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Existence and Performance of Shalvi-Weinstein
Estimators

Philip Schnitey Member, IEEEand Lang TongMember, IEEE

Abstract—The Shalvi-Weinstein (SW) criterion has become
popular in the design of blind linear estimators of i.i.d. processes
transmitted through unknown linear channels in the presence of
unknown additive interference. Here, we analyze SW estimators
in a general multiple-input multiple-output (MIMO) setting that s — hW(z) :@: f(z) - ¥n
allows near-arbitrary source/interference distributions and noisy
noninvertible channels. The main contributions of this paper are
i) simple tests for the existence of SW estimators for the desired
source and ii) bounding expressions for the MSE of SW estimators
that are a function of the minimum attainable MSE and the s — hi9(z)
kurtoses of the source and interferers.

desired{ s® — hO(z)

Tn
interference

Index Terms—Blind beamforming, blind deconvolution, blind Fig. 1. Linear system model with™ sources of interference.
equalization, blind source separation, Shalvi-Weinstein algorithm.
{y» }. Based on this observation, they proposed a blind estima-
|. INTRODUCTION tion scheme that manipulaté&) to maximize the absolute kur-

ONSIDER the linear estimation problem of Fig. 1, Wher(taoSIS of the estimatefy, } subject to a fixed variance, i.e.,

a desired source seque (91 combines linearly with max |/C, | s_t_o—z =1 2

i (k)
K sources of |r’1terferenc EN } through vector channelswhere, for zero-meaty, }, we haves? = E{Jy,|*} and kur-
{h©®(z),...,h")(2)}. Our goal is to estimate the desiredosis
source using the (vector) linear estimatffrz). The linear

estimateqy,, } that minimize the mean-squared error (MSE) Ky = E{|yn|*} — 2E*{|yn|*} — |E {yﬁ}|2 . (3)
Although, in name, Shalvi and Weinstein have received credit
Jm(ym) =B {Iyn — s, 2} @ gn. | . . )
for the criterion of (2), it has a history that long predates their

&ublication [1]. In fact, the use of kurtosis as a blind estimation
. . e Criterion can be traced back to the early 1950s [2]. During the
\rlt\e/gauni?ers elf::gnvag)(;gg(zgf tﬁgejcéfifta“s?gti;ffg(gf) ' tr:‘g\'\éi\geer}v late 1970s, Wiggins [3] successfully applied the kurtosis crite-
: 0) ] &on to problems in geophysical exploration, the results of which
sequencdr, } and the desired source sequen{@é } which  5rompted a more detailed analysis by Donoho in 1981 [4].
are typically unavailable when the channel is unknown. As proven independently in [1] and [4], unconstrained linear
When only the statistics of the observed sequecg are estimators locally maximizing the SW criterion yield perfect
known, it may still be possible to estima{$;0> up to un- blind estimates of a single non-Gaussian i.i.d. source transmitted
, . I (o  through a noiseless invertible linear channel. In practical situa-
known magnitude and delay. i.gm = 3, fi. Tn—i ¥ @8-y tions, however, we expect inadequately parameterized estima-
fo_r somea € €, Somew € Z,'and alln: The Ilterature'refers to tors, noninvertible channels, as well as noise and/or interfer-
this problem asl_:)lmd est|r_nat|o_n (or blind deconvo!qtlon). ence of a potentially non-Gaussian nature. Are Shalvi-Wein-
In [1], Shalvi and Weinstein showed that for i.i.d. source ein (SW) estimators useful in these cases? How do SW esti-
noiseless invertible channels, and adequately parameterize Sies compare with optimal (linear) estimators, say, in a mean-
timators, perfect blind estimation is possible with knowled uared sense? ' '

of only the second- and fourth-order moments of the esumate%':Or a finite impulse response (FIR) estimator and noiseless

causal bounded-input bounded-output (BIBO) stable chan-
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source in the presence of Gaussian noise [6], [7]. Using a femd/or samples at an integer multiple of the symbol rate. The
quency-domain approach, they observed relationships betwebservations:,, can be writtenr,, = 3/ 5°2° h*s*)

n—i?

the Weiner and SW estimators that bear similarity the Where{hﬁl’“)} denote the impulse response coefficients of the

time—domain relationships derived previously by Regalia and

. ) 4 . . ime-i i (k) ichi
Mboup. The complexity of the analytical relationships derlvelﬂf'ear time-invariant (LTI) channei'®(z), which is assumed

by Feng and Chi prevents their translation into meanlngf[ﬁ be causal BIBO stable. Note that suehi) () admit infinite

statements about the MSE performance of SW estimato'r@IOljlse response (IIR) channel mogiels.
From the vector-valued observation sequeficg}, the re-

however.

In this paper, we study the performance of constrainégiver generates asequence of linear estin{atepof {351021,}1
FIR SW estimators under the assumptions of the model Wherey is a fixed integer. Usingf,, } to denote the impulse re-
Section 1I-A: desired source with arbitrary non-Gaussiasponse of the linear estimatf(z), the estimates are formed as
distribution, noise and interference with arbitrary distribution, = > i .. fiir,—;. We will assume that the linear system
and causal BIBO stable channels. The main contributions fffz) is constrained FIR, i.e., certain coefficientsf¢t) may be
this paper are i) simple tests for the existence of SW estimattdd at zero.
for the desired source and ii) bounding expressions for the MSEN the sequel, we will focus almost exclusively on the global
of SW estimators that are a function of the minimum MSEhannel-plus-estimator respong® (z) := f(z)h*(z). The
attainable under the same conditions. These bounds, whichiarpulse response coefficients qﬁ“)(z) can be written
derived under the multisource linear model of Fig. 1, provide a ]

. . . - (k) _ Hy, (k)
formal link between the SW and Wiener estimators in a very I’ = Zfz h,~; (4)
general context. @

The organlzatlon of the paper is as follows. Section I.I dlseillowing the estimates to be written gs = E;i(:o » qi(k)
cusses the properties of the system model and MSE estimation i i )
criteria in detail, Section Il derives the bound for the MSE pefin—i- Adopting the following vector notation helps to stream-

formance of the SW criterion, and Section IV presents the rel€ the remainder of the paper.

sults of numerical simulations demonstrating the efficacy of our *) &) K (k) t
bounding technique. Section V concludes the paper. = ( 41,9 591 - )
o o) @ (K) (0) (1)
[l. BACKGROUND g.—<...,q_1,q_1,...,q_1 A UNE A
In this section, we give more detailed information on the (K) (0) (1) (K) ‘
linear system model and the MSE, unbiased MSE, and SW cri- @ GG

teria. The following notation is used throughout.
(1)t transpose;
EgH ;%?{:ﬂ:ﬁre]: s(n) : < e 3510_1)_1, 3511_1)_1, e, SELI_"_)I, s§?>, s§}>, ...
()7 Moore-Penrose pseudo-inverse. t

Likewise, E{-} denotes expectatiofix||, the p-norm defined s 5O W SE ) .

by ¢/>°, |+;]7, andR* the field of nonnegative real numbers. In

general, we use boldface lowercase type to denote vector qugdr instance, the estimates can be rewritten concisely as
tities and boldface uppercase type to denote matrix quantities.

t
s®(n) = ( . 351217 st s(k)l, . )

1Y n—

K
_ (k)t (k) _t
A. Linear System Model Yn = ; 0:2 s7(n) = g's(n). ®)

First, we formalize the linear time-invariant multichannel
modelillustrated in Fig. 1. Say that the desired symbol sequeridee source-specific unit vectef® will also prove convenient.
sV and K sources of interferencd sV ... {s@O1 e is a column vector with a single nonzero element of value
each “pass through separate linear “channels” before beflpcated such thafgr(/k) = q,gk).
observed at the receiver. The interference processes mayVe now point out a few important propertiesgfFirst, it is
correspond, e.g., to interference signals or additive noiBportant to recognize that a particular channel and set of es-
processeg_“’] addition, say that the receiver uses a Sequencet-tﬁflator constraints will restrict the set attainableglObal re-
P-dimensional vector observatiofis, } to estimate (a possibly sponses, which we denote KB,. For example, when the esti-
delayed version of) the desired source sequence, where the €a8tr is unconstrained FIR, (4) implies that Q, = row(H),

P > 1 corresponds to a receiver that employs multiple sensa¥§ere

h(o) h(k) h(o) h(k) h(o) h(k)
1 - . . . . . o "o 1 i 2 el
Keep in mind that Regalia and Mboup studied constrained estimators in (0) (k) (0) )
noiseless settings, whereas Feng and Chi studied unconstrained estimatorSj'_lz ._ 0...0 hg” ool hy”...hy
noisy settings. T . . .
2To model AWGN of variances2, at P sensors, dedicat®® Gaussian : : : : () (k)
sources {s{*)} with corresponding channels of the forh(*)(z) = 0...0 0...0 hy' oo hy
0,...,0,0.,/0.,0,...,0)". (6)
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Restricting the estimator to be sparse would generate differenThe UMSE criterion is similar to the popular “intersymbol
attainable set€,. Next, BIBO stablef(z) andh®)(z) imply interference measure” that appears in, e.g., [1]. Note, however,
BIBO stableg®)(z) so that||q<k>|| exists for allp > 1, and that the UMSE criterion measures the effects of additive noise
thus,||g|| does as well. Finally, the fact thats generated from in addition to co-channel interference and ISI.

finite linear combinations of the rows & implies thaig lies in

a finite-dimensional subspace 6. I1l. SW PERFORMANCE UNDER GENERAL ADDITIVE
Throughout the paper, we make the following assumptions on INTERFERENCE
the K" + 1 source processes. In this section, we derive tight bounds for the UMSE of SW
S1) Forall%, {sﬁf‘)} is zero-mean i.i.d. symbol estimators that
S2) s£?>} o {snK)} are jointly statistically indepen- i) have a closed-form expression;
ent. ii) support arbitrary additive noise and interference;
S3) T iii) support complex-valued channels and estimators;
FO(: allk, E { 5 } s iv) support IIR (as well as FIR) channels.
s4) k9 #o. Sections llI-A and B outline our approach, Section II-C
S5) If, foranyk, ¢ (=) or {sﬁl )} is not real-valued, then presents the main results, and Section IlI-D comments on these
E{ (k)2} 0 for all results. Proof details appear in the Appendix.
Sn = ;

A. Bounding Strategy

B. Mean-Squared Error Criterion Sincey, = q ts(n) for g € Q,, source assumptions S1)-S5)

The well-known mean-squared error (MSE) crrterron was dgnply that [9]

fined in (1) in terms of the estimatg, and the estlmandn PNTEI
Using S1)-S3), we may rewrite (1) in terms of the global re- Ky IZ HQ( )H4’C§ ) (11)
sponsey: ) k 2
o2 =lall3o2. (12)
Tn(@) = llg — €[50 (7)  This allows us to rewrite the SW criterion (2) as
Denoting MMSE quantities by the subscript “m,” it is well max Z ||q(k)|| ;C(k)

4
arg max Z“g(k)“4ngk)

gQﬂS

known that, for FIR channels, S1)-S3) imply an MMSE
channel-plus-estimator of the forqn = H (HHY T H e, wheresS denotes the unit spheté = {gstlql, = 1}.
A similar expression can be derived for the IIR case. (For Although the SW criterion admits multiple Solutions, we are
derivations, see [8].) only interested in those that correspond to the estimation of the

) zeroth user's symbols at delay Thus, the set of SW global
C. Unbiased Mean-Squared Error responses associated with #tg /} pair is defined by the local

Since both symbol power and channel gain are unknown fimaxima
the “blind” scenario, blind estimators suffer from a gain am- ©
biguity. To ensure that our estimator performance evaluation is {ng} - ne,
meaningful in the face of such ambiguity, we base our evaluation
on normalized versrons of the blind estimators and normalize mherec( ) specifies the “dominant cone” associated with the
the receiver gain'” . Given that the estimatg, can be decom- user/delay paif0, }:
posed into signal and interference terms as C,(,O) - {q S.t.‘q,(,o) max qgk)‘} '
_ (00 | i (k,6)7(0,)
Yn =y sp2, T 48(n) ® : : .

t is not possible to write general closed-form expressions for
whereg denotesq with the ¢¥ term removed and(n) de- {g_ }, making it difficult to characterize SW performance. In
notess(n) with the s”  term removed, the normalized esfact, {g__} may be empty, although for now, we assume that
timatey, /¢* can be referred to as “conditionally unbiasedis i not the case.

(0) (0) 5O It is, however, possible to say something about the location
sincell {y"/q [$n=s f = Sns Specifically, we know that withir, N S, there exist
The (condltronally) unbiased MSE (UMSE) associated W'tﬁe|ghborhoods 0f__ generating strictly lowetk, | than that
yn, Which is an estimate of,”,, is then defined characterizing the localC, |- maximizerg . One such neigh-

2 borhood can be constructed as follows. Given a reference re-
Julyn) = FE y(g’) — 3;021, (9) sponsg € Q.N&N C generatrng estimates with reference
qv kurtosrsICr, a neighborhood contalnrrqg is formed by
Substituting (8) into (9), we find thjlt Quic, 1> k| 1= {g st ‘Z ||g(k)||4lcgk)‘ > |’Cr|} nc®ns
E —t— —12 k
1 (0 q) = IOl 2 g (3)
lgw |2 lgw |2 as long as the boundary (hence, closure®gf, ||« | lies en-

where the second equality invokes assumptions S1)-S3). tirely within C,(,O) NS. This claim is supported by the Weierstrass
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Essentially,Qcns is a projection oC,(,O) N S onto the interfer-
ence space, as illustrated in Fig. 2. Expressed in terms of the
interference response, (10) and (11) become

Ju (qz(,o), Q)

2
s

12
_ lal?
gesne” 1- ||Q||§

_12\? Ak
Kulgesnew = (1= llall3) £+ g™k
- k

(15)

whereg(*) is used to denote the componentgabrresponding
to userk.
In terms of the interference response, (14) becomes

J 12
u(g;w) S SUu ||q||3 ; (16)
95 qcQix, 1> k| 1- HQHQ

whereQ,x, 5|k, | is a translation 0@, |-, into the inter-

7 ference space [implied by (13) and (15)]
Fig. 2. Thick arcs demarcate the boundary@y~.s on the horizontal plane _ B 2
and thin arcs the boundary 6f°) N S on the sphere fog € R®. Qle|>|Kr| = {q € QcnsSit. ‘ (1 _ ||Q||§) ICgO)

N4 .

theorem [10, p. 40], which says that a continuous cost functional +> llg® kP | > |’Cr|}- (7)

must have a local maximum on a compact set if there exist points k

in the interior that give cost strictly higher than anywhere on the ) ) ) ) o
: : Finally, since||g||5/ (1 — ||g||3) is strictly increasing in|g]|

boundary. Note that the boundary @fx, |-, | is essentially a Y il il y 9 1Niqil,

“level set” of cost functionalk, | within ¢{” N S. (for g € Qcns), (16) can be written as

Wheng € Qk,>|k,|, We have the SW-UMSE upper Julg ) B2
vound X WS < whereb, :=  sup  |lgll, (18)
o2 1-52 G, o x
Kyl > K|
Sulg,,) = qu‘S;lim ‘ Ju(@)- (14) " and thus, computation of the SW-UMSE bound reduces to com-

putation of the quantity..

The choice of referenag is important since it affects the tight-  Fig- 3(2) presents a summary of the bounding procedure in

ness (and existence) of bound (14). We will eventually chood¢ interference respongg) space. The set of attainable inter-
the scaled MMSE referenge = ¢ /|jg || (Wheng € Cl(,o)) ference responses is denoted @y, which can be interpreted

. o . Zm/ i Am, iacti (0) i
since it is an established benchmark with a closed-form expré§-a projection o, N SN C;” onto the interference space.

sion, and we will derive conditions that ensure thatcan be Notice that the reference resporgeand the SW responsg,,
used to specify a valid local neighborhoodgof . both lie in the attainable s&2.. Although the exact location of
- the kurtosis local maximurg,,, is unknown, we know that it
lies within Q| |-k, |, @s shown in Fig. 3(a) by the interior of
_ . o _ the shaded region. Thus, an upper bound on the UMSE of the
Equation (14) requires maximization over a region of the Undyy estimator can be calculated usingwhich is the supremal
sphere ing-space that would be cumbersome if attempted djz e of||qll, overg € Oy, k.-
rectly. It will be more convenient to reparameterize our quan- Fig. 3(b)2depicts the situation that may occur when the
tities in the interferencég) space, as explained below. Sinc§oundary 0fQ)1c. |>[xc.| IS not contained iMd¢ns. Essentially,
D ; : ST 1
b_oth the _SW and UMSE_ c;nte_na are invariant to phase rotgere exists nattainable local IKC,| maximum insideQcns
tion of ¢ (i.e., scalar multiplication of by ¢’¢ for ¢ € R), we (i.e., for the desired user at delay; |K,| monotonically in-
can, w.l.o.g., restrict the our attention to the set of “de-rotated;a55e5 as we move northeast alghgoward the boundary of
0 — . . . -
global response{g stq € R+}- For derotated responseshe open sefcns. Our existence conditions will be sufficient
to avoid these cases.

B. Bound Evaluation in Interference Space

geSnc”, weknowg?” = \J1-— ||q||§, which implies that
§uchg are completely described by their interference responge siatement of Bounds
g (which were defined in Section II-C). Moreover, these inter-
ference responses lie within the bounded reg®mn.s

Ocns == 1gsty/1— gl > ma
Ocrs = {ast/1=lal} > x|

In this section, we present SW existence statements
and SW-UMSE bounds deduced via the method described
q(k)‘} in Sections IlI-A and B. Proof details appear in the Ap-
o .

pendix. We will useK,, to denote the kurtosis ofor-
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Fig. 3. lllustration of (a) SW-UMSE bounding technique in grspace. (b) Case where no attainable I¢ka)| maximum exists for the desired user/delay pair.
Shaded regions denot@ ., |~ x| -

malized Wiener estimates, i.e., estimates associated withTheorem 2:1f 0 < Ju(gq ) < Joo2, where

111

_ 2 _ 2 it
responS%r - gm/HgmHQ7 SO thatay - 05’; In addltlon’ 2 (1 + pmax)_l - 17 Pmin 2 0
0 : 0

Pm = ICm/’Cg ) y Pmax = MAX0<k<K Kg )/Kg )‘1 and . E;Zﬁa Pmin = -1
puin 1= minozici (K/K0). NPT

. . . . _ B ) )

Theorem 1: When the Wiener response lies in the dominant pmint /1 - ema) (U onin)

cone associated with the desired user at del@e.,q € C,SO)) . . . . (21)
and -m then an SW estimator associated with the desired user at delay

v exists, and its UMSE can be bounded as

o (e + maxe [£27]) Ia,) < Jula,,) € T < L)
> =m —8wW
‘ICS ‘ Z Kl > 4 (19) where we have (22), shown at the bottom of the page.

Equation (22) leads to an elegant approximation ofetktea
an SW estimator associated with the same user/delay exists, gtﬂﬁiSqE of SV(V e)stimators g PP

its UMSE can be upper bounded by
gu(q ) = Ju(q ) - Ju(gm)-

—SW —SW

max,Kn, 1 — \/(pmax +1) pm — Pmax o2 (20) Theorem 3:1f 0 < ']u(ﬂl ) < J,02, then the extra UMSE

. m
& max,J,, (gm)

sW T
pmax + V/ (Pmax +1) P — Pmax of SW estimators can be boundedégg_ ) < &uc ,

As shown in the Appendix, the kurtosis requirement (19) ré\lhe[f?ax Jula )
quires sufficiently good Weiner performance. wle ™
While Theorem 1 presents a closed-form SW-UMSE
bounding expression in terms of the kurtosis of MMSE es-
timates, it is also possible to derive lower and upper bounds Q%pmaxﬁ(q )+0( J3(q )> i > 0
in terms of the UMSE of the MMSE estimator. To do this, _ J *7¢ " HEml ) -
we rewrite (19) and (20) using a slightly weaker existence 1 N2 3 )
condition and looser bound. (See the Appendix for details of 707 (Pma pmm)]“(gmHO<J“(gm)>’ Prnin <0
this procedure.) (23)

T

max,Jy, (gm )

= ']u|sw ]u(q )

—Im

4 —2
Jnlg )
1_\/(1+l7nlax) (1-1—0—5‘“) —Pmax
s 2
5 Og, Pmin Z 0
Julg Y\
Pmaxt4 [ (14+pmax) | 1+ —2 — Pmax
Tofow 7O - (22)
e T ENCI A J2(e )
1—4 [ (I pmax) [ 1+ " Ipmin =7 ) = Pmax
s s 2
S J55,  Pmin < 0.
AUC MR I i)
Pmaxtq [ (1+Pmax) | 1+—3 Itpmin —7 — Pmax
\ 3 3
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— bound l(22)
- — . approx (23)
R 1)

Ut

-5 i

UMSE {dB]

extra UMSE [dB]

-15
S5 -10 -5
UMSE(q,,) [d8}

Fig. 4. Upper bound on (a) SW-UMSE and (b) extra SW-UMSE versus
Julg, ) (wheno? = 1) from (22) with second-order approximation from (23).property,

-35

~15

-10 -5
UMSE(g, ) [aB)

From left to right,{ pmin, pmax} = {—2,2}, 10,2}, and{0, 1}.
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Pmin > 0 0ccurs when either no sources are super-Gaussian or
no sources are sub-Gaussian, whepggas. = 1 occurs when
there is no source with absolute kurtosis greater than that of the
desired source.

In data communication models, it is typical that;, > 0
andp.,.x = 1. This corresponds, e.g., to the following common
assumptions:

a) sub-Gaussian desired source in the presence of Gaussian
noise;

b) constant-modulus desired source in the presence of non-
super-Gaussian interference.

The casep,.x > 1 might arise from a nonconstant-modulus
desired source in the presence of constant modulus interference.
Note that condition (19) is not able to guarantee the existence
of a SW estimator for the desired user/delay whgn, > 3.

3) Generalization of Perfect SW-Estimation Prop-
erty: Finally, we note that theJ.(g )-based SW-UMSE
bound in Theorem 2 implies that the perfect SW-estimation
proven under more restrictive conditions in [1]
extends to the general multisource linear model of Fig. 1.

Corollary 1: SW estimators are perfect (up to a scaling)

Equation (23) implies that the extra UMSE of SW estimavhen Wiener estimators are perfect.

tors is upper bounded by approximately stpiareof the min-

Proof: From Theorem 2/,(g ) =0= Ju(g )=0.m

imum UMSE. Fig. 4 plots the upper bound on SW-UMSE and

extra SW-UMSE from (22) as a function df,(g_)/o2 for var-
ious values op,,;, andp,,.x. The second-order approximation

111

IV. NUMERICAL EXAMPLES

Here, we present the results of experiments that compare the

based on (23) appears very good for all but the largest value§ fli s hounds of Theorems 1 and 2 with the UMSE character-

UMSE.

D. Comments on the SW-UMSE Bounds

1) Implicit Incorporation of Q,: First, recall that the Gaussian) mixture coefficients. The estimator observes the mix-

izing SW estimators found by gradient deséemnder various
source/interference environments. In all experiments, ten non-
Gaussian sources are linearly mixed using random (zero-mean

SW-UMSE bounding procedure incorporat@g, which is the tyre at eight sensors in the presence of AWGN and generates
set of attainable global responsesly through the requirement |inear estimates of a particular source using eight adjustable pa-
thatg € Q.. Thus, Theorems 1-3, which were writtetameters. The AWGN is modeled using eight Gaussian sources
under the reference choige = g _/llg |, € Qa, implicitly (i.e., one per sensor) with channel gains chosen to yield a par-
incorporate the channel and/or estimator constraints that defigilar SNR. We define SNR as the ratio of total power received
Q.. For example, il is the MMSE response constrained tdrom the desired source to the AWGN power at each sensor.
the set of length-two FIR estimators, then SW-UMSE boundi§ote that with eight sensors and 18 sour@¢ss not full column
based on thi%m will |mp|ICIt|y incorporate the Iength-t\No rank, and perfect estimation is not possib]e_

FIR constraint. The implicit incorporation of the attainable set Figs. 5(a)-8(a) plot the UMSE upper boundg|m/

Q. makes these bounding theorems quite general and eas(yirga Tl for comparison with Ju(g ). As a

apply. means of “zooming in” i 1ces i
) _ g in” on the small differences in UMSE,
2) Effect Ofpwin N pmax: WNENpwin > 0 aNAprax = 1, Figs. 5(b)-8(b) plot the extra-UMSE upper bourgm™<
the expressions in Theorems 1-3 simplify to max,Ju(g_ In all plots, theJu(q)-based bounds are

and &, |
1—+2pm —1 1 ulc L o
Julg ) gip o2 for= < pm<1 denoted by solid lines, th,,,-based bounds are denoteddy
W 1 + V 2pm - 1 2

and the gradient-descent values are denoted.by
—2
1- \/2 (1+ —J“i%m)) 1
s 2

max,Jy, (gm

In Fig. 5, ten BPSK sources (i.elggk) = —2) mix with

Gaussian noise, correspondingd@i, = 0 and pyax = 1.

< o
N Tu(@ )\ 2 ? Note, from Fig. 5(a), the tightness of the bounds for all but the
T44/2 (1 T ) -1 largest values oﬂu((_;m). Fig. 6 considers ten super-Gaussian
‘ Julq,) N sources, withC!") = 2, in the presence of Gaussian noise.
or 02 <Via-— From (22), we do not expect SW performance to differ from
1 the previous experiment singg,;, and p...x Stay the same.
=J, —J2 o.J? - ion i i i i
=l(e,) + 5 57u(e,) +O( Nilg,) ) This notion is confirmed by comparison of Figs. 5 and 6.

N.Ote_ tha;t the eXpreSSions above _are indgpendent of the specifig;agient descent results were obtained by theMB routine “fmincon,”
distributions of the desired and interfering sources. The caggch was initialized randomly in a small ball around the MMSE estimator.
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Fig. 5. Bounds on SW-UMSE for eight sensors, ten randomly mixed BPSRY- 7. Bounds on SW-UMSE for eight sensors, five randomly mixed BPSK
sources. and AWGN at 20 dB. sources, and five randomly mixed sources wittf> = 0.8 (one of which is

desired), and AWGN at-20 dB.
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Fig. 8. Bounds on SW-UMSE for eight sensors, five randomly mixed sources

Fig. 6. Bounds on SW-UMSE for eight sensors, ten randomly mixed sourcah K+ = 8, five randomly mixed sources witki{*> = 3 (one of which is
with K*) = 2, and AWGN at—20 dB. desired), and AWGN at30 dB.

Fig. 7 examines the estimation of a near-Gaussian signal V. CONCLUSION

(’Cgo) = 0'8) in the presence of BPSK and AWGN inter- |, this paper, we have derived sufficient conditions under
ference, corresponding tonin = —2.5 and pmax = 2.5.  which SW estimators exist and derived upper bounds for the
Comparing this experiment with the previous two, notice thgJMSE of SW estimators. The existence conditions are simple
here, J,|maxKm s appreciably tighter thary|sy ") for  tests that guarantee an SW estimator for the desired user at a
larger values of/,(¢g_). Finally, Fig. 8 examines the perfor-particular delay. All results have been proven for vector-valued
~ [IR channels and constrained vector-valued FIR estimators. The
first existence/bound pair is a function of the kurtosis of the
of impulsive-type nOiSG(iC.gk) = 8)- Whenpmax > 1, (19) MMSE estimates, whereas the second existence/bound pair is
and (21) imply that we can only guarantee the existence of S¥function of the minimum (i.e., Wiener) UMSE. Analysis of
estimators in situations where MMSE estimators are relativelye second bound shows that the extra UMSE of SW estimators
good. As the interference environment in this experimeig upper bounded by approximately the square of the minimum
corresponds t@.,. = 2.67, UMSE bounds exist only when UMSE. Thus, SW estimators are very close (in a MSE sense)
Ju(g, ) is less than about 13 dB. to optimum linear estimators when the minimum MSE is small.

mance of a super-Gaussian sig 31§°> = 3) in the presence
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Numerical simulations suggest that the bounds are reasonabl{?6) is satisfied, gradient and Hessian arguments can be

tight. used to show thag = 0 is the unique global maximizer of
|KC,| over Qcns, yielding a maximum value qvc§°>|. Thus,
APPENDIX when the left inequality in (26) is satisfied, there exists a
DERIVATION DETAILS FOR SW-UMSE BOUNDS set ofg € Qcns for which [K,(g)| > |K:[, implying [via
A Proof of Theorem 1 definition (17)] thatQ x> x| is nonempty. If we can now

_ . o _ show thatQ, intersects the interior of (operQxc, |-,/

To establish the existence gf,, which is an attainable local  then Qiic, 1>k, N Ca will be nonempty. Assume for now
|KCy| maximum withinQcs, we appeal to the Weierstrass the- thatg £ g ie., g, is not a local|k,| maximum over
orem [10, p. 40], which states that a continuous cost functional§ g . (We will treat the other case momentarily.) Then,
must have alocal maximum on a compact set if there exist pointghere must exist a neighborhood@f N Ocns containingg,
in the interior that give cost strictly highgr than anywhere on the gyer which|C, (g)| > |K:|. The previous expression implies
boundary. If we can show thatthe “interior” @fc, |>|c,|NQa  that Q, N Qpc, |-k, iS honempty. Note that if the left
exists and that its closure forms a compact set wighip s, then inequality in (zé) was replaced by an equality (meaning that
the continuous cost functiongl, (¢)| and the boundary cost ¢ provides perfect blind estimationc, x| becomes
|K:| suffice to prove the existence gf,, which is an attainable  empty and the previous arguments do hot 5pp|y. However,
local maximum of|C, | within Q¢ns. Our existence proof will  5¢ thisg,(€ Q) is the unique globalk,| maximizer over

consist of three steps: deriving conditions under which Ocns, it is clear thatg,, = §,, giving SW existence and
i) closure(Qic, >k, | N Qa) C Qens: zero SW-UMSE [consistent with bound (20) far, = 1].
i) closure(Q, 1> x| N Qa) is compact; To conclude, (26) and the conditign # g.., suffice for our
iil) Quc, 1>k, N La is NOnemMpty. three-step approach to the application of the Weierstrass the-

Step i) Since closurQi,|»x,)NQa) C  closure orem, implying the existence ¢f € Q. nSncs”. I, onthe
(Qi,|>Ix.), condition i) is implied by the following other handg, = g.., then the requirement thgt € Q,N Ocrs
equivalent statements. [Regarding the equivalence, reqa{lpnes the existence ¢f € Q, NS N cl(,o) directly.

(17) and the fact tha@¢ns is open]. The SW-UMSE upper bound in Theorem 1 follows from
closurd Q. |>1x.|) C Qens upper bounding the maximum interference radiugeﬁned i4n
& {g € closurd Qcrs): |, (@) = |Ki|} C Ocrs (18). Forg € Qik, >k, (17) and the propertifg||, < [|g||
- guarantee
& max Iy (@] < |Kx]- (24)
gebndrocns)
We focus now on (24). By definition, pointg on o2 o ‘
the boundary of Qcns correspond tog such that IK:| < (1 - ||Q||2> KO+ Z ||q( )||2L’C§k)
(0)‘ _ %) 2 k
@ | = Max(s)#(0,0) ‘qé ‘ and ||gl[, = 1. By evalu- 2 | 0) i *)
ating gradient and Hessian, it can be shavthat < (1-llall3) "Cs ‘ +llallz max ] (27)
(\zcgm\ + max | ,Cng & 0 <|lgll5(1+ pmax) = 2llall3 + (1= p)  (28)
max K[ < . .
gebndriQcns) B B B where we arrive at (28) by dividing the previous inequality
Thus, we can guarantee closf @i, |>«,| N Qa) C Qcns by K9\ and substituting, = |ICr|/|IC§°)| and puax =
when ‘
maxy |IC5")|/|IC§O)|. Since the roots 0f(1 + pmax) — 27 +
<‘IC§O)‘ + max ‘ngk)D (1 — p;) are given by
|KCe| > 1 . (25)

1+ \/pr(l + pma.x) — Pmax
1 + pllla.){

Step i) closurg Qx,|>ix,| N Qa) is compact under (25) {z1, 02} =

since it is contained in the bounded §&i~s and sinceg lies
in a finite dimensional subspace 6&f. N2 g . . .
. he satisfying (28) lie outside the closed interya .
Step iii) We now show that the presence of an attamabtle ||q||2 fy _g( ) . L T ¥al, ]
reference in the desired cone and on the sphere §i.ec Thus, Qi ||k, Is contained by{q € Qens + llll; < 371} U
0. n ¢ N S) coupled with the condition g€ Qcns:llg
. We will now show that there is no component@f,cy|>|,cr|
‘ICgO)‘ > K| > 1 <‘}Cg0)‘ +In£1x ‘icgk)D (26) thatintersectz{q € Qcns: ||q||§ > -TQ}, implying that an upper
bound forb?, which is the Iargeqtqng in Qic, 1>k, is given by
is sufficient to guarantee that eith@|,cy|>|,cr| N Q, is 1. First, itis straightforward to verify that the existence condi-
nonempty or thayg = g¢_ . When the right inequality in tion (26) guarantee8 < z; < 0.5 andzz > 0.5. Analyzing
gradient and Hessian, it can be shown that the supremum of

4Contact the corresponding author for details of all gradient/Hessian analy: _ ~ 2 .
mentioned in this appendix. T%iﬂ over the (open) Se{q € Qcns - lally > 0'5} attains the

2
2 > .’L’Q}.
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value (|IC§0)| + max;, |IC§’“)|) /4. Then, from existence condi- which implies the bound
tion (26) and the definition (17), we know th@,cy|>|,cr| will

_ max, Ky
not interseci{q € Qcrs : lall > 0.5&. Julss o
The fact thab, is upper bounded by the smaller ragtim- 75
plies the following bound: 7.(1) —2
1-— (1 + pmax) <1 + O.Er ) — Pmax
< . (30
Julg,) B = e\ (30)
O'g - 1 — bz Pmax + (1 + pmax) <1 + T;) — Pmax
-T% _ 1- \/pr(]- + pmax) — Pmax (29)
g 2 - .
1=27  poax + v/0r(1+ pmax) — Pmax The existence condition (26) can also be rewritten using MMSE-

based quantities. We first rewrite (26) in termsppfand p,,.x.
Choosmg the normalized Weiner reference=gq_/llg ||, €

QN C(O) in (29) leads to Theorem 1. Note that this choice 1> pe > M_ (31)
requires that the Weiner response lies in the dominant cone of 4

the desired user/delay.
Having just shown thap, > (1 + Ju(q )/O’ )~2 when

B. Proof of Theorem 2 Pmin > 0, @ sufﬂment condition for the rlght mequallty of (31)

From the Appendix, we know that the expressions in Thi& (1 +Julg,)/o? ) > (14 pmax)/4, which can be restated
orem 1 hold for any estimates generated by a reference respdhse
g € %nNsn C( generating kurtosi&’;. For suchg , the Julg )
kurtosis-based UMSE upper bound appears in (29) and the ex- o2 <1t 2v/(1 + pmax)™ (32)
istence condition in (26). [The Appendix separately established §

. . " - 0)
SW existence and perfect blind estimation wiieh”| = |K.|,  For the left inequality in (31), we divide (27) by to see
corresponding to the cask(g_) = Ju(g, ) = 0. For the re- that

mainder of this proof, however, we focus on the ¢ CUIBS

|K.| as represented by (26).] Noting thag|™a<*~ is a strictly pr <1 — 2||qr||§ + (14 poma)||2:5
decreasing function gf, (over its valid range), an upper bound ) g |I%
for J,|maK~ follows from a lower bound of,. From (15) =(1-lg/3) <1 + pmax(l _Hi ||2)2>
— l4:ll2
—2
Julg,) J2(q)
IC _ =r Ui,
—I‘ — J— Pl (k) - 1 + 1 + max .
= (1—llgl3)* + Z gt || (0) < p= punx =1
(k)
_ 12\2 . _ 4 5
>(1—lgll2)" + min <IC(O)> 1. 1l;- Thus,1 > (1+ Julg)/o? ) (l—i-pmaxjg(gr)/g?) is suf-

ficient for the left S|de of (31), which can be restated simply
as0 < Ju(q)/0? < 2(pmax — 1)~*. However, using the fact
: . (k) 1~(0) 4 4 . —
UsiNg pimin = ming (’Cs /K5 ) lall, < llally, andpe > thatpma, > 1, it can be shown that 1 4 2/(1 + prax)* <
(14 pumax)/4 from (26), we have the equation at the bottom 62(pmax —1)~*. Thus,0 < .J,(¢ ) and (32) are sufficient for the

the page. two inequalities in (31).
Whenp,,;, > 0, we see that For the case whep,,;;, < 0 andX, /zc§°> > (14 pmax) /4
we know that
—2
1= 20l + gl = - )’ = (14 ﬂqﬁ”‘zn ) e 21— 2+ (1 + prin) |1
dcll2

-2
-2 Ju(q) J121(q)
— - 1 = Hlln r
—<1+ az) <+> <+” o1

_ 2 _ 4
Pe = ’Cr 1_2||qr||%+||qr||27 4 Pmin 2 0, .
e 1= 2gll; + (1 + punin)llgellz:  pmin < 0 @ndZey > FHhmes,
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which implies the bound in (33), shown at the bottom of thigom which routine manipulations yield
page. Wherp,,in < 0, sufficient conditions forICr/lcgo) >

(1 + pmax)/4 are max,Jy, (q )
1+p ']u|sw -
1_2||Qr||§—i_(l"i_pmin)quHLQL >T 0’3
_ _ 3_p 1-— 1-— pmax_l +pmax2<]+<]2 2J+J2
& (1t puin)lgs 1 — 2/l 13 + =52 >0. o e e ),
Pmax — ) + pmax(2<] + J )
It can be shown that the quadratic inequality above is satisfied
by Forz € R such thafz| < 1, the binomial series [11] may be
1o /11— C—pmax) (U tPmin) used to claim
[EATERS T pmim ) Pumin 7 1
3—Pmax Prmin = —1 x x? 3
min Vi—z= —§—§—(9($).
and since/,(g)/o2 = |[all3/ (1 - ||q||§) is strictly increasing
in ||g]|3, the following must also be sufficient: Applying the previous expression with = ((pmax — 1) +
Pmax(2J + J%)) (2 + J?), we find that
B—pmax)}(1+pomin)
J (q ) 1 \/1 ) rauin L
uid : Pmin 7 —1
’ . Pmin = —1 o2

(34)

Note that}Cr/IC,SO) > (1 + pmax)/4, and thus, (34) ensures the =

right half of the existence condition (31). For the left half of

(31), we have the same sufficient condition as whgg, > 0. 1

Thus,0 < Ju(g,) and (34) are sufficient for the two inequalities 8

in (31). + O(Jg)
These results are summarized in Theorem 2 under the choice Pmax o 3

q, = q,/llg,|l,- Note that the UMSE conditions above guar- =J+ T‘] +0O(J7).

antee thagm € C,SO), so we need not state it explicitly.

1 ((pmax — 1) 4 punax(2T + J2)) (20 + J2)
2 (Pmax = 1) + pmax(2J + J2)

((Pmax — 1) + pumax(2J + J2))% (2] + J2)?2
(pmax - 1) + pmax(2J + ']2)

Finally, subtraction of/ gives the first case in (23).
C. Proof of Theorem 3 For the case,i, < 0, (22) says

Here, we reformulate the upper bound (22). To sim-
plify the presentation of the proof, the shorthand notation maX:Ju(zm)
2 : Ju|sw

J = Ju(g_)/o3 will be used.

Startingn\l/vith the casg,in > 0, (22) says 7

2
s

1- \/(1 + pmaX)(l + J)_2(1 + pminJ2) — Pmax

|1nax,J,, (gm) B Pmax T \/(1 + pmax)(l + J)72(1 + pminJ2) — Pmax
2
75 from which routine manipulations vyield the equation
I VL = pmax)(1+ J) 7% — prnax at the bottom of the page. As before, we use the bi-
Pmax + /(1 + pmax) (L + J) "2 — Prax nomial series expansion fory/1—ax but now with

—2
J |max,lC‘r 1 - \/(1 + pmaX) <1 + J"g-(gr) ) <1 + Pmin J‘Z‘(Eggr) ) — Pmax
u <

SW

(33)

2

o - -2 )
Pmax + \/(1 + pmax) <1 + J“(Egr) ) <1 + Pmin ‘2‘5;11]() ) — Pmax

~

max,Jy (q )
J Zn
u|sw

_ pmin']2 + 1- \/1 + (2 - 2pmin)'] + (1 + Pmin + PmaxPmin — 5pmax)']2 + O(]3)
03 (pma.x - 1) + 2p1na.x<] + (pmax - pmin)J2 '
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2 = (20min—2)J +(5pmax — 1 — Pmin — PmaxPmin) J? +0(.]3). [71 —, “Performance of Shalvi and Weinstein’s deconvolution criteria
After some algebra, we find forchannels with/without zeros on the unit circléZEE Trans. Signal
Processingvol. 48, pp. 571-5, Feb. 2000.
[8] P.Schniter, “Blind estimation without priors: Performance, convergence,

J |maX7J“(q ) and efficient implementation,” Ph.D. dissertation, Cornell Univ., Ithaca,
ulsw - NY, 2000.
o2 [9] B. Porat,Digital Processing of Random SignalsEnglewood Cliffs,
s NJ: Prentice-Hall, 1994.
_ 74 1 (pmax — Pmin)(Pmax — 1)J% + O(J?) [10] D.IG. LuenbergeiQptimization by Vector Space MethodsNew York:
= P _ . 5" Wiley, 1968.
2 (pmaX 1) + 2pmax + (pmax pmm)‘] [11] W. Rudin, Principles of Mathematical Analysi8rd ed. New York:

McGraw-Hill, 1976.

Finally, we apply the series approximation—v)~* = 1+y+

O(y2) with Yy = _(meax'] + (pmax - pmin)']2)/(pmax - 1) B ) ) )
for prax 75 1. Straightforward algebra yields Philip Schnlter' (M’00) was born in Evanston, II'_, in
1970. He received the B.S. and M.S. degrees in elec-
trical and computer engineering from the University
of lllinois, Urbana-Champaign, in 1992 and 1993, re-
spectively. In 2000, he received the Ph.D. degree in
electical engineering from Cornell University, Ithaca,
NY.
From 1993 to 1996, he was employed by Tek-
. L. L . . tronix Inc., Beaverton, OR, as a systems engineer.
Taking the limitp,,,.x — 1, it is evident that no problems aris There, he worked on signal processing aspects of
at the pointp,.. = 1. Subtraction of/ from the last statement wding aldorith Vfitf‘jfo and gorr:nmdunicationsh_instrument:tiO_n design,I
; : including algorithms, software, and hardware architectures. He is currently
gives the second case in (23). an Assistant Professor with the Department of Electrical Engineering, The
Ohio State University, Columbus. His research interest is signal processing for
communication systems, especially blind adaptive equalization.
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max,Jy (gm)
T T e = P 2 O
o2 - 2 Pmax — Pmin)- o
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