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Bayesian interpretation of periodograms
Jean–François GIOVANNELLI and Jérôme IDIER

Abstract— The usual nonparametric approach to spectral
analysis is revisited within the regularization framework. Both
usual and windowed periodograms are obtained as the squared
modulus of the minimizer of regularized least squares criteria.
Then, particular attention is paid to their interpretation within
the Bayesian statistical framework. Finally, the questionof un-
supervised hyperparameter and window selection is addressed.
It is shown that maximum likelihood solution is both formally
achievable and practically useful.

Index Terms— Quadratic regularization, penalized criterion,
spectral analysis, periodograms, windowing, zero-padding, hy-
perparameters, window selection.

NOTATIONS

FT Fourier Transform
IFT Inverse Fourier Transform
CF Continuous Frequency
DF Discrete Frequency
UP Usual Periodogram
WP Windowed Periodogram
L2 L2

C

([0, 1])

HQ HQ
C

([0, 1])
ℓ2 ℓ2

C

(Z)
F Discrete time FT (ℓ2 → L2)
WN Truncated IFT (L2 → C

N )
W†

N Adjoint operator ofWN

FP Square Fourier matrix (CP → C

P )
WNP Truncated IFT matrix (CP → C

N , N 6 P )
W †

NP Hermitian matrix ofWNP

NN {0, 1, . . . , N − 1}

I. I NTRODUCTION

SPECTRAL ANALYSIS is a fundamental problem in
signal processing. Historical papers such as [1], tutorials

such as [2] and books such as [3, 4] are evidences of the basic
role of spectral analysis, whether parametric or not.

Nonparametric approach has recently prompted renewed
interest [5] (see also [6]) within the regularization framework
and the present contribution brings a new look at these
methods. It provides statistical principles rather than empirical
ones in order to derive periodogram estimators. From this
standpoint, the major contribution of the paper is twofold.
Firstly, it proposes new coherent interpretations of existing
periodograms and modern justification for windowing tech-
niques. Secondly, it introduces a maximum likelihood method
for automatic selection of the window shape.

Jean–François GIOVANNELLI and Jérôme IDIER are with the Laboratoire
des Signaux et Systèmes (CNRS – SUPÉLEC – UPS) SUPÉLEC, Plateau de
Moulon, 91192 Gif–sur–Yvette Cedex, France (emaux: giova@lss.supelec.fr,
idier@lss.supelec.fr).

Moreover, [5] suffers from a twofold limitation. On the
one hand, the proposed model relies on discrete frequency
whereas the frequency is a continuous variable. On the other
hand, restriction to separable regularization functions does not
allow spectral smoothness to be accounted for. The present
contribution overcomes such limitations.

It takes advantage of a natural model in spectral analysis
of complex discrete-time series: the sum of side by side pure
frequencies. Two cases are investigated:

1) the continuous frequency (CF) case which relies on an
infinite number of pure frequenciesν ∈ [0, 1[ with
amplitudesa(ν), a ∈ L2

2) the discrete frequency (DF) one which relies on a finite
number, sayP (usually large), of equally spaced pure
frequenciesνp = p/P , with amplitudesap. Let us note
a = [a0, . . . , aP−1] ∈ CP and ν = [ν0, . . . , νP−1] ∈
[0, 1[P .

For N complex observed samplesy = [y0, . . . , yN−1] ∈
C

N , such models read

CF: yn =

∫ 1

0

a(ν)e2iπνn dν + bn ,

DF: yn = P−1/2

P−1
∑

p=0

ap e2iπpn/P + bn ,
(1)

where b = [b0, . . . , bN−1] ∈ C

N accounts for model and
observation uncertainties. Let us introduceWN andWNP :

CF: WN : L2 −→ C

N ,
DF: WNP : C

P −→ C

N ,
(2)

the CF and DF truncated IFT so that

CF: y = WNa+ b ,
DF: y = WNPa+ b .

(3)

The current problem consists in estimating the amplitudes
a and/ora. Thanks to the linearity of these models w.r.t. the
amplitudes, the problem clearly falls in the class of linear
estimation problems [7–9]. But, in practice, estimation relies
on a finite, maybe small, number of dataN . As a consequence,
in the CF case, a continuous frequency functiona lying in L2

must be selected from onlyN data. Such a problem is known
to be ill-posed in the sense of Hadamard [8]. In the same way,
under the DF formulation, since the amplitudes outnumber the
available data, the problem is underdeterminate.

This kind of problem is nowadays well identified [8, 10]
and can be fruitfully tackled by means of the regularization
approach. This approach rests on a compromise between
fidelity to the data and fidelity to some prior information
about the solution. As mentioned above, such an idea has
already been introduced in several papers [5] but also in [11–
14]. In the autoregressive spectral estimation problem, [11]
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proposes to account for spectral smoothness as a function of
autoregressive coefficients. Otherwise, high resolution spec-
tral estimation has been addressed within the regularization
framework, founded on the Poisson-Gaussian model [14]. The
present paper deepens Gaussian models and is organized as
follows.

Section II focuses on the interpretation of usual peri-
odograms (UP) and Section III deals with the interpretation
of windowed periodograms (WP) both using penalized ap-
proaches with quadratic regularization. Results are exposed
in four Propositions and the corresponding Proofs are given
in Appendix . A Bayesian interpretation is presented in
Section IV while the problem of parameter estimation and
window selection are addressed in Section V. Finally, con-
clusions and perspectives for future works are presented in
Section VI.

II. U SUAL PERIODOGRAM

A. Continuous frequency

The problem at stake consists in estimatinga ∈ L2 given
datay such that (3). A first possible approach is founded on
the Least Squares (LS) criterion

(y −WNa)
†(y −WNa) =

N−1
∑

n=0

∣

∣

∣

∣

yn −
∫ 1

0

a(ν)e2iπνn dν

∣

∣

∣

∣

2

,

but, sinceWN is one-to-many and not many-to-one, there
exists an infinity of solutions inL2. Here, the preferred
solution for raising the indetermination relies on Regularized
Least Squares (RLS). The simplest RLS criterion is founded
on quadratic “separable regularization”:

Qu(a) = (y −WNa)
†(y −WNa) + λ

∫ 1

0

|a(ν)|2 dν , (4)

where “u” stands for usual. The regularization parameter
λ > 0 balances the trade-off between confidence in the data
and confidence in the penalization term. For anyλ > 0, the
Proposition below gives the minimizer̂aλ of (4).

Proposition 1 — (CF/UP). For any λ > 0, the unique
minimizer of (4) reads

âλ(ν) = (1 + λ)−1
N−1
∑

n=0

yne
−2iπνn . (5)

Proof: See appendix A.

B. Discrete frequency

This subsection investigates the DF counterpart of the
previous result. In the DF approach, the LS criterion reads

(y −WNPa)
†(y −WNPa) , (6)

but, sinceWNP is one-to-many and not many-to-one, there
also exists an infinity of solutions inCP . According to the

quadratic “separable regularization”, the correspondingRLS
criterion is

Qu(a) = (y −WNPa)
†(y −WNPa) + λa†a , (7)

with optimum given in the next Proposition.

Proposition 2 — (DF/UP). For any λ > 0, the unique
minimizer of (7) reads

âλ = (1 + λ)−1FP ỹP , (8)

whereỹP denotes the vectory zero-padded up to sizeP .

Proof: See appendix B.

C. Usual periodogram: concluding remarks

In the CF cases, the squared modulus of the penalized
solutions |âλ(ν)|2 is proportional to the usual zero-padded
periodogram. Moreover,|âλ|2 is1 a discretized version of
|âλ(ν)|2 over the frequency gridν. So, within the proposed
framework, separable quadratic regularizationleads to the
usual zero-paddingtechnique associated with the practical
computation of periodograms. Moreover, whenλ tends to
zero, the proportionality factor tends to one. It is noticeable
that, in this case, the criteria (4) and (7) degenerate but their
minimizer does not: they are the solution of the constraint
problems

CF: min
a∈L2

∫ 1

0

|a(ν)|2 dν s.t. y = WNa ,

DF: min
a∈CP

a†a s.t. y = WNPa .

i.e., solution of the noiseless problems adressed in [5, 6].

III. W INDOWED PERIODOGRAM

The previous section investigates the relationships between
the separable regularizers and the usual (non-windowed) peri-
odograms. The present section focuses on smoothing regular-
izers and windowed periodograms (see [15] which analyzes
dozens of windows to compute smoothed periodograms).

A. Continuous spectra

This subsection generalizes the usual norm inL2 to the
Sobolev [16] regularizer:

RQ(a) =

∫ 1

0

Q
∑

q=0

αq

∣

∣

∣

∣

dqa

dνq
(ν)

∣

∣

∣

∣

2

dν ,

which can be interpreted as a measure of spectral smoothness.
The αq are positive real coefficients and can be generalized
to positive real functions [8].RQ is defined onto the Sobolev
space [16]HQ ⊂ L2. Note thatH0 = L2 and that the usual

1If u ∈ C

P , |u|2 denotes the vector of the squared moduli of the
component ofu.
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norm invoked in subsection II-A is the regularizerR0 with
α0 = 1.

Remark 1 — Strictly speaking,RQ(a) is not a spectral
smoothness measure, since it is not a function of|a(ν)| but a
function ofa(ν), including phase. A true spectral smoothness
measure does not depend on the phase ofa(ν) and does not
yield a quadratic criterion. The same remark holds for the
definition of spectral smoothness proposed by Kitagawa and
Gersh [11].

Accounting for spectral smoothness by means ofRQ(a)
yields a new penalized criterion

Qs(a) = (y −WNa)
†(y −WNa) + λRQ(a) , (9)

where the index “s” stands for smoothness.

Proposition 3 — (CF/WP). With the previous notations and
definitions, the minimizer of (9) reads

âω(ν) =

N−1
∑

n=0

ωnyne
−2iπνn , (10)

i.e., a windowed FT. The window shape is

ωn = (1 + λεn)
−1 , (11)

with εp =

Q
∑

q=0

αq(2πp)
2q for p ∈ Z . (12)

Proof: See appendix C.

B. Discretized spectra

This subsection is devoted to the generalization of crite-
rion (7) to non-separable penalization

Qs(a) = (y −WNPa)
†(y −WNPa) + λa†Πaa . (13)

Given that the sought spectrum is circular-periodic, the penal-
ization term has to be designed under circularity constraint.
As a consequence,Πa is a circular matrix, its eigenvalues,
denotedep, p ∈ NP , can be calculated as the FT of the first
row of Πa. Moreover, without loss of generality, we assume
that the diagonal elements ofΠ−1

a are equal to one and any
scaling factor is integrated in the parameterλ.

Proposition 4 — (DF/WP). The minimizer of (13) reads

âw = FP y̆ , (14)

where they̆p = wpỹp for p ∈ NP and

wp = (1 + λep)
−1 .

Proof: See appendix D.

C. Windowed periodograms: concluding remarks

Hence, in the CF case, the squared modulus of the penalized
solution âω is the windowed periodogram associated with
window ωn. Moreover, the DF solution̂aw is a discretized
version of âω, as soon as theen are identified with theεn.
As a conclusionquadratic smoothing regularizersinterpret
windowed periodograms. Moreover, it is noteworthy that
âω(ν) and âw only depend onen andεn for n ∈ NN .

Remark 2 — Empirical power. One can easily show:

CF:
∫ 1

0

|a(ν)|2 dν =
∑N−1

n=0 ω2
n|yn|2 ,

DF: a†a =
∑N−1

n=0 w2
n|yn|2 .

(15)

Hence, the empirical power of the estimated spectra is smaller
than the empirical power of the observed data and equality
holds if and only ifλ = 0.

Example 1 — Zero-order penalization. The most simple
example consists in retrieving the non-windowed case of
section II-A and II-B. Let us apply the previous Propositions 3
and 4 with regularizers

CF:
∫ 1

0

|a(ν)|2 dν i.e., Q = 0 and α0 = 1 ,

DF: a†a i.e., Πa = IP .

(16)

Then, we haveεn = en = 1, the criteria (9) and (13) respec-
tively become (4) and (7) and the solutions (10) and (14) re-
spectively become (5) and (8): as expected, the non-windowed
solutions are retrieved. A more interesting example is the one
given below.

Example 2 — First-order penalization. Let the penalization
term be

CF:
∫ 1

0

|a′(ν)|2 dν ,

DF:
1

2
P 2

P
∑

k=0

|ak − ak−1|2 .
(17)

with aP = a0 for notational convenience of the circularity
assumption. Application of Propositions 3 and 4 respectively
yieldsεn = 4π2n2 (CF case) anden = (1−cos 2πn/P ) (DF
case). The corresponding windows read

CF: ωn = (1 + 4π2n2λ)−1 ,
DF: wn = (1 + λ− λ cos 2πn/P )−1 .

(18)

In the following, we refer to them as the Cauchy and the
inverse cosine windows. Moreover, for a finer discretization
of the spectral domain,limP→∞ en = εn and one can retrieve
the Cauchy window as the limit of the inverse cosine window.
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Fig. 1. Inverse cosine window (lhs) and Cauchy window (rhs) as a function
of λ. In both cases,λ = 0 yields a constant shape. Furthermore, for anyλ,
ω0 = w0 = 1. Otherwise, asλ increases the window shape decreases faster
to zero and the corresponding spectrum is smoothed.

IV. BAYESIAN INTERPRETATION

This section is devoted to Bayesian interpretations of the
penalized solutions presented in Propositions 1, 2, 3 and 4.
Moreover, since usual non-windowed forms are particular
cases of windowed forms, we focus on the latter.

Since the considered criteria are quadratic, their Bayesian
interpretations rely on Gaussian laws. Therefore, the Bayesian
interpretations only require the characterization of means and
correlation structures for the stochastic models at work.

A. Discrete frequency approach

In the DF case,i.e., in the finite dimension vector space,
the Bayesian interpretation of the criteria (7) and (13) as a
posteriorCo-Log-Likelihood is a classical result [10]. Within
this probabilistic framework, the likelihood of the parameters
a attached to the datay is

f(y|a) = (πrb)
−N exp

−1

rb
(y −WNPa)

†(y −WNPa) .

From a statistical viewpoint, it essentially results from the
linearity of the model (3) and from the hypothesis of a zero-
mean, circular (in the statistical sense), stationary, white and
Gaussian noise vectorb, with variancerb.

Moreover, in order to interpret the regularization term
of (13), a zero-mean, circular, correlated Gaussian prior with
covarianceRa = raΠ

−1
a is introduced2. Matrix Π−1

a is the
normalized covariance structure,i.e., all its diagonal elements
are equal to 1, whilera stands for the prior power. So, the
prior density reads

f(a) = (πra)
−N detΠa exp

−1

ra
a†Πaa .

The Bayes rule ensures the fusion of the likelihood and the
prior into theposteriordensity

f(a|y) ∝ exp
−1

rb
Qs(a) ,

whereQs is given by Eq. (13). The regularization parameter
λ is clearlyλ = rb/ra.

Thus, we have a Bayesian interpretation of the criterion (13)
related to windowed periodograms. Interpretation of the cri-
terion (7) related to usual ones results from a white prior:

2Rigorously speaking, this is possible only ifΠa is invertible.
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Fig. 2. Usual windows and the corresponding correlations. The lhs column
shows the time window and the rhs column shows the associatedcorrelations.
From top to bottom: the Hamming, the Hanning, the inverse cosine and the
triangular.

Πa = IP . Finally, interpretations of the RLS solutions (8)
and (14) themselves, result from the choice of the MaximumA
Posteriori (MAP) as a punctual estimate. Moreover, thanks to
the Gaussian character ofposterior law, other basic Bayesian
estimators such asPosterior Mean (PM) and Marginal MAP
(MMAP), are equal to the MAP solution itself.

B. Continuous frequency case

1) General theory: In the CF case, the Bayesian inter-
pretation is more subtle since it relies on continuous index
stochastic processes. Indeed, noposterior likelihood for the
parametera is available. So, there is no directposterior
interpretation of the criteria (4) and (9), nor MAP interpre-
tation of the estimates (5) and (10). Roughly speaking, the
posterior law vanishes everywhere. Nevertheless, there is a
proper Bayesian interpretation of the estimates (5) and (10)
as PM or MMAP as shown below.

Let us introduce a zero-mean, circular (in the statistical
sense) and Gaussian prior law [17] fora. This law is fully
characterized by its correlation structureγa(ν), ν ∈ [−1, 1],
which is entirely described by its values forν ∈ [0, 1] thanks
to Hermitian symmetry. Furthermore, the usual circular-
periodicity assumption fora(ν) results in another symmetry
property:γa(1/2 + ν) = γa(1/2− ν) for any ν ∈ [0, 1/2].

By assumingγa ∈ L2, the latter can be expanded into a
Fourier series:

γa(ν) =
∑

p∈Z

◦

γa(p)e
−2iπνp , ν ∈ [0, 1]

with Fourier coefficients◦

γa ∈ ℓ2 given by:

◦

γa(p) =

∫

[0,1]

γa(ν)e
−2iπνp , p ∈ Z .

Let us noteca(ν) = γa(ν)/ra the normalized correlation and
◦

ca ∈ ℓ2 the corresponding Fourier sequence.
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Proposition 5 — With the previous notations and prior
choice, the posterior mean ofa(ν) is:

E
[

a(ν)|y
]

= âω(ν) =

N−1
∑

n=0

ωnyne
−2iπνn , (19)

with ωn =
[

1 + λ
◦

ca(n)
−1

]−1
. (20)

Proof: See appendix E.

Comparison of (19)-(20) and (10)-(11) immediately gives
the Bayesian interpretation of windowed FT as PM3: ◦

ca(n) =
ε−1
n , i.e., identification of the Fourier coefficients of the prior

correlationca(ν) and the FT of the discrete correlationΠa.
2) Example 3: The present subsection is devoted to a

precise Bayesian interpretation of deterministic examples 1
and 2. As we will see, there is a new obstacle in the Bayesian
interpretation of these examples because the underlying cor-
relations do not lie inL2. In order to overcome this difficulty
we first interpret the penalization of both zero-order and first-
order derivative:

R2(a) = α0

∫ 1

0

|a(ν)|2 dν + α1

∫ 1

0

|a′(ν)|2 (ν) dν . (21)

The case of pure zero-order and pure first-order are obtained
in sections IV-B.2.b and IV-B.2.c as limit processes.

As seen in Proposition 3, Eq. (12), the associated coef-
ficients are:εp = α0 + 4π2α1p

2 , p ∈ Z. According to
Proposition 5, the Fourier series coefficients forγa(ν) are
◦

γa(p) = ε−1
p . It is clear that ◦

γa ∈ ℓ2, henceγa ∈ L2 and

γa(ν) =
∑

p∈Z

1

α0 + 4π2α1p2
e−2iπνp , ν ∈ [0, 1] . (22)

It is shown in Appendix G.2.a that, withα =
√

α0/α1 and
α′ =

√
α0α1, γa(ν) reads

γa(ν) =
coshα(|ν| − 1/2)

2α′ sinhα/2
, ν ∈ [−1, 1] , (23)

and several analytic properties are straightforwardly deduced.
In particular,γa has a continuous derivative over[−1, 1]−{0}
and the slopes atν = 0− andν = 0+ are respectively1/α1

and −1/α1. γa is minimum atν = 1/2 and maximum at
ν = −1, ν = 0 andν = 1. Moreover its integral from 0 to 1
remains constant and equals1/α0.

a) Markov property: The present paragraph addresses
the Markov property of the underlying prior processa(ν) [18,
19]. This process cannot bestricto sensua Markov chain since
it is circular-periodic: “future” frequency and “past” frequency
cannot be independent. However, we show the Markov prop-
erty for the conditional process̄a(ν) = [a(ν)|a(1)]ν∈[0,1[. It
is shown in Appendix G.2.b that its correlation structure reads

γā(ν, ν
′) = γa(ν − ν′)− γa(ν)γa(ν

′)

γa(0)
(24)

=
sinhαν′ sinhα(1 − ν)

α′ sinhα
, (25)

3Sincea(ν)|y is a scalar Gaussian random variableE
ˆ

a(ν)|y
˜

is also the
MMAP.

for any ν, ν′ ∈ [0, 1], ν > ν′. According to the sufficient
factorization of the correlation function proposed in [20,p.64],
it turns out that̄a(ν) is a Markov chain.

b) Limit case asα1 → 0: As α1 tends to zero, it is easy
to show that for eachν ∈]0, 1[, the correlationγa(ν) tends
to zero i.e., there is no more correlation betweena(ν1) and
a(ν2) as soon asν1 6= ν2 and (ν1, ν2) 6= (0, 1). Moreover,
γa(0) andγa(1) tend to infinity while the integral ofγa over
[0, 1] remains1/α0. Roughly speaking, the limit correlation
is a Dirac distribution atν = 0 andν = 1 with weight1/2α0

i.e., the limit process is a circular white Gaussian noise with
“pseudo-power”1/α0.

c) Limit case asα0 → 0: This case is more complex
than the previous one since∀ν ∈ [0, 1], γa(ν) tends to infinity
asα0 tends to zero. So, we propose a characterization of the
limit processvia its increments. Letν1, ν2, ν′1, ν

′
2 ∈ [0, 1],

ν1 < ν2 < ν′1 < ν′2. Let us also note the frequency increments
τν = ν2−ν1 andτ ′ν = ν′2−ν′1 and the vector of the increments
themselvesi = [a(ν2) − a(ν1), a(ν4) − a(ν3)] ∈ C2. This
vector is clearly Gaussian and zero-mean. Furthermore, it is
shown in Appendix G.2.c that its covariance matrix reads

Ri =
1

2α1

[

τν(1− τν) 2τντ
′
ν

2τντ
′
ν τ ′ν(1 − τ ′ν)

]

. (26)

It turns out that the process̃a(ν) = a(ν)−a(0) is a Brownian
bridge [21, p.36].

V. HYPERPARAMETER AND WINDOW SELECTION

The problem of hyperparameter estimation within the regu-
larization framework is a delicate one. It has been extensively
studied and numerous techniques have been proposed and
compared [22–27]. The Maximum Likelihood (ML) approach
is often chosen associated with the Bayesian interpretation.
In the following subsections, we address regularization pa-
rameter estimation and automatic window selection using ML
estimation.

A. Hyperparameters estimation

In our context, the ML technique consists in integrating the
amplitudes out of the problem and maximizing the resulting
marginal likelihood w.r.t. the hyperparameters. Thanks tothe
linear and Gaussian assumptions, the marginal law for the
data, namely the likelihood function, is also Gaussian

f(y ; ra, rb) ∝ (detRy)
−1 exp−y†R−1

y y . (27)

Moreover, the covariance structureRy can be easily derived,
as shown in the two following sections.

1) Discrete frequency marginal covariance:In the present
case, since all random quantities are in a finite dimensional
linear space, the covariance is clearly

Ry = ra(WNPΠ
−1
a W †

NP
+ λIN ) = raΣy .

Accounting for the circular structure of the matrixΠa, we
have Πa = FPΛΠF

†
P , where ΛΠ is the diagonal matrix

of eigenvalues:ep, p ∈ NP . Given the property (33) in
Appendix E,Σy is shown to be diagonal

Σy = diag
[

λ+ e−1
n

]

, n ∈ NN . (28)
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2) Continuous frequency marginal covariance:In the
present case, the marginal covariance matrixRy has already
been derived in Appendix E, Eq. (32). Hence,Ry andΣy are
diagonal:

Σy =
1

ra
Ry = diag

[

λ+ ε−1
n

]

, n ∈ NN . (29)

Remark 3 — In both cases,Σy only depends onen/εn for
n ∈ NN . Consequently the likelihood function and the ML
parameter only depend on theN first coefficients.

3) Maximization: The opposite of the logarithm of the
likelihood, namely the Co-Log-Likelihood (CLL)

CLL(ra, λ) = N log ra + log detΣy +
1

ra
y†Σ−1

y y , (30)

must be minimized w.r.t.ra and λ. Partial minimization is
tractable w.r.t.ra and yieldsr̂a = y†Σ−1

y y/N . Substitution
of r̂a in Eq. (30) gives:

CLL(λ) = log detΣy +N logy†Σ−1
y y . (31)

Furthermore, sinceΣy is a diagonal matrix

CLL(λ) =

N
∑

n=1

log (λ+ e−1
n ) +N log

N
∑

n=1

|yn|2
λ+ e−1

n

= log







N
∏

n=1

(λ+ e−1
n )

[

N
∑

n=1

|yn|2
λ+ e−1

n

]N






,

in the DF case. Substitution ofen by εn yields the CF case.
In both cases,CLL(λ) is the logarithm of the ratio of two
degreeN − 1 polynomials of the variableλ, with a strictly
positive denominator. Minimization w.r.t.λ is not explicit, but
it can be numerically performed.

4) Simulation results:ML hyperparameter selection is il-
lustrated for the problem of Section IV-B.2. Computations
have been performed on the basis of of 512 sample signals
simulated by filtering standard Gaussian noises with the filter
of impulse responseh = [1,−2, 3,−2, 1]. Let us notea⋆ as
the true spectrum.

CLL has been computed on a(α0, α1)-grid of 100 × 100
logarithmically spaced values from10−10 to 1010. The first
observation is that CLL is fairly regular and usually shows a
unique minimum, located between10−1 and101 for α0, and
between10−2 and 1 for α1. However, a few “degenerated”
cases have been observed for whichα̂ML

0 or α̂ML

1 seem to be
null or infinite. Let us note(α̂ML

0 , α̂ML

1 ) as the CLL minimizer4

and âML

RLS
as the corresponding RLS periodogram.

Sincea⋆ is known in the proposed simulation study, various
spectral distances [30] can be computed, as functions ofα0

andα1. L1 distance,L2 distance, the Itakura-Saito divergence
(ISD) as well as the Itakura-Saito symmetric distance (SIS)
have been considered. Each one provides an optimal couple
(α̂L1

0 , α̂L1

1 ), (α̂L2

0 , α̂L2

1 ), (α̂ISD

0 , α̂ISD

1 ), and (α̂SIS

0 , α̂SIS

1 ) respec-
tively. The corresponding spectra are respectively denoted
âL1

RLS, âL2

RLS, âISD

RLS
, and âSIS

RLS
.

4Efficient algorithms are available in order to maximize the likelihood, such
as gradient based [28] or EM type [29]. They have not been implemented
here as far as a mere feasibility study is concerned.
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Fig. 3. Qualitative comparison. True spectra (dotted lines) and estimated
ones (solid lines). The lhs column gives linear plots and therhs column gives
logarithmic plots. From top to bottom6: usual periodograms,̂aL2

RLS
, âISD

RLS
and

âML

RLS
.

According to our experiments, as shown in Fig. 3,âL2

RLS,
âISD

RLS
and thea⋆ can be graded by smoothness and estimation

accuracy. From the smoothest to the roughest, the following
gradation has always been observed:âL2

RLS, a⋆ and âISD

RLS
.

Furthermore,̂aL2

RLS is systematically over-smoothed whileâISD

RLS

is systematically under-smoothed. Moreover, the first one
qualitatively approximates more preciselya⋆ in linear scale,
whereas the second one reproduces more accuratelya⋆ in
a logarithmic scale and especially the two notches. This is
due to the presence of the spectra ratio in the Itakura-Saito
distance which emphasizes the small values of the spectra.

Finally, to our experience and as shown in Fig. 3, the
maximum likelihood solution̂aML

RLS
establishes a relevant com-

promise between̂aL2

RLS and âISD

RLS
since it is smooth enough,

while the two notches remain accurately described.

Quantitative comparisons have been conducted between the
two practicable methods (whena⋆ is not known): the usual
periodogram and the proposed methodi.e., the RLS solution
with automatic ML hyperparameters. The obtained results are
reported in Table I. They clearly show an improvement of
about 40-50% for all the considered distances.

L1 L2 AIS SIS

UP 0.766 1.14 751 750
RLS + ML 0.471 0.567 420 422

Gain 38.5% 50.3% 44.1% 43.8%

TABLE I

QUANTITATIVE COMPARISON. THE FIRST LINE REFERS TO THE USUAL

PERIODOGRAM WHILE THE SECOND ONE REFERS TO THERLS SOLUTION

WITH ML HYPERPARAMETERS. THE THIRD LINE GIVES THE

QUANTITATIVE IMPROVEMENT.
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B. Window selection

It has been shown that the ML technique allows the
estimation of the regularization parameter. The problem of
window selection is now addressed. Let us consider a set ofK
windowsi.e.,K matricesΠk

a for k ∈ NK . Indexk becomes a
new hyperparameter as well asλ, and can be jointly estimated.
The likelihood function (31) is now

CLL(λ, k) = log det (Σk
y) + logNy†(Σk

y)
−1y .

Maximization w.r.t. hyperparameters can be achieved in the
same way as above for each value ofk ∈ NK . The maximum
maximorum can then be easily selected.

Numerous simulations have been performed. They are not
reported here since they show similar results as the previous
ones. However, it has been observed that the triangular
window is the most often selected among: Cauchy, inverse
cosine, Hanning, Hamming and triangle.

VI. CONCLUSION

In this paper, the usual nonparametric approach to spectral
analysis has been revisited within the regularization frame-
work. We have shown that usual and windowed periodograms
could be obtainedvia the minimizer of regularized least
squares criteria. In turn, penalized quadratic criteria are inter-
preted within the Bayesian framework, so that periodograms
are interpretedvia Bayesian estimators. The corresponding
prior is a zero-mean Gaussian process, fully specified by
its correlation function. Particular attention is paid to the
connection between correlation structure and window shape.
As regardsquadraticregularization, the present study signifi-
cantly deepens a recent contribution by Sacchiet al. [5], given
that the latter addresses neither windowed periodograms, nor
the continuous frequencial setting. Extension to thenon-
quadratic [31] and 2D (time-frequency) case would be of
particular interest, and we are presently working at this issue.

Whereas the first part of our contribution provides in-
terpretations of pre-existing tools for spectral analysis, new
estimation schemes are derived in the second part: unsuper-
vised hyperparameter and window selection. It is shown that
maximum likelihood solutions are both formally achievable
and practically useful.

APPENDIX

A. Proof of Proposition 1

Several proofs are available and the proposed one relies on
variational principles [32]. Application of these principles to
quadratic regularization of linear problem yields the functional
equation [8]:

−2W†
N
(y −WNa) + 2λIL2a = 0 ,

where IL2 stands for the identity application fromL2 onto
itself andW†

N stands for the adjoint application ofWN (see
Appendix G.1). After elementary algebra we find:

(W†
N
WN + λIL2)a = W†

N
y .

As shown in Appendix G.1,WNW†
N = IN , then taking the

FT and next the IFT gives:

âλ(ν) = (1 + λ)−1W†
N
y = (1 + λ)−1

N−1
∑

n=0

yne
−2iπνn .

B. Proof of Proposition 2

The minimizer of the RLS criterion (7) obviously is

âλ = (W †
NP

WNP + λIP )
−1W †

NP
y .

One can refer to Appendix F.3 for a detailed calculus required
to analyze the normal matrix(W †

NPWNP + λIP ). W
†
NPWNP

andIP are circulant matrices, this property also holds for their
sum which hence is diagonal in the Fourier basis. Elementary
algebra leads tôaλ

= FP

[

(1 + λ)−1IN ON,P−N

OP−N,N λ−1IP−N

] [

IN
OP−N,N

]

y

= (1 + λ)−1FP ỹP .

C. Proof of Proposition 3

The proof is founded on a time domain version of the
criterion (9), resulting from application of the Plancherel-
Parseval theorem to the successive derivatives ofa:

∫ 1

0

∣

∣

∣

∣

dqa

dνq
(ν)

∣

∣

∣

∣

2

dν =
∑

n∈Z

(2πn)2q|zn|2 ,

wherezn =
∫ 1

0 a(ν)e2iπνn dν. Summation w.r.t.q and inver-
sion of summation w.r.t.q and w.r.t.n, gives

RQ(a) =
∑

n∈Z

en|zn|2 ,

where the weighting coefficientsep fulfill (12). Hence, the
time domain counterpart of criterion (4) reads:

Qs(a) = (y − z)†(y − z) + λ
∑

n∈Z

en|zn|2 .

Thanks to separability, the solution is easily derived:ẑωn =
(1 + λen)

−1yn if n ∈ NN and ẑωn = 0 elsewhere.aω is the
Fourier transform of the sequence{ẑωn}n∈Z

âω(ν) =

N−1
∑

n=0

ẑωne
−2iπνn .

D. Proof of Proposition 4

Elementary linear algebra provides the minimizer of 13

âω = (W †
NP

WNP + λΠa)
−1W †

NP
y .

Accounting for its circular structure, the Fourier basis diago-
nalizesΠa:

Πa = FPΛΠF
†
P
,

where ΛΠ is the diagonal matrix of the eigenvalues
e0, . . . , eP−1 of Πa. Hence,

âω = FP (IP + λΛΠ)ỹP ,
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and we easily find
âω = FP y̆ ,

with y̆p = ωpỹp for p ∈ NP , i.e., the data vector windowed
by

ωn = (1 + λen)
−1 .

E. Proof of Proposition 5

Let ν0 ∈ [0, 1] anda0 = a(ν0). Thanks to the linearity of
the model (3) and thanks to the Gaussian assumption fora and
b, the joint law of(a0,y) is also Gaussian. Hence, the random
variable(a0 |y) is clearly Gaussian and it is well-known that
its mean reads

E
[

a0 |y
]

= Ra0yR
−1
y y ,

where Ra0y = E
[

a0y
†
]

and Ry = E
[

yy†
]

. Elementary
algebra and independence ofa andb yield

Ra0yn
=

∫ 1

0

E
[

a(ν0)a(ν)
∗
]

e−2iπνn dν + E
[

a(ν0)bn
]

=
◦

γa(n)e
−2iπν0n .

Moreover, under the previously mentioned assumptions, the
generic entryRmn for Ry is Rmn = E

[

ymy∗n
]

=

∫ ∫ 1

0

E
[

(a(ν)a(ν′)∗
]

e2iπ(νn−ν′m) dν′ dν + rbδn−m

= (
◦

γa(n) + rb) δn−m , (32)

whereδn stands for the Kronecker sequence. Therefore,Ry

is a diagonal matrix with elements( ◦

γa(n) + rb). Hence

â0 =

N−1
∑

n=0

[

1 + λ
◦

ca(n)
−1

]−1
yne

−2iπν0n ,

with λ = rb/ra.
The present Appendix collects several useful properties of

Fourier operators. In particular, special attention is paid to
WNP and WN . Some of the stated properties are classical.
We have reported them in order to make our notations and
normalization conventions explicit. The other propertiesare
less usual, but all of them have straightforward proofs.

F. Discrete case

1) Structure ofFP : In the case ofN = P , the matrixWNP

identifies with the square matrixF †
P , whereFP performs the

discrete FT for vectors of sizeP . We have the well-known
orthogonality relationsF †

PFP = FPF
†
P = IP andF t

P
= FP .

2) Structure ofWNP : The matrixWNP evaluates the FT
on a discrete grid ofP points for sequences ofN points,
P > N . Straightforward expansion of the product provides:

WNPFP =
[

IN ON,P−N

]

. (33)

As a consequence, we obtain

W †
NP

y = FP

[

IN
OP−N,N

]

y = FP ỹP , (34)

whereỹP is the zero-padded version ofy, up to lengthP .

3) Structure ofW †
NPWNP : The matrixWNPW

†
NP has a

very simple structure since, forP > N : WNPW
†
NP = IN .

Otherwise,W †
NPWNP is a non-negative, Hermitian,P × P

circulant matrix. Circularity results from digonalization in the
Fourier basisFP :

W †
NP

WNP = FPΛF
†
P
,

and, from Eq. (33):

Λ =

[

IN ON,P−N

OP−N,N OP−N,P−N

]

.

As a consequence,W †
NPWNP has only two eigenvalues,1 and

0, of respective orderN andP−N . Such a structure is useful
in the proof of Propositions (2) and (4) in Appendix .

G. Continuous case

1) TheWN operator: The linear applicationWN : a ∈
L2 −→ z ∈ CN is defined byzn =

∫ 1

0
a(ν)e2iπνn dν for

n ∈ NN . The adjoint operatorW†
N : z ∈ CN −→ a = W†

Nz

is the linear operator such that:

∀a ∈ L2, ∀z ∈ CN 〈WNa, z〉
C

N = 〈a,W†
N
z〉

L
2 ,

where〈·, ·〉
C

N and〈·, ·〉
L
2 stand for the standard inner product

in CN andL2, respectively. It is given by:

a(ν) = W†
N
z =

N−1
∑

n=0

zne
−2iπνn .

This can be justified as follows: by inverting the order of the
finite sum

∑N−1
0 and the definite integral

∫ 1

0
, we get

〈WNa, z〉
C

N =

∫ 1

0

a(ν)
N−1
∑

n=0

z∗ne
2iπνn = 〈a,W†

N
z〉

L
2 .

Finally, elementary algebra shows that the composed ap-
plication WNW†

N is the identity application fromCN onto
itself.

2) Technical results for the Example in IV-B.2:
a) The Fourier series (22):The proof of (22) consists

of three steps. The first one relies on the Fourier relationship
between Cauchy and Laplace functions

2β

β2 + 4π2t2
=

∫

R

e−β|f | e−2jπtf df , t ∈ R

The second step is founded on discrete timet = n ∈ Z
and expansion in a series of integrals:

2β

β2 + 4π2n2
=

∫

R

e−β|f | e−2jπnf df

=
∑

p∈Z

∫ 1

0

e−β|ν−p| e−2jπnν dν

=

∫ 1

0

∑

p∈Z

e−β|ν−p| e−2jπnν dν ,
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since the invoked series are convergent. The last step is a
simple geometric series calculus:

∑

p∈Z

e−β|ν−p| =
coshβ(ν − 1/2)

sinhβ/2
, ν ∈ [0, 1] ,

easily obtained by rewriting the series as the sum of a series
for p ∈ Z− (i.e.,p 6 ν) and a series forp ∈ Z∗

+ (i.e.,p > ν).
b) Conditional process:Let us noteν, ν′ ∈ [0, 1], ν >

ν′. The partitioned vector̄a = [a(ν), a(ν′), a(1)]t = [ã|a1]t
is clearly a zero-mean Gaussian vector with covariance

Rā =





γa(0) γa(ν − ν′) γa(ν)
γa(ν − ν′) γa(0) γa(ν

′)
γa(ν) γa(ν

′) γa(0)



 .

According to the conditional covariance matrix formula,
Rã|a1

= Rã − Rt
ãa1

R−1
a1

Rãa1
we immediately get (24).

Accounting for the explicit expression forγa(ν) given by (23),
simple expansion of hyperbolic functions yields (25).

c) Law of increments:We haveν1, ν2, ν′1, ν
′
2 ∈ [0, 1],

ν1 < ν2 < ν′1 < ν′2. Let us introduce the collection of the
four valuesa = [a(ν1), a(ν2), a(ν

′
1), a(ν

′
2)] which is clearly

a zero-mean and Gaussian vector with covarianceRa. The
increment vectori = [a(ν2) − a(ν1), a(ν

′
2) − a(ν′1)] ∈ C2 is

a linear transform of the vectora: i = Ha with increment
covarianceRi

H =

[

−1 1 0 0
0 0 −1 1

]

, Ri = HRaH
t =

[

ri ρ
ρ r′i

]

.

with ri = 2(γa(0)−γa(ν2−ν1)), r′i = 2(γa(0)−γa(ν
′
2−ν′1)),

andρ = γa(ν2−ν′2)+γa(ν1−ν′1)−γa(ν1−ν′2)−γa(ν2−ν′1).
Finally, Taylor development atα0 = 0 yields ri = (ν2 −
ν1)(1− (ν2 − ν1))/2α1, r′i = (ν′2 − ν′1)(1− (ν′2 − ν′1))/2α1,
andρ = (ν2 − ν1)(ν

′
2 − ν′1)/α1, and proves (26).
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