xy + Nlogy'S,'y. (31) aun,.
Furthermore, sinc&,, is a diagonal matrix
= 1 > |yn|2
CLL(\) = Y log(A+e,')+Nlog) ol According to our experiments, as shown in Fiy.a32,
n=1 n=1

asb and thea* can be graded by smoothness and estimation

N ) N Iy |2 N accuracy. From the smoothest to the roughest, the following
= log H()\+€Z ) Zre;l ; gradation hasL always been observéd:s, a* and a'.
n=1 n=1 A2

Furthermoreqz: s is systematically over-smoothed whil&~,
in the DF case. Substitution ef, by ¢,, yields the CF case. iS systematically under-smoothed. Moreover, the first one
In both casesC'LL()) is the logarithm of the ratio of two qualitatively approximates more precisely in linear scale,
degreeN — 1 polynomials of the variable\, with a strictly Whereas the second one reproduces more accuratein
positive denominator. Minimization w.r.A is not explicit, but a logarithmic scale and especially the two notches. This is
it can be numerically performed. due to the presence of the spectra ratio in the Itakura-Saito
4) Simulation results:ML hyperparameter selection is il- distance which emphasizes the small values of the spectra.
lustrated for the problem of Sectidn IV-B.2. Computations Finally, to our experience and as shown in Aig. 3, the

have been performed on the basis of of 512 sample signg{gximum likelihood solutior:, establishes a relevant com-

simulated by filtering standard Gaussian noises with tmf”tpromise betweeri2; and s>, since it is smooth enough,

aR,LS

of impulse responsé = [1,—2,3, -2, 1]. Let us notea* as il the two notches remain accurately described.
the true spectrum.

CLL has been computed on (o, a1 )-grid of 100 x 100 Quantitative comparisons have been conducted between the

logarithmically spaced values from—10 to 109, The first WO Practicable methods (whert is not known): the usual
observation is that CLL is fairly regular and usually shows Beriodogram and the proposed metti, the RLS solution
unique minimum, located betwean—! and 10! for ag, and with automatic ML hyperparameters. The obtained resuls ar
between10-2 and 1 for a;. However, a few “degenerated”reported in Tabldll. They clearly show an improvement of

cases have been observed for whight or &} seem to be about 40-50% for all the considered distances.

null or infinite. Let us notdagy™, &)™) as the CLL minimizét

anday'; as the corresponding RLS periodogram. L1 Ly AIS | SIS
Sincea* is known in the proposed simulation study, various RLSUE’ VL 8-‘7‘3613 %)-géY Zgé Zgg

spectral dlst_ances [30] can be computed, as .func_t|onsoof San 2859 T 50.3% 24 19 1 43.8%

anda;. L, distance L, distance, the Itakura-Saito divergence

(ISD) as well as the Itakura-Saito symmetric distance (SIS) TABLE |

have been considered. Each one provides an optimal COUPUANTITATIVE COMPARISON. THE FIRST LINE REFERS TO THE USUAL

(@817@?)' (déz,diz), (65", &), and (63'°, G§') respec- pPERIODOGRAM WHILE THE SECOND ONE REFERS TO THRLS SOLUTION

tively. The corresponding spectra are respectively dehote  wiTH ML HYPERPARAMETERS THE THIRD LINE GIVES THE

~L1 ~Lo ~ISD ~ SIS
QrrLs, ArLs) Agygs and(IRLS- QUANTITATIVE IMPROVEMENT.

“4Efficient algorithms are available in order to maximize tkellhood, such
as gradient based [28] or EM type [29]. They have not beeneémphted
here as far as a mere feasibility study is concerned.



GIOVANNELLI AND IDIER: BAYESIAN INTERPRETATION OF PERIODGGRAMS 7

B. Window selection As shown in AppendimleWL = Iy, then taking the
It has been shown that the ML technique allows thET and nextthe IFT gives:
estimation of the regularization parameter. The problem of N-1
window selection is now addressed. Let us consider asktof a*(v) = (1+\) " "Wly=(1+)\)"! Z ype 2
windowsi.e., K matriceslI* for k € Ng. Indexk becomes a n=0
new hyperparameter as well asand can be jointly estimated.
The likelihood function[(311) is now B. Proof of Propositiofi2
The minimizer of the RLS criteriori{7) obviously is

CLL(\, k) = logdet (S5) +log Ny (25) 'y .

S N T -1yt
Maximization w.r.t. hyperparameters can be achieved in the 6" = (WipWyr + ML)~ Wiy

same way as above for each valugiat Ng. The maximum One can refer to AppendixF.3 for a detailed calculus reguire
maximorum can then be easily selected. to analyze the normal matrig@V; . Wy, + AL,.). Wi, Wy

Numerous simulations have been performed. They are rapid/,. are circulant matrices, this property also holds for their
reported here since they show similar results as the previmum which hence is diagonal in the Fourier basis. Elementary
ones. However, it has been observed that the triangutdgebra leads ta*
window is the most often selected among: Cauchy, inverse 1
cosine, Hanning, H i i = (L+ N7 v Onp-n In

, g, Hamming and triangle. = [y ) Y
Op_nN,N A Ip_nN Op_n,N

_ R
VI. CONCLUSION = (1+X) Fryp.

In this paper, the usual nonparametric approach to spect&al Proof of Propositiofi3
analysis has been revisited within the regularization &ram "
work. We have shown that usual and windowed periodogramsTh€ proof is founded on a time domain version of the
could be obtainedvia the minimizer of regularized leastcriterion [9), resulting from application of the PlancHere
squares criteria. In turn, penalized quadratic criter@iater- Parseval theorem to the successive derivatives of

preted within the Bayesian framework, so that periodograms L gag |2 201 12
are interpretedvia Bayesian estimators. The corresponding /O W(V) dv = 2(27”1) EM
prior is a zero-mean Gaussian process, fully specified by nez

its correlation function. Particular attention is paid toet \yhere,, — fol a(v)e™n dy. Summation w.r.tg and inver-
connection between correlation structure and window shaggyn of summation w.r.ty and w.r.t.n, gives

As regardgjuadraticregularization, the present study signifi-

cantly deepens a recent contribution by Saetfil.[5], given Ro(a) =) enlznl?,

that the latter addresses neither windowed periodograans, n n€z

the continuous frequencial setting. Extension to then- where the weighting coefficients, fulfill (IZ). Hence, the

quadratic [31] and 2D (time-frequency) case would be ofime domain counterpart of criteriohl(4) reads:
particular interest, and we are presently working at thésiés

Whereas the first part of our contribution provides in- Q@) = (y—2)(y—2) + A Z enlznl?
terpretations of pre-existing tools for spectral analysisw nez
estimation schemes are derived in the second part: unsufdédranks to separability, the solution is easily derivefl: =
vised hyperparameter and window selection. It is shown th@t+ e, ) ~ty, if n € Ny and2% = 0 elsewherea” is the
maximum likelihood solutions are both formally achievabl€ourier transform of the sequen¢é“},.cx
and practically useful. N—1
dw(V) _ Z 2;';1672”1/".

APPENDIX n=0

A. Proof of Propositiorfi. 11
g D. Proof of Propositiol 4

Several proofs are available and the proposed one relies on . . L
variational principles [32]. Application of these printap to Elementary linear algebra provides the minimizef of 13
guadratic regularization of linear problem yields the fiimgal a® = (Wi, Wyp + L)W y.
equation [8]:

Accounting for its circular structure, the Fourier basiagh-
—2W] (y = Wya) + 2120 =0, nalizesIl,:

— T
where I;» stands for the identity application froth? onto o = FeAnFy

itself and W], stands for the adjoint application ¥, (see where Ap is the diagonal matrix of the eigenvalues
Appendix[G.1). After elementary algebra we find: eo,...,ep_1 Of II,. Hence,

WIWy 4+ M2)a=Wiy. a” = Fp(Ip + Mu)yp,



and we easily find

w o
a” = rpy,

with 7, = w7, for p € Np, i.e., the data vector windowed

by
Wy = (14 Xep) ™t

E. Proof of Propositio 5

Let vy € [0,1] andag = a(vp). Thanks to the linearity of

the model[(B) and thanks to the Gaussian assumptiodm dod

b, the joint law of(a, y) is also Gaussian. Hence, the random

IEEE TRANSACTION ON SIGNAL PROCESSING

3) Structure ofWI,PWNP: The matrix WNPWI,P has a
very simple structure since, faP > N: WNPWI,P = Iy.
Otherwise,WLPWNP is a non-negative, Hermitian? x P
circulant matrix. Circularity results from digonalizatién the
Fourier basisF,:

Wi Wyp = FoAF},
and, from Eq.[(3B):

In ON P-N

A =
Op-nnN Op-NpP-N

variable(ag | y) is clearly Gaussian and it is well-known that

its mean reads
E[QO | y] = RaoyR;va

where R,y = E[aoy'] and R, =
algebra and independence ©findb yield

/0 E[a(vo)a(v)*]e *™" dv + E[a(v)by]

_ ,ia(n)e—%ﬂ'uon )

Ra() Yn =

Moreover, under the previously mentioned assumptions, t

generic entryR,,,,, for Ry is Ryn = E[ymy;]

1
0
= (’7011 (n) + Tb) 5n—m ) (32)
whered,, stands for the Kronecker sequence. Therefdig,

is a diagonal matrix with elements’,(n) + r;). Hence

N-1
ao = Z [1 + )\Coa(n)—l]flyne—%mjon7

n=0

with A = /7.

The present Appendix collects several useful properties of

Fourier operators. In particular, special attention isdpia

E[yy']. Elementary

As a consequencWI,PWNp has only two eigenvalue$,and
0, of respective ordeN and P— N. Such a structure is useful
in the proof of Propositiong{2) anfl(4) in Appendix .

G. Continuous case

1) The W, operator: The linear applicationV, : a €
L? — z € CV is defined byz, = [ a(v)e2 ™" dv for
n € Ny. The adjoint operatonVy, : z € CN — a = W),z
'ﬁethe linear operator such that:

Vac L2 Vz € CY  (Wya,2)ov = (a, W 2),2,

where(-, -}~ and(-,-),2 stand for the standard inner product
in CV and L2, respectively. It is given by:

N-1
a(v) =Wz = Z Zpe” 2T

n=0

This can be justified as follows: by inverting the order of the
finite sum>",~'and the definite integra,fol, we get

N-1

D

n=0

1
(Wya, z)on :/0 a(v) 252 — (q, Wi 2) 2.

W» and W,. Some of the stated properties are classical. Finaly; eIemTen_tary algebra shows that the corjcposed ap-
We have reported them in order to make our notations aRlication WxWy is the identity application from’™* onto

normalization conventions explicit. The other properts
less usual, but all of them have straightforward proofs.

F. Discrete case
1) Structure off.: In the case ofV = P, the matrixWy »

identifies with the square matriR,I, where F, performs the
discrete FT for vectors of siz€. We have the well-known

orthogonality relationdﬂIFp = FpFl =Ip and F! = Fp.

2) Structure ofWyp: The matrixW,, evaluates the FT

on a discrete grid ofP points for sequences oWV points,

P > N. Straightforward expansion of the product provides:

WyprFr=]1In Onp_n]. (33)
As a consequence, we obtain
I _
Wiey=Fr [ Op x } y="Fgr,  (34)

whereyp is the zero-padded version gf up to lengthP.

itself.
2) Technical results for the Example[in 1V-B.2:
a) The Fourier series[{22)The proof of [22) consists
of three steps. The first one relies on the Fourier relatipnsh
between Cauchy and Laplace functions

28 “BIf| —2jmtf
W+széel%]'#”63

The second step is founded on discrete time n € 7Z
and expansion in a series of integrals:

! 26 _ /e—BIf\ =27 gf
1
_ Z/ 67[5|u7p\ 8723'77711/ dv
PEL 0
1
= / Z e~ Blv=pl o=2mnv g,
0 PEL
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since the invoked series are convergent. The last step i$1@ G. Demoment, “Image reconstruction and restorationer@ew of

simple geometric series calculus:

Ze‘m”_pl _ cosh (v —1/2)

p v e [07 1]7
= sinh /2

[11]

easily obtained by rewriting the series as the sum of a serj¢g
forp € Z_ (i.e.,p < v) and a series fop € Z7 (i.e.,p > v).

b) Conditional processiLet us notev, v’ € [0,1], v > [13]
v'. The partitioned vectod = [a(v),a(V'),a(1)]' = [a]a1]®
is clearly a zero-mean Gaussian vector with covariance [14]
Ya(0) Yol = V') Ya(v)
Rg = '711(” - V/) ’711(0) 711(1/) [15]
Ya(¥) Yo (V') Ya(0)

According to the conditional covariance matrix formulajie]
Raja, = Ra — RL, R;'Ra., we immediately get[{24). [17]
Accounting for the explicit expression for, () given by [23), 18]
simple expansion of hyperbolic functions yiel@s](25).

c) Law of increments:We havery,vs,vf, v € [0,1],
v < vy < V] < V. Let us introduce the collection of the
four valuesa = [a(v1), a(v2), a(vy), a(v})] which is clearly
a zero-mean and Gaussian vector with covariafige The
increment vectod = [a(v2) — a(v1),a(Vy) — a(V))] € C% is
a linear transform of the vectat: 1 = Ha with increment [21]
covarianceR;

[19]

[20]

[22]
-1 1 0 O o ¢ (TP
H_[O 0 -1 1],R1_HR0H_[p 7’5]' 23]
With r; = 2(7a(0)=7a(v2=11)), 7 = 2(7a(0) =7a (2 =¥1)), |24
andp = ya (v — ) +7a (1 — 1)~ Ya (11— 15) ~7a (V2 —1}).
Finally, Taylor development atyy = 0 yields r; = (vo — -
vi)(1 = (v = 1))/201, 7 = (v — V)(1 — (v —14))/200,
andp = (v2 — 1) (V5 — v1)/a1, and proves[(26).
[26]
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