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Asymptotic Properties of the Algebraic Constant
Modulus Algorithm

Alle-Jan van der Veen, Member, IEEE

Abstract—The algebraic constant modulus algorithm (ACMA)
is a noniterative blind source separation algorithm. It computes
jointly beamforming vectors for all constant modulus sources as
the solution of a joint diagonalization problem. In this paper, we
analyze its asymptotic properties and show that (unlike CMA) it
converges to the Wiener beamformer when the number of samples
or the signal-to-noise ratio (SNR) goes to infinity. We also sketch its
connection to the related JADE algorithm and derive a version of
ACMA that converges to a zero-forcing beamformer. This gives im-
proved performance in applications that use the estimated mixing
matrix, such as in direction finding.

Index Terms—Array signal processing, blind beamforming, con-
stant modulus algorithm, simultaneous diagonalization.

I. INTRODUCTION

CONSTANT modulus algorithms (CMAs) enjoy wide-
spread popularity as methods for blind source separation

and equalization of communication signals. First derived as
LMS-type adaptive equalizers by Godard [8] and Treichleret
al. [24], [25], CMAs are straightforward to implement, robust,
and computationally of modest complexity. Quite soon, the
algorithms were also applied to blind beamforming (spatial
source separation), which gave rise to the similar constant
modulus array [21]. An extensive literature exists, but it will
not be cited here; instead, we refer to the special issue of the
PROCEEDINGS OF THEIEEE, October 1998, and, in particular,
[10], [26], and references therein.

Despite its effectiveness and apparent simplicity, adaptive im-
plementations of the CMA come along with several compli-
cating factors that have never really been solved. In particular,
convergence can be slow (order hundreds of samples) at an un-
predictable speed depending on initialization, and the step size
may have to be tuned to avoid stability problems. For the pur-
pose of blind source separation, an additional complication is
that only a single source is found at a time. To recover the other
signals successively or in parallel, the previous solutions have to
be removed from the data, or independence constraints must be
introduced, with additional complications for the convergence
[11], [14]–[16], [21], [23].

The algebraic constant modulus algorithm (ACMA) was in-
troduced in [29] as an algebraic method for computing the com-
plete collection of beamformers in one shot, as the solution of a
generalized eigenvalue problem. Only a small batch of samples

Manuscript received April 13, 2000; revised April 30, 2001. The associate
editor coordinating the review of this paper and approving it for publication
was Dr. Alex C. Kot.

The author is with the Department of Electrical Engineering/DIMES,
Delft University of Technology, Delft, The Netherlands (e-mail:
allejan@cas.et.tudelft.nl).

Publisher Item Identifier S 1053-587X(01)05854-8.

is needed (order number of sources squared), and the number of
constant modulus signals can be detected as well. Convergence
is not an issue. It has been successfully applied to real data in a
variety of scenarios for up to six sources simultaneously [29].

The potential performance of the CMA receiver, i.e., the
minima of the modulus error cost function to which the adaptive
CMA tries to converge, has been studied in detail recently
in a series of papers by Tong, Johnson, and others [7], [9],
[18], [32], [33]. These papers provide quantitative evidence
for the observation already made by Godard that the minima
of the constant modulus cost function are often very near the
(nonblind) Wiener receivers or linear minimum mean square
error (LMMSE) receivers.

Although very promising, the performance of ACMA has not
been studied so far, except empirically and with seemingly con-
tradicting conclusions [17], [22]. In this paper, we make a start at
a theoretical analysis by investigating the asymptotic properties
of ACMA. The main result is that with Gaussian noise, ACMA
convergesexactlyto the Wiener solution when the number of
samples or the signal-to-noise ratio (SNR) goes to infinity.

The analysis is based on a reformulation of ACMA as a
fourth-order statistics method. As such, it can be directly
derived from the CMA cost function by replacing the nonlinear
optimization by two steps: a linear one in which a subspace
is found, followed by a nonlinear optimization restricted to
this subspace. This reformulation shows that ACMA is closely
related to the JADE algorithm by Cardoso and Souloumiac
[4], which is a well-known blind beamforming algorithm
for separating independent non-Gaussian sources. We sketch
the relations between the two algorithms. This complements
the known relations between JADE and the larger class of
algebraic fourth-order cumulant-based separation techniques
based on contrasts or cumulant matching [5], [6], [12], [19],
[20], [30], [31], [34]; see [2] and [3] for an overview. An
inspiring start to this analysis was found in [20] and [30], in
which relations between several fourth-order source separation
algorithms are investigated, including CMA and JADE. In
these papers, the algorithms are placed in a common framework
of least squares matching of fourth-order cumulants, where
the beamformer after a prewhitening step is constrained to be
unitary. The essential role played by this prewhitening step (in
fact, the prewhitening suggested in [20] is inaccurate) is not
noted in [20] and [30] . Indeed, it will be shown here that the
precise choice of the prewhitening is crucial for the asymptotic
convergence of ACMA to the Wiener receiver and of JADE to
a zero-forcing receiver.

Wiener receivers are attractive because they maximize the
output signal-to-interference-plus-noise ratio (SINR). However,
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for some applications such as direction finding, a zero-forcing
beamformer is preferred because its inverse provides an unbi-
ased estimate of the mixing matrix from which the directions
can be estimated. For this case, we construct a slightly modified
version of ACMA that asymptotically in the number of sam-
ples converges to a point close to the zero-forcing solution. All
algorithms (CMA, ACMA, ZF-ACMA, and JADE) are subse-
quently tested in simulations and compared with the Wiener and
zero-forcing receivers.

Outline: Section II defines the problem, and Section III
provides a compact presentation of the original ACMA. We
subsequently look at the connection to the CMA cost function
(Section IV), the noise-free properties (Section V), and the
asymptotic properties of the algorithm in noise (Section VI),
from which it follows that ACMA converges to the Wiener
solution. We also derive a version of ACMA that approximately
converges to the zero-forcing solution (Section VII) and
compare CMA, ACMA, ZF-ACMA, and JADE in simulations
(Section VIII).

Notation: We adopt the following notation:
Complex conjugation.
Matrix transpose.
Matrix complex conjugate transpose.
Matrix pseudo-inverse (Moore–Penrose inverse).
Prewhitened data.
Vector of all 0s.
Vector of all 1s.

E Mathematical expectation operator.
vec Stacking of the columns of into a vector.

Kronecker product.
Khatri–Rao product (column-wise Kronecker
product):

Notable properties are, for matrices and vectors
of compatible sizes

vec (1)

(2)

vec vec (3)

vec (4)

II. DATA MODEL AND PRELIMINARIES

Consider independent sources, transmitting com-
plex-valued signals with constant modulus waveforms

in a wireless scenario. The signals are received
by an array of antennas, demodulated to baseband and
sampled with period . We stack the resulting outputs
into vectors and collect samples in a matrix

. Assuming that the sources are sufficiently nar-
rowband in comparison to the delay spread of the multipath
channel, this leads to the well-known data model

(5)

is the array response matrix. The
rows of contain the samples of the source signals.
Both and are unknown, and the objective is, given, to
find a factorization such that . If the problem
is identifiable, then is recovered up to the usual indetermina-
cies of arbitrary scalings and ordering of its rows. Alternatively,
and more conveniently, we try to find a beamforming matrix

of full row rank such that
.

In the presence of additive noise, we write ,
or

(6)

Assumptions:Model assumptions used in the analysis are
summarized as follows.

1) , .
2) has full column rank .
3) The signals are assumed to be random, independent

identically distributed (i.i.d.), zero mean, circularly
symmetric, with modulus equal to 1. Note that this rules
out BPSK ( ) sources.

4) The noise is assumed to be additive white, zero mean,
circularly symmetric, complex Gaussian distributed with
covariance E and independent from
the sources.

5) The noise-free problem is considered essentially identifi-
able.

Identifiability: We will assume that the problem isessen-
tially identifiable, i.e., that for a given matrix of size ,
we can find a factorization ( ), which is
unique up to the above-mentioned phase-and-ordering indeter-
minacies. Despite extensive research on CMA, minimal condi-
tions that guarantee this identifiability for finite are not com-
pletely known, nor will they be studied in this paper. ACMA
requires and sufficiently exciting signals. By counting
the number of equations and unknowns (a not completely con-
vincing argument), it was motivated in [29] that identifiability
is expected in general already for and sufficiently ex-
citing signals.

Wiener and Zero-Forcing Beamformers:We will compare
the outcome of ACMA to two beamformers that assume
known source data , namely, the Wiener beamformer and
the zero-forcing beamformer. In a deterministic context, the
Wiener beamformer based on sample data is derived as the
solution to the LMMSE problem

(7)

As , the Wiener beamformer converges to

(8)
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Likewise, the zero-forcing beamformer based on sample data is
simply a left-inverse of a least-squares estimate ofor

, where

(9)
As , we have that and that the zero-forcing
beamformer converges to

(10)

III. D ERIVATION OF THE ACMA

A. Algorithm Outline

We summarize the derivation of the basic ACMA algorithm
for the noiseless case (see also [29]). The objective is to find all
independent beamforming vectors that reconstruct a signal
with a constant modulus, i.e.,

such that

Let be the th column of . By substitution, we find

(11)

Note that . We can stack the
rows of the data into a matrix (size

). Then, (11) is equivalent to finding all that satisfy

This is a linear system of equations, subject to a quadratic con-
straint. The linear system is overdetermined once , and
we will assume that this is the case.

In general outline, the ACMA technique solves this problem
using the following steps.

1) First, Solve the Linear System . Note that there
are at least independent solutions to the linear system,
namely, ( ). In addition, however, a
linear combination of these solutions

(scaled such that ) will also solve .
To find a basis of solutions, let be any unitary ma-

trix such that , for example, found by com-
puting a QR factorization of . Apply to
and partition the result as

(12)

Then

(13)

The condition is momentarily dropped since
it can always be satisfied by a scaling of[cf. step 3)
below]. All solutions to the condition are found
from a basis of the null space of the matrix , which
is conveniently obtained from an SVD of. Generically
(after prefiltering, see below), there are preciselysolu-
tions.

2) Decouple: Find a basis of
structured vectors that span the same linear subspace as

. This can be formulated as a subspace fit-
ting problem

where , and is a full-rank
matrix that relates the two bases of the subspace. Alter-
natively, we can formulate this as a joint diagonalization
problem since

where is the th column of , diag is the
diagonal matrix constructed from this vector, and is
the matrix obtained by unstackingsuch that vec

; we have also used (4). The latter equation shows that
all can be diagonalized by the same matrix. The
resulting joint diagonalization problem is a generaliza-
tion of the standard eigenvalue decomposition problem
and can be solved [29]. An overview and comparison of
techniques for this is found in [12].

3) In Step 1), we implemented the condition but
dropped the scaling condition and, thus, lost the
correct scaling of the . Rather than constraining or
the , this is more easily fixed by scaling each solution
such that the average output power

(14)

is equal to 1.
In the noise-free case and with , this algorithm produces
the exact separating beamformer .

By squaring (12), we obtain explicit expressions forand a
matrix that will be useful later:

(15)
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The former expression shows that

vec vec

where is the sample covariance matrix of the data. Thus (for
)

(16)

and we see that the condition in (13) is implemented
by step 3) of the algorithm outline, where the average output
power of each beamformer is fixed to 1.

The significance of is two fold. First, its null space is ev-
idently the same as that of ; hence, we can obtain the basis

from an eigenvalue decomposition of. Numerically, this
is not advisable, but an analysis of this null space is much easier
done for since it has fixed size and converges to a matrix
as . Second, as a closer inspection of equation (15)
shows, has an important interpretation as being theco-
variance matrix of the sample data covariance (and is a
sample estimate of ).

B. Whitening and Rank Reduction

A crucial aspect of the above technique is that the basis
should not contain other components than the desired

; otherwise, we cannot pose the problem as a joint diag-
onalization. For this, it is essential that there are precisely
linearly independent solutions to and no additional
spurious solutions. However, additional solutions exist ifis
rank deficient, e.g., because the number of sensors is larger than
the number of sources ( tall). This is simply treated by a pre-
filtering operation that reduces the number of rows offrom

to , as we discuss here.
The underscore () is used to denote prefiltered variables.

Thus, let , where . Then

where

has only channels, and is square. The blind beam-
forming problem is now replaced by finding a separating beam-
forming matrix with columns , acting on (see
Fig. 1). After has been found, the beamforming matrix on the
original data will be .

Assume that the noise is white i.i.d. with covariance matrix
. We can choose such that the resulting data matrix

is white, as follows. Let be the noisy
sample data covariance matrix, with eigenvalue decomposition

(17)

Here, is unitary, and is diagonal ( con-
tains the singular values of ). The largest eigenvalues
are collected into a diagonal matrix and the corresponding
eigenvectors into (they span the “signal subspace”). In this
notation, define as

(18)

Fig. 1. Blind beamforming prefiltering structure.

Fig. 2. Summary of ACMA.

This prewhitening is such that is unity:
, and it also reduces the dimension offrom rows to

rows. After prewhitening, we can continue with the algorithm,
as outlined before.

The resulting algorithm is summarized in Fig. 2. In compar-
ison with the outline, an additional ingredient is the prefiltering,
for which an SVD of the data matrix is needed. The pre-
filtering is primarily used to reduce the dimension. The prefer-
ence for a prefilter thatwhitensthe data covariance matrix fol-
lows from an analysis of the algorithm in the presence of noise,
as done in the next sections.

IV. FORMULATION AS AN OPTIMIZATION PROBLEM

The ACMA procedure outlined in the previous section was
derived for the noiseless case. With noise, the same algorithm is
used unchanged, but obviously, the resulting beamformers will
be noise-perturbed as well. The analysis of their properties is
facilitated if we write these as the solutions of an optimization
problem. This will also point out the correspondence to CMA.

The CMA cost function is usually defined as [24]

E (19)

Given a finite batch of data samples, we cannot solve (19).
Therefore, we pose a corresponding least squares problem

(20)
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We refer to this as the CMA(2,2) problem in this paper; its
solution coincides with that of (19) as . Introducing

and using the factorization in (12), we derive that

Let be the (structured) minimizer of this expression, and de-
fine . Equation (16) shows it is the output power of the
beamformer corresponding to, and hence, . Regarding

as some known fixed constant, we can add a condition that
to the optimization problem without changing the

outcome:

Since is real and positive, replacing by 1 will only scale
the solution to and does not affect the fact that it has
a Kronecker structure. The scaled condition in turn
motivates in a natural way the choice of a prewhitening filter

, as given in (18). Indeed, we derived in (16) that
. If we change variables to and

, then , and

Moreover, . It thus follows
that . Hence, up to a scaling that is not
important,1 the CMA(2,2) optimization problem is equivalent
to solving

(21)

and setting .
At this point, ACMA and CMA(2,2) diverge in two distinct

but closely related directions.

— CMA(2,2) numerically optimizes the minimization
problem in (21) and find independent solutions. The
solutions will be unit-norm vectors that have the
required Kronecker structure and minimize .
With noise, the solutions will not exactly be in the
approximate nullspace of since this space will not
admit the Kronecker structure.

— ACMA is making a twist on this problem. Instead
of solving for the true minimum, it first finds an

1as well as he fact that (ifM > d) the prewhitening also involves a dimension
reduction: This will forcew = Û �̂ t to lie in the dominant column span
of X. We ignore this effect here.

orthonormal basis for the -dimen-
sional approximate nullspace of (or )

whose solution is the set ofleast dominant eigenvec-
tors of . It then looks for unit-norm vectors in this
subspace that best fit the required structure
by considering

We thus see that ACMA and CMA(2,2) are closely related, pro-
vided we whiten the data using the noisy data covariance matrix

. As we will show in Section VI, the two-step approach taken
by ACMA makes it converge to the Wiener solution in (8) as

, whereas CMA(2,2) is known to be close but generally
unequal to the Wiener solution [9], [32].

V. ANALYSIS OF THE NOISE-FREE CASE

The analysis of ACMA in the noisefree case can be limited
to an analysis of the solutions of , where
is as defined in (15), and for future distinction, the “0” in
is introduced to indicate that there is no noise. If the solutions

span the same subspace as spanned by ;
, then the joint diagonalization step is able to separate

an arbitrary basis of the null space into its rank-1 components,
and we recover the true beamformers.

With , we obtain from (15) that

(22)

where

(23)

is positive semidefinite because it is constructed as
. Hence, the null space of has two components: the

null space of plus vectors such that is a
vector in the null space of . The purpose of prefiltering with
dimension reduction is to remove the former solutions before-
hand by working with , where
is a square full-rank matrix. In that case, is also square
full rank, with an empty null space. Thus, the interesting part is
the analysis of the null space of , which is only dependent on
the signals and not on their mixing.

For the sake of exposition, we specialize for the case of
two CM signals and . Define
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Then (suppressing the time index)

(24)

We immediately see that has null space vectors

(25)

These are the desired null space vectors. The remaining
submatrix in the center of (24) is hopefully nonsingular. If the
sources are independent and circularly symmetric, then asymp-
totically (in ) and so that and .
Thus, for a sufficiently large number of samples, it is clear that
the submatrix is nonsingular with probability 1. Singularity oc-
curs almost surely only with BPSK-type signals (for which
) [29], and for this case, a modified algorithm called RACMA

has to be used to avoid the additional solutions [27].
The null space of contains vectors for which

is a vector in the null space of , i.e., either vector in (25).
Assuming that has full column rank, also has full
column rank. Let be a separating beamformer
such that ; then

from which we see that

The solutions to are thus spanned by a basis of the
null space of (removed by prefiltering with dimension
reduction) plus linear combinations of the desired solutions

If only the desired solutions are present in the null space of
, then the joint diagonalization step can find them from an

arbitrary basis of this subspace.
The above analysis easily generalizes to more than two sig-

nals. A key property that is valid for any number of signals and
explicitly used by the algorithm is the fact that certain columns
(and rows) of are identically zero. This property comes from

alone and followsby constructionfor any number of
samples. We do not have to wait for asymptotic convergence of
the cross terms to zero. Many other blind source separation tech-
niques require stochastic independence and rely on this. This
aspect is the key to the good small-sample performance that can
be achieved with constant modulus signals.

VI. A SYMPTOTICBEHAVIOR OF ACMA WITH NOISE

An analysis of the asymptotic behavior of ACMA in noise
will reveal the close connections of this method with other blind
source separation methods based on fourth-order moments. As-
sume that we compute in the same way as in (15). As

, converges to

E

E E (26)

We will first analyze the structure of in terms of the data
model .

A. Cumulants

The asymptotic analysis requires the introduction of fourth-
order cumulants. For a zero-mean stochastic vectorwith com-
ponents , define the fourth-order cumulants

cum

E E E

E E E E

where , and is the dimension of . We
assume circularly symmetric sources (hence non-BPSK) so that
the last term vanishes. If we collect the into a matrix

with entries , then

E E E

E E

Note that E , E vec . Compared with
(26), it is seen that

(27)

Cumulants have several well-known nice properties, such as
multilinearity, addivity, and the fact that Gaussian signals have
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zero cumulants. For our model , define
, where is the th unit coordinate vector. Let us also

define the auto-cumulants

cum

Assuming independent signals, additivity implies

Circularly symmetric CM signals have autocumulants .
Further assuming independent Gaussian noise ( ), we
obtain

(28)

Using these properties, we can derive thatwithout noise(or
), the CMA(2,2) or ACMA criterion matrix

converges asymptotically in to

(29)

Note that is diagonal, with zero entries at the
location of the source autocumulants, and “1” entries elsewhere
on the diagonal. Like in the finite sample case, the null space
of is given by , and hence, the null space ofby

, plus the null space of (this is removed
by prefiltering).

With noise(or ), converges asymptoti-
cally in to

where is given in (29), and

(30)

Thus, the noise contributes a second-order and a fourth-order
term to the ACMA criterion matrix , even if the noise has zero
fourth-order cumulants. If we do not correct for it and proceed
as in the noise-free case, this will result in a certain bias at the
output of the beamformer. As we show next, this bias is precisely
such that ACMA converges to the Wiener solution.

B. Asymptotic Analysis of ACMA

In the analysis of ACMA, we also have to take the effect of
the initial prewhitening step into account. Recall that this step
is such that . Introducing this

into the expression for in (27) and using (28), we obtain that
asymptotically , converges to

(31)

Consequently, the CMA(2,2) cost function (21) becomes as

(32)

Unlike CMA(2,2), ACMA does not optimize (32) directly but
solves the unstructured problem first. Indeed, it looks for an un-
constrained -dimensional basis of the null space of or,
equivalently, dominant eigenvectors of . Since
this is a rank- matrix, we have that thedominant eigenvectors
together span the same subspace as the column span of ;
hence, asymptotically ( )

span

span span

As a second step, the joint diagonalization procedure is used
to replace the unstructured basis by one that has the required
Kronecker product structure, i.e.,independent vectors of the
form within this column span. From the above equation,
we see that the unique solution is (up to a
scaling to make have unit norm), and thus

Hence, the beamformer on the whitened problem is equal to the
whitened direction vector (a matched spatial filter). If we go
back to the resulting beamformer on the original (unwhitened)
data matrix , we find (for )

(33)

since ,
, and . We have just shown that as

, the beamformers provided by ACMA converge to
the Wiener receivers (8). In general, this is a very attractive
property.

Does this two-step procedure solve the CMA(2,2) optimiza-
tion problem (32)? This is not likely since in this asymptotic
case, ACMA finds its structured solutions only inside the
subspace spanned by the columns of . A solution to
CMA(2,2) is expected to be close to a dominant eigenvector of

, but it is not restricted to be inside the sub-
space. Thus, if the eigenvectors are not equal to , the
CMA(2,2) optimal solution might be different. This happens
if the columns of are not orthogonal, but there are only two
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situations where the columns of are precisely orthogonal:
if there is no noise, or (assuming white Gaussian noise) if
the columns of the unwhitened are orthogonal. This is a
rather special case, approximately true if the sources are well
separated, and the number of sensors is large. Thus, CMA(2,2)
does in general not lead to the Wiener solution. This result
matches that in the equalization context [9]. Obviously, if the
noise is small, then the discrepancy will be small as well.

C. Connection to JADE

JADE [4] is a widely used algorithm for the blind separation
of independent non-Gaussian sources in white Gaussian noise. It
is based on the construction of the fourth-order cumulant matrix

in (28) but uses a different prefiltering strategy, namely,
, where and are estimated from the

eigenvalue decomposition of . The prefiltering leads to
, where . This choice is motivated

by the fact that as , converges to ,
where and are minimal-size factors of the SVD of

, and thus

which is a unitary matrix. Asymptotically, the sample fourth-
order cumulant matrix converges to

JADE computes a basis of the dominant column span of,
which in the asymptotic situation spans the same subspace as

Like ACMA, it then performs a joint diagonalization to identify
the vectors . After correcting for the prefiltering, we find

Hence, this strategy leads asymptotically to the zero-forcing
beamformer [cf. (10)], as well as the true-matrix.

Apart from different prefiltering, the asymptotic equations
of JADE and ACMA look rather similar. JADE searches for
eigenvectors corresponding to nonzero eigenvalues given by the
nonzero entries of , which, here, are equal to , whereas
ACMA looks for the null space vectors generated by the zero
entries of . The result is the same.

However, the finite-sample properties are quite different. In
the absence of noise, the null space information ofin ACMA
is exact by construction, and hence, the algorithm produces the
exact separating beamformers. The dominant column span of

used in JADE is not exact since the signal sources do not
decorrelate exactly in finite samples: is a full matrix. Thus,
keeping the number of samples fixed, the performance of JADE
saturates as SNR .

Furthermore, in the proposed implementation in [4], JADE
explicitly uses the fact that (with the -prefiltering)

and is hence unitary. It thus forces the joint diagonalization
to produce a unitary matrix. A finite-sample problem is that
does not reveal yet the true and , and the restriction

Fig. 3. ZF-ACMA.

might make the results less accurate. This problem was noted
in [1], where optimal combinations of second- and fourth-order
statistics are presented.

In summary, we can say that JADE and ACMA are quite sim-
ilar but differ in the following points.

— The prefiltering scheme ACMA, such that as ,
converges to a Wiener solution and JADE to a zero-
forcing beamformer.

— JADE explicitly relies on stochastic independence of
sources, whereas ACMA explicitly relies on the CM
property. This leads to different finite sample behavior.

— JADE, as in [4], forces the unitarity of , which leads
to saturation of the performance for large SNRs and
finite number of samples.

VII. Z ERO-FORCING ACMA

We have seen before, in (30), that as ,
, where is the noise-free part, and and

represent noise bias terms that cause ACMA to converge to the
Wiener solution . If an unbiased estimate of is
desired (e.g., for direction estimation), then we cannot simply
invert , as is usually done. We could map to an unbiased
estimate of via premultiplication by , but the finite-sample
properties of this appear not to be very good. Here, we look at
an alternative, based on estimating and removing the noise terms
from , to obtain an estimate of . This technique was first
presented in [28].

Let us assume that we know the noise covariance. We
cannot know since it depends on noise-free data, but we can
construct

(34)

When

so that

is an asymptotically unbiased estimate of. If we can assume
that , i.e., the SNR is sufficiently large,
then we can ignore compared with and use
to estimate .
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Fig. 4. SINR performance of ACMA, ZF-ACMA, CMA, and JADE.

Let us now assume that the noise is white with covariance
but that the noise power is unknown. Redefining

as

it follows that we have available the data matricesand ,
satisfying the approximate model (ignoring fourth-order terms)

Since is rank deficient with a kernel of dimension, we
can estimate as the (average of the) smallesteigenvalues
of the matrix pencil , corresponding to the generalized
eigenvalue equation

An estimate of the basis of the kernel of is given by the
corresponding eigenvectors. At this point, we can continue with



VAN DER VEEN: ASYMPTOTIC PROPERTIES OF THE ALGEBRAIC CONSTANT MODULUS ALGORITHM 1805

Fig. 5. SIR performance of ACMA, ZF-ACMA, CMA, and JADE, as function ofN and SNR.

the joint diagonalization and recover the beamforming matrix
. Asymptotically as both and SNR , we obtain

.
The algorithm is called ZF-ACMA.2 As in ACMA, a di-

mension-reducing prefiltering is necessary. If we take the
same prewhitening prefilter as in ACMA, then after whitening,

, and . Thus,

2It was first presented as W-ACMA in [28].

is diagonal and constructed without much additional effort. The
resulting algorithm is summarized in Fig. 3.

VIII. SIMULATIONS

Some performance results are shown in Figs. 4–6. In the
simulations, we took a uniform linear array with
antennas spaced at half wavelengths, and equal-power
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constant-modulus sources with directions re-
spectively. We compare the performance of ACMA, ZF-ACMA,
JADE, and CMA.

ACMA as used here is the original algorithm as presented
in [29], which is almost as the algorithm presented here, except
that the joint diagonalization is implemented as a joint Schur de-
composition, with perhaps slightly different results. The CMA
used for reference is obtained as the numerically determined op-
timum of the deterministic CMA(2,2) cost function (20), for
independent beamformers, using a gradient technique initialized
by the sample data Wiener receiver with known

. Note that this is not a practical algorithm; it describes the best
performance of CMA for a block of data samples and may
not be achieved by the usual sample-adaptive algorithm.

In Fig. 4, we vary the number of samples and the SNR.
The performance measure is the residual signal-to-interference-
plus-noise ratio (SINR) at the output of the beamformers. We
only consider the SINR of the worst output channel and find a
permutation that maximizes this. Specifically, the SINR is
defined here as

sinr

SINR

SINR SINR

The reference performance is that of a Wiener receiver based
on sample data with known, i.e., , as in (7).
As seen from the left column of the figure, ACMA converges
asymptotically (in ) to the Wiener beamformer. CMA is
known theoretically not to reach this performance, but it is
seen that for positive SNR, the performance is almost identical
to that of ACMA. The right column of the figure shows that
the SINR performance of JADE saturates as function of SNR
(as predicted). CMA, ACMA, and ZF-ACMA do not have this
problem.

Fig. 5 shows the signal-to-interference ratio (SIR) perfor-
mance, which is defined similarly as

sir

SIR

SIR SIR

This indicates how well the computed beamforming matrix
is an inverse of , up to an arbitrary permutation. The reference
performance is that of a zero-forcing (ZF) beamformer based on
sample data with known, as given in (9).

It is seen that the SIR performance of ACMA saturates as
function of (for finite SNR) because it converges to the
Wiener solution, and hence, it is biased. The whitening in
ZF-ACMA removes this saturation so that it can converge to a
few decibels below the ZF solution. As for the SINR, the SIR
performance of JADE saturates as function of SNR.

If our objective is direction of arrival estimation, then we can
first estimate using ACMA or ZF-ACMA, compute

Fig. 6. DOA estimation performance for varyingN .

, and estimate the directions from the individual columns
of . This technique was proposed in [13]. Fig. 6 shows a test
of this, in a scenario with three equal powered sources with di-
rections , for varying , and an SNR of 10 dB. The
graph shows the root mean squared error of the DOA estimate
of the first source and the Cramer–Rao bound (CRB) for this
model [13]. It is seen that the estimate from ACMA is biased
so that its performance saturates as , whereas the esti-
mates from ZF-ACMA and JADE are asymptotically error free.
ZF-ACMA has a small advantage over JADE, which is to be ex-
pected since more information on the sources is used.

IX. CONCLUDING REMARKS

We have shown that ACMA converges to the Wiener solution
(in samples or SNR), whereas the minima of the CMA(2,2) cost
function only have this property if there is no noise or the mixing
matrix is orthogonal. However, for positive SNR, the differences
in SINR performance are rather insignificant.

Furthermore, we have derived a modification (ZF-ACMA)
which is close to the zero-forcing solution if the noise power
is small (say SNR better than 10 dB). We have made a per-
formance comparison with the related JADE algorithm, which
separates independent non-Gaussian sources based on their
nonzero kurtosis. The conclusion is not unequivocal because
JADE converges to a zero-forcing beamformer asymptotically
in the number of samples but not in SNR. In the simulation
example, we saw that for samples and SNR dB,
ZF-ACMA has the best SIR performance, and ACMA has the
best SINR performance.

In a future submission, we will consider in detail theoretical
expressions for the finite sample performance of ACMA, in par-
ticular, expressions that predict the covariance ofand the re-
sulting SINR as function of , , and .
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