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Asymptotic Properties of the Algebraic Constant
Modulus Algorithm

Alle-Jan van der VeerMember, IEEE

Abstract—The algebraic constant modulus algorithm (ACMA) is needed (order number of sources squared), and the number of
is a noniterative blind source separation algorithm. It computes constant modulus signals can be detected as well. Convergence
jointly beamforming vectors for all constant modulus sources as s not an issue. It has been successfully applied to real data in a

the solution of a joint diagonalization problem. In this paper, we ietv of ios f {0 i imult v [29
analyze its asymptotic properties and show that (unlike CMA) it Variety of scenarios for up to six sources simultaneously [29].

converges to the Wiener beamformer when the number of samples ~ The potential performance of the CMA receiver, i.e., the
or the signal-to-noise ratio (SNR) goes to infinity. We also sketch its minima of the modulus error cost function to which the adaptive

connection to the related JADE algorithm and derive a version of CMA tries to converge, has been studied in detail recently
ACMAthatconverges_toazgro-_forcmg beamformer. _Thlsglve§ im- in a series of papers by Tong, Johnson, and others [7], [9],
proved performance in applications that use the estimated mixing . e :
matrix, such as in direction finding. [18], [32], [33]. These papers provide quantitative evidence
. . . : for the observation already made by Godard that the minima
Index Terms—Array signal processing, blind beamforming, con- -
stant modulus algorithm, simultaneous diagonalization. of the constant modulus cost function are often very near the
(nonblind) Wiener receivers or linear minimum mean square
error (LMMSE) receivers.
. INTRODUCTION Although very promising, the performance of ACMA has not

ONSTANT modulus algorithms (CMAs) enjoy wide-been studied so far, except empirically and with seemingly con-
spread popularity as methods for blind source separatiadicting conclusions [17], [22]. In this paper, we make a start at

and equalization of communication signals. First derived agheoretical analysis by investigating the asymptotic properties
LMS_type adaptive equa”zers by Godard [8] and Treicleer of ACMA. The main result is that with Gaussian nOise, ACMA
al. [24], [25], CMAs are straightforward to implement, robustconvergesexactlyto the Wiener solution when the number of
and computationally of modest complexity. Quite soon, tHe@mples or the signal-to-noise ratio (SNR) goes to infinity.
algorithms were also applied to blind beamforming (spatial The analysis is based on a reformulation of ACMA as a
source separation), which gave rise to the similar constdatirth-order statistics method. As such, it can be directly
modulus array [21]. An extensive literature exists, but it wilflerived from the CMA cost function by replacing the nonlinear
not be cited here; instead, we refer to the special issue of @flimization by two steps: a linear one in which a subspace
PROCEEDINGS OF THEIEEE, October 1998, and, in particularis found, followed by a nonlinear optimization restricted to
[10], [26], and references therein. this subspace. This reformulation shows that ACMA is closely

Despite its effectiveness and apparent simplicity, adaptive ifi¢lated to the JADE algorithm by Cardoso and Souloumiac
plementations of the CMA come along with several compl[4], which is a well-known blind beamforming algorithm
cating factors that have never really been solved. In particulf@! separating independent non-Gaussian sources. We sketch
convergence can be slow (order hundreds of samples) at anti§- relations between the two algorithms. This complements
predictable speed depending on initialization, and the step stheé known relations between JADE and the larger class of
may have to be tuned to avoid stability problems. For the putlgebraic fourth-order cumulant-based separation techniques
pose of blind source separation, an additional complicationk@sed on contrasts or cumulant matching [5], [6], [12], [19],
that only a single source is found at a time. To recover the otHéP], [30], [31], [34]; see [2] and [3] for an overview. An
signals successively or in parallel, the previous solutions havegpiring start to this analysis was found in [20] and [30], in
be removed from the data, or independence constraints musv%‘éCh relations between several fourth-order source separation
introduced, with additional complications for the convergencdgorithms are investigated, including CMA and JADE. In
[11], [14]-[16], [21], [233]. these papers, the algorithms are placed in a common framework

The algebraic constant modulus algorithm (ACMA) was inef least squares matching of fourth-order cumulants, where
troduced in [29] as an algebraic method for computing the coiifie beamformer after a prewhitening step is constrained to be
plete collection of beamformers in one shot, as the solution ofigitary. The essential role played by this prewhitening step (in

generalized eigenvalue problem. Only a small batch of sampfast, the prewhitening suggested in [20] is inaccurate) is not

. . . . _ . noted in [20] and [30] . Indeed, it will be shown here that the
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for some applications such as direction finding, a zero-forciy = [a; --- a4] € CM*¢ is the array response matrix. The
beamformer is preferred because its inverse provides an unbivs of S € C**¥ contain the samples of the source signals.
ased estimate of the mixing matrix from which the directionBoth A andS are unknown, and the objective is, giv&n to
can be estimated. For this case, we construct a slightly modififaad a factorizationX = AS such thatSij| = 1. Ifthe problem
version of ACMA that asymptotically in the number of samis identifiable, ther8 is recovered up to the usual indetermina-
ples converges to a point close to the zero-forcing solution. Adies of arbitrary scalings and ordering of its rows. Alternatively,
algorithms (CMA, ACMA, ZF-ACMA, and JADE) are subse-and more conveniently, we try to find a beamforming matrix

quently tested in simulations and compared with the WieneraWd = [wy, ..., wy] € CM>¢ of full row rank d such that
zero-forcing receivers. S = WHX.
Outline: Section Il defines the problem, and Section Il In the presence of additive noise, we wiitg = As;, + ny,

provides a compact presentation of the original ACMA. Wer
subsequently look at the connection to the CMA cost function
(Section 1V), the noise-free properties (Section V), and the X =AS +N. (6)
asymptotic properties of the algorithm in noise (Section VI),
from which it follows that ACMA converges to the Wiener Assumptions:Model assumptions used in the analysis are
solution. We also derive a version of ACMA that approximatel¢ummarized as follows.
converges to the zero-forcing solution (Section VII) and ) M>d N> d&
compare CMA, ACMA, ZF-ACMA, and JADE in simulations
(Section VIII).

Notatlon We adopt the following notation:

Complex conjugation.

2) A has full column ranki.

3) The signals are assumed to be random, independent
identically distributed (i.i.d.), zero mean, circularly
symmetric, with modulus equal to 1. Note that this rules

T
H Matr!x tranerJose . out BPSK (:1) sources.

atr!x compiex conjugate transpose. . 4) The noise is assumed to be additive white, zero mean,
t Matrix pseudo-inverse (Moore—Penrose inverse).

hi dd circularly symmetric, complex Gaussian distributed with
— \P/rew |tefne” 0 ata. covarianceR,, = E(nn") = +I and independent from
ector of all Os. the sources.

0

L Vector of 5.‘" Ls. . 5) The noise-free problem is considered essentially identifi-
E() Mathematical expectation operator. able

Vi
@
o]

edq A)  Stacking of the columns @A into a vector. e _ )
Kronecker product. Identifiability: We will assume that the problem essen-
Khatri-Rao product (column-wise Kroneckert'a”y identifiable, i.e., that for a given matriX of sizeM x N,
product): we can find a factorizatio®X = AS (|SU| = 1), which is
unigque up to the above-mentioned phase-and-ordering indeter-
minacies. Despite extensive research on CMA, minimal condi-
AoB:=[a,®b; a, @by -] tions that guarantee this identifiability for finit€ are not com-
pletely known, nor will they be studied in this paper. ACMA
Notable properties are, for matricds B, ... and vectors, b équiresy > d? and sufficiently exciting signals. By counting
of compatible sizes the number of equations and unknowns (a not completely con-
vincing argument), it was motivated in [29] that identifiability

veqab') = (1) s expected in general already fat > 2d and sufficiently ex-
citing signals.
(AoB)(CoD)= CT® BD 2) Wiener and Zero-Forcing Beamformer$Ve will compare
veo(ABC) (C ®A) veqB) (3) the outcome of ACMA to two beamformers that assume
veq Adiag(b)C) = ( A)Db. (4) known source dat&, namely, the Wiener beamformer and

the zero-forcing beamformer. In a deterministic context, the
Wiener beamformer based on sample data is derived as the

Il. DATA MODEL AND PRELIMINARIES solution to the LMMSE problem

Consider d independent sources, transmitting com-
plex-valued signalss;(¢) with constant modulus waveforms

(|si(t)| = 1) in a wireless scenario. The signals are received W = arg min [WHX — SHF (sxhHH

by an array of M antennas, demodulated to baseband and 1

§ampled with period”. We stack the resulting out.pu:tg(kT). _ <_ XX”) —XS”. @)
into vectorsx;, = x(k7) and collectV samples in a matrix N N

X: M x N. Assuming that the sources are sufficiently nar- _
rowband in comparison to the delay spread of the multipafts &Y — ©c: the Wiener beamformer converges to
channel, this leads to the well-known data model

xp=Asy & X =AS. (5) W =R;'A. (8)
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Likewise, the zero-forcing beamformer based on sample data is

simply a left-inverse of a least-squares estimata afr WH =
AT, where

A — aresnin X — ASIZ — x57 — Lxcgi (L ggn)
A—arggnlnHX AS||p =XS' = NXS <N SS ) .

X ©)
As N — oo, we have thatA — A and that the zero-forcing
beamformer converges to

W =AM, (10)

I1l. DERIVATION OF THE ACMA

A. Algorithm Outline

We summarize the derivation of the basic ACMA algorithm
for the noiseless case (see also [29]). The objective is to find all
independent beamforming vectoss that reconstruct a signal
with a constant modulus, i.e.,

wix, = &, such that |5]? =

1(k=1,...,N).

Let x; be thekth column ofX. By substitution, we find

H

wi(xxhw =1, k=1,..., N. (11)
Note thatw" (x,.x!)w = (X, @x;)" (Wow). We can stack the

rows (X @ x)! of the data into a matri := [X o X]" (size

N x d?). Then, (11) is equivalent to finding ai that satisfy
Py =1, Yy=WRWwW.

This is a linear system of equations, subject to a quadratic con-

straint. The linear system is overdetermined ofite d?, and

we will assume that this is the case.

In general outline, the ACMA technique solves this problem

using the following steps.

1) First, Solve the Linear Systeliy = 1. Note that there
are at least! independent solutions to the linear system,
namely,w; @ w; (: = 1, ..., d). In addition, however, a
linear combination of these solutions

Yy=AM(W1 W)+ -+ MWy ®wWy)

(scaled such thgt” A; = 1) will also solvePy = 1.
To find a basis of solutions, 1€} be any unitary ma-
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The conditionpfy = 1 is momentarily dropped since
it can always be satisfied by a scaling pficf. step 3)
below]. All solutions to the conditioy = 0 are found
from a basiqy; } of the null space of the matri&, which

is conveniently obtained from an SVD &f. Generically
(after prefiltering, see below), there are precisélolu-
tions.

Decouple Find a basis{w; @ wi, ..., Wg ® wy} of
structured vectors that span the same linear subspace as
{¥1, ..., ¥4} This can be formulated as a subspace fit-
ting problem

2)

— 2
= arg i Y — M

W = arg min [[Y - (W e W) M|,
whereY = [y1, ..., yq], andM is a full-rankd x d
matrix that relates the two bases of the subspace. Alter-
natively, we can formulate this as a joint diagonalization
problem since

[ = (Wow) M} = (Wo

W) mZHF

Z HYZ
T

=3 Y- wa W

wherem,; is theith column ofM, A; = diagm,) is the
diagonal matrix constructed from this vector, a¥d is

the matrix obtained by unstackigg such that ve€y ;) =

yi; we have also used (4). The latter equation shows that
all Y; can be diagonalized by the same ma The
resulting joint diagonalization problem is a generaliza-
tion of the standard eigenvalue decomposition problem
and can be solved [29]. An overview and comparison of
techniques for this is found in [12].

3) In Step 1), we implemented the conditiéy = 0 but
dropped the scaling conditigit'y = 1 and, thus, lost the
correct scaling of thev;. Rather than constrainimyl or
the A;, this is more easily fixed by scaling each solution
such that the average output power

1 1
N Z |(si)k]* = N Z Wi XpXp Wi
k=1 k=1
1 &
k=1
is equal to 1.

trix such thaiQ1 = V/N [g], for example, found by com- | 46 noise-free case and with > d2, this algorithm produces

puting a QR factorization dft. P]. Apply Qto[1 P]
and partition the result as

~H

—_ 1 p
Q[1 P]_.\/N[O G}. (12)
Then
Py=1 < Q[ P][ 1}:0
y
¢ {ﬁHyzl (13)
Gy=0

the exact separating beamform@af = AH,
By squaring (12), we obtain explicit expressions foand a
matrix C := GHG that will be useful later:

—P”1 =

Zxk®xk
A 1

C::GHG:NPHP—

1 _ _ H
=% Z (X @ x1) (Xp @ Xp)

_ [% Zﬁ@xk} [% Zn@xkr. (15)

p
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The former expression shows that

ol ! :
p= ~ Z Xn @ Xp = vec<N Z xkxl,g> =vedR;)

whereR,, is the sample covariance matrix of the data. Thus (for
y=wow)

plly = wiR,w (16)

and we see that the conditigii'y = 1 in (13) is implemented
by step 3) of the algorithm outline, where the average output
power of each beamformer is fixed to 1.

The significance o is two fold. First, its null space is ev-
idently the same as that &; hence, we can obtain the basis
{y.;} from an eigenvalue decomposition@f Numerically, this
is not advisable, but an analysis of this null space is much easier
done forC since it has fixed size and converges to a maftix
asN — oo. Second, as a closer inspection of equation (15)
shows(1/N)C has animportant interpretation as beingdbe
variance matrix of the sample data covariaride (andé isa
sample estimate df).

subspace filter source sep.
X
= ™ | &
d d
H
ACMA

Fig. 1. Blind beamforming prefiltering structure.

Given X, compute beamformers W and § = W"X:

1.

SVD: X =:U¥V

EVD of €, let {y;} be th

(¢2
Q

least dominant
eigenvectors.

Y;=vecly; (i=1,,d)

Find T to jointly diagonalize Y; as Y; = TA; T"

3. Scale each column of T to norm 1.

B. Whitening and Rank Reduction o N
Set W=0,3;1T and § = T*X

A crucial aspect of the above technique is that the basi$
should not contain other components than the desjfed®
w; }; otherwise, we cannot pose the problem as a joint diag-
onalization. For this, it is essential that there are precigely S R q - )
linearly independent solutions By = 1 and no additional IS prewhitening is such thdt, := (1/N)XX" is unity:
spurious solutions. However, additional solutions exiifs = = I, anditalsoreduces the dimensior®ofrom A/ rows to

rank deficient, e.g., because the number of sensors is larger tA4RWS- After prewhitening, we can continue with the algorithm,

the number of sources\(tall). This is simply treated by a pre- S outlined before. o

filtering operation that reduces the number of rowsXofrom  The resulting algorithm is summarized in Fig. 2. In compar-

M to d, as we discuss here. ison w!th the outline, an additional mgre@ent is the prefiltering,
The underscore () is used to denote prefiltered variablesfor Which an SVD of the data matriX is needed. The pre-

Thus, letX := FFX, whereF: M x d. Then filtering is primarily used to reduce the dimension. The prefer-

ence for a prefilter thawhitensthe data covariance matrix fol-

lows from an analysis of the algorithm in the presence of noise,

as done in the next sections.

X has onlyd channels, and@\: d x d is square. The blind beam-

forming problem is now replaced by finding a separating beam-

forming matrix T: d x d with columnst;, acting onX (see IV. FORMULATION AS AN OPTIMIZATION PROBLEM

Fig. 1). AfterT has been found, the beamforming matrix onthe e AcmA procedure outlined in the previous section was

original data will beW = FT. _ derived for the noiseless case. With noise, the same algorithm is
Assur2ne that the noise is white i.i.d. with covariance mat_”ﬁfsed unchanged, but obviously, the resulting beamformers will

R, = o”L. We can choosE' such that the resulting data matrix,e gise_perturbed as well. The analysis of their properties is

. . kay o H .
X is white, as follows. Le®R, = (1/N)XX" be the noisy taijitated if we write these as the solutions of an optimization
sample data covariance matrix, with eigenvalue decomp03|t|8pbb|em' This will also point out the correspondence to CMA.

H The CMA cost function is usually defined as [24]
ﬂH] . @7

n

Fig. 2. Summary of ACMA.

X =AS+N, where A :=F"A N:=F'N.

R, = US?U" = [fjs fjn}

$2
. . . ) . W = arg min E(|§k|2— 1)2, 5, = wilxy. (29)
Here,U is M x M unitary, and®? is M x M diagonal & con- w

tains the singular values of/v'N). Thed largest eigenvalues . o 4 finite batch ofV data samples, we cannot solve (19).

) ) 5 )
are collected |_ntoAa diagonal matms“a_nd the correspclndmg . Therefore, we pose a corresponding least squares problem
eigenvectors intdJ; (they span the “signal subspace”). In this

notation, define as
5 = wilx,. (20)

~ ~ i 1 .
F = UsEs—l. (18) W = argmin v Z (|3k|2 _ 1)2’
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We refer to this as the CMA(2,2) problem in this paper; its orthonormal basiy = [y1, ..., y4| for thed-dimen-
solution coincides with that of (19) &8 — oo. Introducing sional approximate nullspace &f (or C)
y = w ® w and using the factorization in (12), we derive that

. . Y = argmin [|GY||} = argmin Z yiCy;
N 2 2 - H/— 2 YHy=1 YHy=1
whose solution is the set dfleast dominant eigenvec-

~ 2
= ||Py - 1”2 p'ly — 1" + Gyl tors of C. It then looks for unit-norm vectors in this
subspace that best fit the required structare t © t
Let ¥ be the (structured) minimizer of this expression, and de- by considering
fine 3 = pfly. Equation (16) shows it is the output power of the
beamformer correspondmgfq and henceg > 0. Regar.d.mg T = arg min HY (T MHF
;3 as some known fixed constant, we can add a condition that T, M
pHly = 7 to the optimization problem without changing the
outcome: We thus see that ACMA and CMA(2,2) are closely related, pro-
vided we whiten the data using the noisy data covariance matrix
¥ = argmin [py — 1|2 +|Gy])? R... As we will show in Section VI, the two-step approach taken
y=wow by ACMA makes it converge to the Wiener solution in (8) as
pry=p ) ) N — o0, whereas CMA(2,2) is known to be close but generally
B r;rfwlgal 18 =17 + 1G]] unequal to the Wiener solution [9], [32].
pry=p
= argmin ||Gy||2_ V. ANALYSIS OF THE NOISE-FREE CASE
y;;";f;” The analysis of ACMA in the noisefree case can be limited

to an analysis of the solutions Goy = 0, WhereCO =C
Sinceg is real and positive, replacing by 1 will only scale is as defined in (15), and for future distinction, the “0” @
the solutiony to (1/3)y and does not affect the fact that it hass introduced to indicate that there is no noise. If the solutions
a Kronecker structure. The scaled conditipfty = 1 in turn {y;} span the same subspace as spannefiwWay® w;; i =
motivates in a natural way the choice of a prewhitening filter, ..., d}, then the joint diagonalization step is able to separate
F U, E ! as given in (18). Indeed, we derived in (16) thaan arbltrary basis of the null space into its rank-1 components,
piy = wHRxw If we change variables to = 3;1Ulx and and we recover the true beamformers.
w = U,¥7't, thenR, = T, and With x; = Asyg, we obtain from (15) that

ply = whR,w = tft = |||, Co=[A2A]C, [AcAl" (22)

Moreover(t@t)(tat) = tHt @ttt = ||t||*. Itthus follows where
thatp'y = 1 & ||t @ t|| = 1. Hence, up to a scaling that is not

important! the CMA(2,2) optimization problem is equivalent C, = 1 Z (51 @ s2)(5r @ s
to solving N
1 _ 1 _ =
. - — [Z Sk ®Sk:| — [Zsk ®Sk:| . (23)
t = argmin ||Gy||? = argmin y"Cy. (21) N N
y=t®t y=t®t A . e o o
llyll=1 llyll=1 C, is positive semidefinite because it is constructed’gs=
o GHG. Hence, the null space &f, has two components: the
and settingw = U, 37 't. null space of A © A]" plus vectory such thafA ® A"y is a
At this point, ACMA and CMA(2,2) diverge in two distinct vector in the null space dF,. The purpose of prefiltering with
but closely related directions. dimension reduction is to remove the former solutions before-

—  CMA(2,2) numerically optimizes the minimizationhand by working withC, = [A @ A]C,[A ® AJ", whereA
problem in (21) and find independent solutions. Theis a square full-rank matrix. In that cask®,® A is also square
solutions will be unit-norm vectoryg that have the full rank, with an empty null space. Thus, the interesting part is
required Kronecker structure and minimi#&y||?. the analysis of the null space 6%, which is only dependent on
With noise, the solutions will not exactly be in thethe signals and not on their mixing.
approximate nullspace & since this space will not For the sake of exposition, we spemal@g for the case of

admit the Kronecker structure. two CM signalss; (k) ands;(k). Define
— ACMA is making a twist on this problem. Instead
of solving for the true minimum, it first finds an . Z a:=1-|p]?
las well as he fact that (if/ > d) the prewhitening also involves a dimension -+ ]2 heqg— p>
reduction: This will forcew = U, X't to lie in the dominant column span N =a=r

of X. We ignore this effect here.
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Then (suppressing the time index) The solutions_t(yHéoy = 0 are thus spanned by a basis of the
null space ofA@ A (removed by prefiltering with dimension
5181 reduction) plus linear combinations of the desired solutions
A 1 518 — —
C, =— Z o2 [8151 §152 §281 8252] W1 O Wi, W2 © Wa.
N 2= | 3538

If only the desired solutions are present in the null space of

5252 Cy, then the joint diagonalization step can find them from an
5151 arbitrary basis of this subspace.
1 182 | 1 The above analysis easily generalizes to more than two sig-
N Z _ N Z [5151 5152 251 5259] nals. A key property that is valid for any number of signals and
ko | 20 k explicitly used by the algorithm is the fact that certain columns
S282 (and rows) ofC; are identically zero. This property comes from
1 op B 17 1 |sx]? = 1 alone and followsy constructiorfor any number of
_ o _ samples. We do not have to wait for asymptotic convergence of
_|p L a o _|r L p 7 1 the cross terms to zero. Many other blind source separation tech-
p q 1 p 0 nigues require stochastic independence and rely on this. This
1 p 7 14 1 aspect is the key to the good small-sample performance that can
~ _ be achieved with constant modulus signals.
0 0 0 O
_ 0 a b 0 (24) VI. AsYMPTOTIC BEHAVIOR OF ACMA WITH NOISE
0 b a0 An analysis of the asymptotic behavior of ACMA in noise
L0 0 0 0] will reveal the close connections of this method with other blind

_ _ R source separation methods based on fourth-order moments. As-
We immediately see thal'; has null space vectors sume that we comput€ in the same way as in (15). AS —
o, C converges to

C:=E [ @x) (X © x1)]
—E[Z§k®xk:|E|:Zik®Xk:|H~ (26)

These are the desired null space vectors. The remathing We will first analyze the structure of in terms of the data
submatrix in the center of (24) is hopefully nonsingular. If thE'0delxx = Asj + ny.

sources are independent and circularly symmetric, then asymp-

totically (in N) ¢ — 0 andp — 0 so thate — 1 andb — 0. A Cumulants

Thus, for a sufficiently large number of samples, it is clear that The asymptotic analysis requires the introduction of fourth-
the submatrix is nonsingular with probability 1. Singularity ocerder cumulants. For a zero-mean stochastic vectaith com-
curs almost surely only with BPSK-type signals (for whice=  ponents,, define the fourth-order cumulants

b) [29], and for this case, a modified algorithm called RACMA

(25)

o O O
= o o o

has to be used to avoid the additional solutions [27]. 'if,’zlc = Ccum(z;, T;, T, T1)
The null space of, contains vectorg for which[A@ Ay = E(z,7;2171) — E(2:7; ) E(zr7)
is a vector in the null space dof,, i.e.,Either vector in (25). — E(2i7)E(zx7;) — Elzizi)EE; )
Assuming thatA has full column rankA ® A also has full
column rank. LetW = [w; w»] be a separating beamformefyheres, j, k, 1 = 1, ..., d, andd is the dimension ok. We
such thatWHA = T; then assume circularly symmetric sources (hence non-BPSK) so that

the last term vanishes. If we collect th¢i into a matrixK,,
AcA]"[WoW|=A"WoA W =IoI=1  with entriesK, 4 11 = ]}, then

from which we see that K. =E[xox)(xex)"] - Ex o x|Ex®x|"
T

-1 - — E[XXH] ®E[XXH] .

[A®A] H (W1 ©wy) = 8 Note Fh_at Exx'] = R,, EX® x] = veqdR,,.). Compared with
0 (26), it is seen that

07 C=K,+R!IoR,. (27)
AoAl"(w ~ |0
[ ® ] (W2 @ w2) = 0 Cumulants have several well-known nice properties, such as

1] multilinearity, addivity, and the fact that Gaussian signals have
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zero cumulants. For our mode}. = As;. + ng, defines, =  into the expression fo€ in (27) and using (28), we obtain that
> s;(k)e;, wheree; is theith unit coordinate vector. Let us alsoasymptotically N — o), C converges to

define the auto-cumulants
C=FoF'CFoF)

Ki = CUM(S;, 5, i, 5;). :(F®F)HKJ;(F®F)+I®I
— — H
Assuming independent signals, additivity implies =[A®A]K, [A®A] . +1
— [AoA](-D[EoA]" 41 (31)
K, = Z rile; @ eil[e; @] " Consequently, the CMA(2,2) cost function (21) becomes as

i=1 N — x©
Circularly symmetric CM signals have autocumulasts= —1.

: H
ing i i arg C
Further assuming independent Gaussian ndiég & 0), we argmin -y Ly

y=tet, lyll=1

obtain _ H
= argmin yH{@oé] (-I)[AcA] +I}y
K.=[AcA]K,[A2A]" +K, y=tot llyl=1
_ _ H = argmax yo { [AcA] [AcA] H} y. (32)
=[AcA](-I)[AcA]". (28) y=tet, llyll=1

Using these properties, we can derive thdthout noise(or Unlike CMA(2,2), ACMA does not optimize (32) directly but
R, = AA™), the CMA(2,2) or ACMA criterion matrixC =  Solves the unstructured problem first. Indeed, it looks for an un-

Cy converges asymptotically ify to constrained/-dimensional basi$y; } of the null space o€ or,
equivalentlyd dominant eigenvectors Ao A] [AocA]". Since
Co=K, +RIeoR, this is a rankd matrix, we have that thé dominant eigenvectors
- H ——q . together span the same subspace as the column spAr &];
=[AcA]K,[A0A] +AA @ AA hence, asymptotically — <)
— — H
_ RoAlC, Mo Al ey =velAca]=spartmoa .. mioal

eAs a second step, the joint diagonalization procedure is used

Note thatC, = K, + L is diagonal, with zero entries at th to replace the unstructured basis by one that has the required

location of the source autocumulants, and *1” entries elseWh?{?onecker product structure, i.el,independent vectors of the

on the diagonal. Like in the finite sample case, the null spage "~ AREAE .
of C., is given by{e; © e; }, and hence, the null space 6fby f5rm € ® t within this column span. From the above equation,

— ‘ — H (o s we see that the unique solutiontis® t; = a, ® a; (up to a
éy;ifmginﬂys the null space g @ AJ™ (this is removed scaling to make; have unit norm), and thus

With noise(or R,, = AA™ + R,,), C converges asymptoti- t; = a; i=1.....d
cally in N to - Y
Hence, the beamformer on the whitened problem is equal to the
C=K.+R, @R, whitened direction vector (a matched spatial filter). If we go
K, + (AAH 1 Rn)T & (AAH + Rn) back to th_e resultir_wg beamformer on the original (unwhitened)
data matrixX, we find (fori = 1, ..., d)
it CO + E + Cn

whereCy is given in (29), and
L sinceF = U, X% RyY = US?2UY = U Z20H 4+
E:=AA"®R,+RI®AA", C,:=R!@R,. (30) 02U, Ul and Ua; = 0. We have just shown that as
i . N — oo, the beamformers provided by ACMA converge to

Thus, the noise contributes a second-order and a fourth-or§lgs \wiener receivers (8). In general, this is a very attractive
term to the ACMA criterion matrixC, even if the noise has Zeroproperty.
fourth-order cumulants. If we do not correct for it and proceed Does this two-step procedure solve the CMA(2,2) optimiza-
as in the noise-free case, this will result in a certain bias at thg, problem (32)? This is not likely since in this asymptotic
output of the beamformer. As we show next, this biasis precisqjxse, ACMA finds its structured solutions only inside the

such that ACMA converges to the Wiener solution. subspace spanned by the columngA&fo A]. A solution to
_ . CMA(2,2) is expected to be close to a dominant eigenvector of
B. Asymptotic Analysis of ACMA [A o A][A o AJH, but it is not restricted to be inside the sub-

In the analysis of ACMA, we also have to take the effect afpace. Thus, if the eigenvectors are not equdhio® a; }, the
the initial prewhitening step into account. Recall that this st€pMA(2,2) optimal solution might be different. This happens
is X = FPX such thaiR, = F'R,F = I Introducing this if the columns ofA are not orthogonal, but there are only two
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situations where the columns @ are precisely orthogonal: Given data X, estimate a zero-forcing beamformer W
if there is no noise, or (assuming white Gaussian noise) if 1. SVD:X=:USv

the columns of the unwhitened are orthogonal. This is a Prefiltering: X := £7108X

rather special case, approximately trug if the sources are well C= 1ymexn) e+

separated, and the number of sensors is large. Thus, CMA(2,2) e o H

does in general not lead to the Wiener solution. This result ‘[TVZ&@X’J {N 23k®’—‘k] :
matches that in the equalization context [9]. Obviously, if the E:=19%%+3;?01

noise is small, then the discrepancy will be small as well. GEVD of (C,E), let {y;} be the d least dominant

H e1genvectors.
C. Connection to JADE 2. Congtinue as in the usual ACMA, step 2 (figure 2)
JADE [4] is a widely used algorithm for the blind separation
of independent non-Gaussian sources in white Gaussian noise. It
is based on the construction of the fourth-order cumulant matrix

N (28) but uses a different prefiltering strategy, namEly:  might make the results less accurate. This problem was noted

U (22 —021)~4/? WhereU andX, are estimated from the in [1], where optimal combinations of second- and fourth-order

eigenvalue decomposmon . The prefiltering leads t&X =  statistics are presented.

FEX = AS + N, whereA = FEA. This choice is motivated  In summary, we can say that JADE and ACMA are quite sim-

by the fact that asV — oo, F converges t&F = U, X7t ilar but differ in the following points.

whereU 4 andX 4 are minimal-size factors of the SVD & = —  The prefiltering scheme ACMA, such that ¥s— oo,

U3 4V 4, and thus converges to a Wiener solution and JADE to a zero-
forcing beamformer.

— JADE explicitly relies on stochastic independence of
sources, whereas ACMA explicitly relies on the CM
property. This leads to different finite sample behavior.

— JADE, as in [4], forces the unitarity @&, which leads
to saturation of the performance for large SNRs and
finite number of samples.

Fig. 3. ZF-ACMA.

A=3]'"UlA=V,

which is a unitary matrix. Asymptotically, the sample fourth-
order cumulant matri¥ .. converges to

K.=[AcA] (-I) [AoA]"

JADE computes a basis of the dominant column spaKQf
which in the asymptotic situation spans the same subspace as VII. ZERO-FORCING ACMA
) We have seen before, in (30), thatsis— oo, C — C =
{Ei @ag; i=1,..., d} Cy + E + C,,, whereC is the noise-free part, arld andC,,
represent noise bias terms that cause ACMA to converge to the
Wiener solutionW = R !A. If an unbiased estimate & is
desired (e.g., for direction estimation), then we cannot simply
T=A=V, = W=FT=U,3;'V,=A invert W, as is usually done. We could ma¥ to an unbiased
= estimate ofA via premultiplication byR. ., but the finite-sample
Hence, this strategy leads asymptotically to the zero-forcifgjoperties of this appear not to be very good. Here, we look at
beamformer [cf. (10)], as well as the trdematrix. an alternative based on estimating and removing the noise terms
Apart from different prefiltering, the asymptotic equationom C, to obtain an estimate oF,. This technique was first
of JADE and ACMA look rather similar. JADE searches fopresented in [28].
eigenvectors corresponding to nonzero eigenvalues given by théet us assume that we know the noise covariaRge We
nonzero entries oK, which, here, are equal te1, whereas cannot knowk since it depends on noise-free data, but we can
ACMA looks for the null space vectors generated by the zef@nstruct
entries ofK, + I. The result is the same. - - T
However, the finite-sample properties are quite different. In E:=R; ®R,+ R, ®Ro. (34)
the absence of noise, the null space informatio@afi ACMA
is exact by construction, and hence, the algorithm produces WgenN - >
exact separating beamformers. The dominant column span of -~ H T H T
Km used in JADE is not exact since the signal sources do not E - AAd%o R.+R, @ AA"+ 2R, @R,
decorrelate exactly in finite samplek, is a full matrix. Thus, sg that
keeping the number of samples fixed, the performance of JADE

Like ACMA, it then performs a joint diagonalization to identify
the vectorsa ;. After correcting for the prefiltering, we find

saturates as SNRs oc. C-E+R'eoR, — G
Furthermore, in the proposed implementation in [4], JADE
explicitly uses the fact that (with tkﬁ_lUg -prefiltering) A = is an asymptotically unbiased estimate(af. If we can assume

V 4 and is hence unitary. It thus forces the jomtdlagonallzatldhat||R |2 < ||AAY|2, i.e., the SNR is sufficiently large,
to produce a unitary matrix. A finite-sample problem is tRat then we can ignor®& ! @ R,, compared withe and useC — E
does not reveal yet the trld 4 and X4, and the restriction to estimateCy.
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Fig. 4. SINR performance of ACMA, ZF-ACMA, CMA, and JADE.

Let us now assume that the noise is white with covarian&nce C, is rank deficient with a kernel of dimensiaf) we
R, = 21 but that the noise powexr? is unknown. Redefining can estimater? as the (average of the) smalleseigenvalues
E as of the matrix penci C, E), corresponding to the generalized
. . . eigenvalue equation
E:=R;oI+I®R,
it follows that we have available the data matri¢ggsand E, (C - AE) y=0.

satisfying the approximate model (ignoring fourth-order terms) ) ] o
An estimate of the basigy; } of the kernel oiCy is given by the

C-’E~ C,. corresponding eigenvectors. At this point, we can continue with
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Fig. 5. SIR performance of ACMA, ZF-ACMA, CMA, and JADE, as function/éfand SNR.

the joint diagonalization and recover the beamforming matrig diagonal and constructed without much additional effort. The
W. Asymptotically as botllv — oo and SNR— oo, we obtain resulting algorithm is summarized in Fig. 3.
W — ATH,

The algorithm is called ZF-ACMA. As in ACMA, a di-
mension-reducing prefilterin@ is necessary. If we take the
same prewhitening prefilter as in ACMA, then after whitening,
R,=ILandR, =022 2. ThusE=I032+32a1I

VIIl. SIMULATIONS

Some performance results are shown in Figs. 4-6. In the
simulations, we took a uniform linear array with = 4

21t was first presented as W-ACMA in [28]. antennas spaced at half wavelengths, dnd 3 equal-power
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constant-modulus sources with directiord0°, 0°, 20° re- 10

signal 1 DOA=[-10,0,20] | —5— aAcmaA

spectively. We compare the performance of ACMA, ZF-ACMA, q Mg | JADE

d=3 -
JADE, and CMA. ., SNR=10dB |- oomn S

ACMA as used here is the original algorithm as presented
in [29], which is almost as the algorithm presented here, except
that the joint diagonalization is implemented as a joint Schur de-
composition, with perhaps slightly different results. The CMA
used for reference is obtained as the numerically determined op-
timum of the deterministic CMA(2,2) cost function (20), fér
independent beamformers, using a gradient technique initialized
by the sample data Wiener recei®df = (SX)H with known
S. Note that this is not a practical algorithm; it describes the best
performance of CMA for a block ofV data samples and may )
not be achieved by the usual sample-adaptive algorithm. s 2 3

In Fig. 4, we vary the number of samplés and the SNR. Number of samples N
The performance measure is the residual signal-to-interference-
plus-noise ratio (SINR) at the output of the beamformers. We Fig. 6. DOA estimation performance for varyiag.
only consider the SINR of the worst output channel and find a
permutationII that maximizes this. Specifically, the SINR |sW H and estimate the directions from the individual columns

10"

RMSE of DOA [deg]

defined here as of A. This technique was proposed in [13]. Fig. 6 shows a test
of this, in a scenario with three equal powered sources with di-

sinr(a, w) = wh (aal!) w rections[—10, 0, 20], for varying N, and an SNR of 10 dB. The
’ ) HAAH —aall 4+ 52w graph shows the root mean squared error of the DOA estimate

o . of the first source and the Cramer—Rao bound (CRB) for this

SINR(A, W) :=[sinr(ay, wi) - sinr(ag, W)l model [13]. It is seen that the estimate from ACMA is biased

SINR := max min SINR(A, WII). so that its performance saturatesMs— oo, whereas the esti-
I mates from ZF-ACMA and JADE are asymptotically error free.

The reference performance is that of a Wiener receiver bagderACMA has a small advantage over JADE, which s to be ex-
on sample data with know8, i.e., W = (SX")H, as in (7). Pected since more information on the sources is used.
As seen from the left column of the figure, ACMA converges
asymptotically (inN) to the Wiener beamformer. CMA is IX. CONCLUDING REMARKS

known theoretically not to reach this performance, but it is We have shown that ACMA converges to the Wiener solution
seen that for positive SNR, the performance_ is almost identiga{ samples or SNR), whereas the minima of the CMA(2,2) cost
to that of ACMA. The right column of the figure shows thafunction only have this property if there is no noise or the mixing

the SINR performance of JADE saturates as function of SNRatrix is orthogonal. However, for positive SNR, the differences
(as predicted). CMA, ACMA, and ZF-ACMA do not have thisin SINR performance are rather insignificant.

problem. Furthermore, we have derived a modification (ZF-ACMA)
Fig. 5 shows the signal-to-interference ratio (SIR) perfofyhich is close to the zero-forcing solution if the noise power
mance, which is defined similarly as is small (say SNR better than 10 dB). We have made a per-
Hi H formance comparison with the related JADE algorithm, which
sir(a, w) := W (aaT)w separates independent non-Gaussian sources based on their
wH(AAT —aaf)w nonzero kurtosis. The conclusion is not unequivocal because
SIR(A, W) :=[sir(a;, wi) --- sir(aq, wa)] JADE converges to a zero-forcing beamformer asymptotically
in the number of samples but not in SNR. In the simulation
SIR:= max min SIR(A, WII). example, we saw that fa¥ > 20 samples and SNR 10 dB,

ZF-ACMA has the best SIR performance, and ACMA has the

This indicates how well the computed beamforming matNx best SINR performance.
isaninverse ofA, up to an arbitrary permutation. The reference In a future submission, we will consider in detail theoretical
performance is that of a zero-forcing (ZF) beamformer based expressions for the finite sample performance of ACMA, in par-
sample data with know8, as given in (9). ticular, expressions that predict the covarianc®ofaind the re-

It is seen that the SIR performance of ACMA saturates asilting SINR as function ofV, o2, andA.
function of vV (for finite SNR) because it converges to the
Wiener solution, and hence, it is biased. The whitening in REFERENCES
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