Wavelets, Approximation,
and Compression

ver the last decade or so, wavelets have had a
growing impact on signal processing theory
and practice, both because of their unifying
role and their successes in applications (see
also [42] and [38] in this issue). Filter banks, which lie at
the heart of wavelet-based algorithms, have become stan-
dard signal processing operators, used routinely in appli-
cations ranging from compression to modems. The
contributions of wavelets have often been in the subtle in-
terplay between discrete-time and continuous-time signal
processing. The purpose of this article is to look at recent
wavelet advances from a signal processing perspective. In
particular, approximation results are reviewed, and the
implication on compression algorithms is discussed. New
constructions and open problems are also addressed.

Bases, Approximation, and
Compression

Finding a good basis to solve a problem
dates at least back to Fourier and his in-
vestigation of the heat equation [18].
The series proposed by Fourier has sev-
eral distinguishing features:
A The series is able to represent any fi-
nite energy function on an interval.
A The basis functions are eigenfunctions
of linear shift invariant systems or, in
other words, Fourier series diagonalize
linear, shift invariant operators.

Similarly, the sinc basis used in the
sampling theorem is able to represent
any bandlimited function, and process-
ing can be done on samples instead of
the function itself. In short, a basis is
chosen both for its ability to represent an object of interest
(for example, good approximation with few coefficients)
and for its operational value (for example, diagonalization
of certain operators).

To be more formal, assume we have a space of func-
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Jo‘f(t)‘ ﬂlt<°°, (1)
which we denote L, (0,1). The first question is then to find a
basis forS, that is a set of basis functions{¢, },_, inSsuch that
any element f €§ can be written as a linear combination

f=3 0 0. (2)
iel

The example closest to the heart of signal processing
people is certainly the expansion of bandlimited functions
in terms of the sinc function. Assume the space of real
functions bandlimited to [-r, 7] in Fourier domain and
having a finite square integral. We denote this space by
BL, (-m,m). Then the Shannon sampling theorem says
thatany function in that space can be written as [36], [28]
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where o, = f(n)are the samples of f(¢)
at the integers, and

sin(mt)
Tt (4)

sinc(z) =

and its integer shifts are the basis func-
tions.

A question of immediate concern is
in what sense (3) is actually true. Con-
sider f (¢) as the approximation using
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and a norm to measure the approxima-
tion error. In this paper, we are solely concerned with the
L, norm of the error

- e, (-l e ar)

tions § and we wish to represent an element f €S. The (5)
space S can be, for example, integrable functions on the in-

terval [0,1] with finite square integral Then we say that (3) is true in the sense that
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If we have a set of functions {g, },_, such that all func-
tions in § can be approximated arbitrarily precisely as in
(6), then we say that the set is complete in S. If further-
more the elements are linearly independent, then we say
that {g,},_, is a basis for S. Among all possible bases, or-
thogonal bases are particularly desirable. In that case, the
basis functions or basis vectors are all mutually orthogo-
nal. Normalizing their norm to 1, or H(pl. H2 =1, zel,an
orthonormal set of vectors satisfies

(0,:9,)=3,, )
where the inner product (.,.) is defined as
(0:59;)=]_@; (00, (1) (8)
in continuous time, and as

(0,,0,)=Y0; [0, 1] )

neZ
in discrete time. (For discrete-time signals, we will con-
sider the space of square summable sequences denoted by
1, (Z).) For orthonormal bases, the expansion formula (2)
becomes

f=20,.1)0,

iel
This is a representation formula for f in the orthonormal
basis {@,},_,.(More general formulas, for example in
biorthogonal bases or in frames, are also possible, but are
not needed for our discussion.) Given the representation
of f in an orthonormal basis as in (10), its orthogonal
projection into a fixed subspace of dimension N spanned

by {9, },o v is denoted £ (¢)

(10)

fN =;}<(pn’f>(‘pn‘ (11)

This is the linear approximation of f by a projection
onto a fixed subspace of dimension N. It is linear be-
cause the approximation of o f +fg is equal to the
weighted sum of approximations, o f +f7, as can be
readily verified. But this is only one of many possible
N-term approximations of f. Thus, we are led to the ap-
proximation problem: Given objects of interest and
spaces in which they are embedded, we wish to know how
fast an N-term approximation converges

lF@)- £y @),

where f (¢) stands for an approximation of f'(#) which
involves N elements, to be chosen appropriately.

This immediately raises a number of questions. Differ-
ent bases can give very different rates of approximation.
Then, there are various ways to choose the N terms used in
the approximation. A fixed subset (e.g., the first N terms)

~ fet(N), (12)

60 IEEE SIGNAL PROCESSING MAGAZINE

leads to a linear, subspace approximation as in (11).
Adaptive schemes, to be discussed later, are nonlinear.
Will different choices of the subset lead to different rates
of approximation? Such questions are at the heart of ap-
proximation theory and are relevant when choosing a ba-
sis and an approximation method for a given signal
processing problem. For example, denoising in wavelet
bases has led to interesting results for piecewise smooth
signals precisely because of the superior approximation
properties of wavelets for such signals.

We are now ready to address the last problem we shall
consider, namely the compression problem. This involves
not only approximation quality, but also description
complexity. There is a cost associated with describing f ,
and this cost depends on the approximation method.
Typically, the coefficient values and their locations need
to be described, which involves quantization of the coeffi-
cients and indexing their locations.

Calling R the number of bits used in the description,
we can define a function D(R)

R)=[f = ful, (13)
where f, explicitely indicates that R bits are used to ap-
proximate f. (At this point, we should introduce an ex-
pectation over the class of functions to approximate.
Formally, approximating a single function has zero com-
plexity in the information theoretic sense. For simplicity,
we leave this implicit for the moment.) Of course, f, de-
pends on the basis chosen to represent f, and thus D(R)
can have very different behaviors, depending on the basis.
While D(R) resembles the distortion rate function D(R)
defined in information theory, the two functions are not
identical by any means. D(R) is defined as the infimum of
the distortion of any coding scheme using R bits [7] (us-
ing arbitrary long blocks of samples in discrete time, for
example) while D(R) is geared specifically at approxima-
tion in bases. In certain cases, D(R) can be of the same or-
der as D(R) while in others, the theoretical minimum
given by D(R) can be much better. Yet, D(R) is usually
achievable in practice with reasonable complexity, while
D(R) often remains an unachievable limit. (It should also
be noted that the true distortion-rate function is known
only in very few cases.)

To wrap up this section, we reviewed three related
problems around bases in spaces. The first was the exis-
tence of a basis, the second was the approximation power
of a basis, and the third was the compression power. In the
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sequel, we shall explore the relationship of these problems,
in particular for wavelet bases. The review paper [15] also
discusses the relationship between harmonic analysis,
computational methods, and signal compression.

Approximation Properties
of Filter Banks and Wavelets

Although orthogonal filter banks as used in subband cod-
ing have been discussed by Usevitch [42], we review
them here with an emphasis on their projection and ap-
proximation properties.

Orthogonal Filter Banks

When thinking of filtering, one usually thinks about fre-
quency selectivity. For example, an ideal discrete-time
lowpass filter with cut-oft frequency o, < takes any in-
put signal and projects it onto the subspace of signals
bandlimited to [-®, ,®, |. Orthogonal discrete-time filter
banks perform a similar projection which we now review.
Assume a discrete-time filter with finite impulse response
J,n1={g,[0,49,[1]>..,9,[L—1]}, L even, and the
property

<ﬂ0 (2],9, [”_Zk]>:6k>

that is, the impulse response is orthogonal to its even
shifts, and | g, [, =1. Denote by G , (2) the z-transform of
the impulse response g, [#]

(14)

o :L—l .
0(2) ;}ﬂo[”]z (15)

with an associated region of convergence covering the

z-plane except the origin. Assume further that g [7]is a

lowpass filter, that is, its discrete-time Fourier transform

has most of its energy in the region [-nt /2,7 /2]. Then

define a high-pass filter g, [#] with z-transtorm G, (z) as

follows:

G, (2)=z"""'G,(-z™). (16)
Three operations have been applied:

A z— —z corresponds to modulation by (-1)”, or trans-

forming the lowpass into a highpass.

A —z—-z"" applies time-reversal to the impulse re-

sponse.

A Multiplication by z~

pulse response causal.
For example, if g [#]={a,b,c,d}, then

g, [n]={-d,c,~b,a}. This special way of obtaining a

highpass from a lowpass, introduced as conjugate quadra-

ture filters (QCF) [39], [ 27], has the following properties:

<ﬂ1 (7], 4, [”_Zk]>:61e3

that is, g, [#] is also orthogonal to its even shifts, and

1 makes the time-reversed im-

(17)
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(g0[n, 8,17 —=2k])=0 (18)
or {g,[n],s,[n]} and their even shifts are mutually or-
thogonal. The last step is to show that the orthonormal set

{ﬂo [”_Zk]aﬂl [”_21]}/e,lez

is an orthonormal basis for /, (Z), the space of square
summable sequences. This requires to check complete-
ness, which can be done for example by verifying
Parseval’s relation [44]. Thus, any sequence from /, (Z)
can be written as

(19)

x[n]zz o, g, [n—2k]+2[31 g, [n =21, (20)
where

o, =<g0 [n—2k],x[n]>, keZ (21)
B, =(g,[n—21),x[n]), leZ. (22)

Now, how do we implement the expansion formula (20)?
Simply using a multirate filter bank as depicted in Fig. 1.
The analysis filters H j(z) and H | (z) are time-reversed
versions of G (z) and G, (), or
H.(2)=G,(2)=G. (™), i=0,L (23)

It is not hard to verify that the analysis filter bank (the
left part of Fig. 1) computes indeed the coefficients o,
and B, (remember that convolution includes time rever-
sal) and that the synthesis filter bank (the right part of Fig.
1) realizes the reconstruction as in (20).

We shall have a second look at the lowpass analy-
sis/synthesis branch, as shown in Fig. 2. Using standard
multirate signal processing analysis, the output of such a
filtering-downsampling-upsampling-filtering gives an
output y [n] with z-transform

7, (Z)=%'GO(Z)'[HO (2)X(2)+ H, (-2)X(-2)], (24)

that is, both a filtered version of X (z)and a filtered aliased
version involving X (—z). It can be verified that the opera-
tor from x[n] to y [z] is linear, self-adjoint, and
idempotent, that is, it is an orthogonal projection of the
input space /, (Z) onto a subspace given by the span of
{g,[n-2k]},.,. We call this subspace V, for which
{g,[n—-2k]},_, forms an orthonormal basis.
Considering similarly the highpass branch, we see that
it produces a projection of /, (Z) onto a subspace W, given
by the span of { g, [ —2I]},_,. The spaces V| and W, are
orthogonal (see (18)) and their direct sum forms/, (Z), or
L(Z)y=V, +W,. (25)
Thus, an orthogonal filter bank splits the input space into

a lowpass approximation space V; and its (highpass) or-
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Analysis

Synthesis

n* xe—|

A 1. Multirate filter bank. Two channel analysis followed by syn-
thesis.

nke— g(n)

an

A 2. Lowpass branch of the two channel filter bank in Fig. 1. The
discrete-time polynomial n* is an eigensignal of this operator.

thogonal complement W, . The space | corresponds to a
coarse approximation, while W, contains additional de-
tails. This is the first step in the multiresolution analysis
that is obtained when iterating the highpass/lowpass divi-

sion on the lowpass branch (see Fig. 3).

Discrete-Time Polynomials and Filter Banks
Signal processing specialists intuitively think of prob-
lems in terms of sinusoidal bases. Approximation theory
specialists think often in terms of other series, like the
Taylor series, and thus, of polynomials as basic building
blocks. We now look at how polynomials are processed
by filter banks.

A discrete-time polynomial signal of degree A is com-
posed of a linear combination of monomial signals
P m]=n" 0<m< M. (26)
We shall now see that such monomial (and therefore
polynomial) signals are eigensignals of certain multirate
operators. We need to consider lowpass filters G () that
have a certain number N >0 of zeroes at z=—1, or®=T7
on the unit circle. That is, the filter factors as
Gy(m)=1+2")" R (2). (27)
Clearly, because of (16), the highpass G| (z) has N zeros
at z=1(orw=0), while H (z)and H, (z) have N zeros at
z=-land 1, respectively because of (23).

Then, monomials up to degree N —1 are eigensignals
of the lowpass branch shown in Fig. 2, that is, filtering by
H, (2)=G,(z""), downsampling by 2, upsampling by 2,
and finally filtering by G (z). This result is a consequence
of the Strang-Fix theorem (see for example [41]), and we
give here an intuitive reasoning. Because the highpass
branch has an analysis filter
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H, (z):zHGO(—z):zL'1 (1—z‘1 )R, (—2), (28)
with N zeros at z=1, all polynomials up to degree N —1
get zeroed out in this branch. This is a consequence of the
moment theorem of the Fourier transform [44], [28].
Since the filter bank has the perfect reconstruction prop-
erty, these polynomials are therefore perfectly replicated
by the lowpass branch only, showing that they are
eigensignals. It is worth pointing out that sinusoids are
not eigensignals of such multirate operators. A conse-
quence of this eigensignal property is that we can write

n" =3 o™ - g,n-2k m<N,
;.L Lo (29)

where 0(;’”> are appropriate coefficients. This shows that

monomials up to degree N -1 are in the span of
{g,[n—2k]},_,. (Note that polynomials are not in/, (Z),
but any restriction to an interval is. So (29) is true for
windowed polynomials up to boundary effects.) Con-
sider now an iterated filter bank as shown in Fig. 3. After
J stages of decomposition and synthesis, the equivalent
synthesis lowpass filter g{’’ [#] has z-transform

G (9)=T]G, (=),
70 (30)

as can be verified using standard multirate identities [43],
[44].

Consider now what happens if a monomial signal of
degree smaller than N as given in (27) enters the analysis
filter bank. It gets cancelled in all highpass filters and gets
thus reproduced by the lowpass branch alone. In other
words, linear combinations of 4|’ [#]and its shifts by 2’/
can reproduce polynomials up to degree N —1, or simi-
larly to (29), we can write

n" :2 oc(]’jzl) g [m=-271).
]

Therefore, we have seen that discrete-time polynomials
live in the “coarse™ approximation space of discrete-time
filter banks, and this up to degree N — 1 when the lowpass
filter has N zeros at z=-1.

(31)

Continuous-Time Polynomials and Wavelets

As is well known, a strong link exists between iterated fil-
ter banks and wavelets. For example, filter banks can be
used to generate wavelet bases [9], and filter banks can be
used to calculate wavelet series [23]. It comes thus as no
surprise that the properties seen in discrete time regard-
ing polynomial representation carry over to continuous
time. While these properties are directly related to mo-
ment properties of wavelets and thus hold in general, we
review them in the context of wavelets generated from or-
thogonal finite impulse response (FIR) filter banks. As-
sume again that the lowpass filter has N zeros at o=,
and thus, the highpass has N zeros at ® =0. From the two
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scale relation of scaling function and wavelet, we get that
the Fourier transform of the wavelet can be factored as

_ L 6 oryal@
)= G (¢ )q{z} )

where ®(w) is the Fourier transform of the scaling func-
tion. Since @(0) =1, we see from (32) that ¥ () has exactly
N zeros at =0, or N zero moments following the mo-
ment theorem of the Fourier transform. Therefore, the
inner product between any wavelet (arbitrary scale and
shift) with polynomials up to degree N —1 will be zero.
Thus, polynomials can be represented as linear combina-
tions of scaling functions alone, or similarly to (31), there
are coefficients y!" such that

=Y Y ). (33)
!

An example, using the Daubechies scaling function
based on a four-tap filter [9], is shown in Fig. 4 over a fi-
nite interval. The linear function is perfectly represented,
up to boundary effects.

Discontinuities in Filter Bank

and Wavelet Representations

What happens if a signal is discontinuous at some point
t,? We know that Fourier series do not like discontinu-
ities, since they destroy uniform convergence. Wavelets
have two desirable properties as far as discontinuities are
concerned. First, they focus locally on the discontinuity as
we go to finer and finer scales. That is because of the scal-

ing relation of wavelets, where the function sety , , (¢)1s
defined as

Y, @)=2""2 yQ2 " t-n) mnel, (34)
where m — —eo corresponds to fine details. Thus, as
grows negative, the wavelet becomes “sharper.” If the dis-
continuity is isolated, and the surroundings are smooth,
all wavelet inner products except the ones at the disconti-
nuity will be zero, and around the discontinuity, L —11in-
ner products are different from zero when the wavelet has
support length L.

Second, the magnitude evolution across scales of the
nonzero wavelet inner products characterizes the discon-
tinuity. This is a well-known characteristic of the continu-
ous wavelet transform [25], [10] and holds as well for the
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orthonormal wavelet series. For example, for a Dirac,
f(2)=38(t), the wavelet coefficients, given by

Cm,n :<1|Im,n ’f>>

will evolve as

|Cm,n|~2_m/23 (35>

for » around zero, as can be seen from (34). For a
Heaviside (step) function the behavior is

le, ul~2""2, (36)
and more generally, for a singularity of order % (a singu-
larity of order & appears when there are k bounded deriva-
tives, and the (k+1)th derivative is unbounded. The
Heaviside function has k=0, a continuous function with a

nondifferentiable point has k=1), the behavior is
2( ket 3)m

C

m,n > (37)
for the L —1 coefticients around the discontinuity at scale
m. Consider now a signal that is mostly smooth, except at
isolated points where it has various types of singularities.
Clearly, the energy of the wavelet coefficients will be con-
centrated around the points of singularity, with a behav-
ior indicated by (37). If the signal is polynomial between
the singularities, then all other wavelet coefficients will be
zero, and the polynomial pieces will be “caught” by the
scaling functions. This is shown in Fig. 5.

The above discussion focused on continuous-time sig-
nals, so what about discrete-time one? Technically, there
is no concept of continuity for sequences. However, qual-
itatively, the same happens as in continuous time. In addi-
tion, the sequence can be piecewise polynomial, in which
case we have a piecewise equivalent to the above discus-
sion. In that case, the lowpass branch catches the coarse
trend, while the highpass and bandpass channels are zero
except around singular points. At these points, there will
be L —1nonzero coefficients at each scale, and their mag-
nitude will be governed as in (37).

To conclude, we have discussed how piecewise poly-
nomials or piecewise smooth functions have wavelet ex-
pansion coefficients concentrated mostly around singular

Analysis

Stage 2

)

Stage J

A 3. lterated filter bank. The lowpass branch gets split repeatedly
to get a discrete-time wavelet transform.
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points, while scaling functions or lowpass filters describe
the polynomial or smooth trend.

Linear and NonLinear Approximations

So far, we have reviewed the construction of bases, espe-
cially of wavelet bases. In that case, we were concerned with
an exact representation of any signal or function from a
given space. We turn now to approximate representations
and contrast linear with nonlinear methods. For an in-depth
discussion of such methods, in particular in the wavelet con-
text, we refer to the excellent exposition in [24].

Linear Approximation
Assume a space ' and an orthonormal basis{ g, } ,_,, for V.
Thus, afunction f* €V can be written as a linear combination

f=2(8.:1)9.-

neN
The best (in the squared error sense) linear approxima-
tion of f in the subspace V', denoted as f, is given by the
orthogonal projection of f onto a fixed subspace of V' (see

(38)
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A 4. Reproduction of a linear function as a combination of scal-
ing functions.

\ T ——

.u.-...n.c.-.ao.o...Io.o.c....o.uc....c.c.ll.-.-o.uc.nnn.

A 5. A piecewise smooth function and its wavelet expansion. The
wavelet coefficients are different from zero only in the vicinity
of the discontinuity, while the coarse behavior is represented
by the scaling coefficients only.
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(11)). Assume it is a subspace W of dimension M, and
spanned by the first M vectors of the basis, or

W =spanig,,4,-9, -5, - Then f is given by

fu= Z(,) (F0>F)F 05 39

and the squared error of the approximation is

=l = 3 koot

n=M

Because the subspace W is fixed, independent of f,
the approximation is linear. This follows from the fact
that the approximation of f'+ g equals the sum of their
approximations. An obvious question is to find the best
basis for linear approximation (in the squared error
sense) given a class of objects. To be specific, we review
the classic result on linear approximation of random vec-
tor processes. Consider a vector process X =[X ,X,
X, ,...X,_]" where X is an independent, identically
distributed (iid) process with zero mean (E[X;]=0) and
covariance
E[X-X"]=R,, (40)
where R, is known a priori. Because we are interested in
least squares approximation, we will not need any higher
order statistical characterization. Consider now the linear

approximation in an orthonormal basis
{F0s81 58 311> M<N, that is

A M—1< >

X,y =2.0.,.X)4,

’ ;) (41)

What is the expected squared error, or €, =
E[HX—X ]e Rewriting [X-X,,| as((X-X,,),

2

(X -X ” )>, one finds after some manipulation that [20]

5 N-l
=> 4,XX" 4,

HX -X
et (42)

which leads to the expected squared error

N-1 N-1
SMZZJZE[HT]gm:zﬂ;RXgW
m=M m=M (43)

The question is now: over all possible orthonormal
bases for RY, which will minimize (43) for all
M=1,...,N —1? Given that R  is positive semidefinite,
the answer is that the best basis is given by the set of
eigenvectors of R, ordered with decreasing eigenvalues.
The approximation error is then

N-1
& =S,
=2 (44)
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where A, is the mth largest eigenvalue of R , . The geo-
metric intuition behind this result is that the eigenvectors
are the principal axes of the N-dimensional distribution
and the best M-dimensional subspace gathering most
“energy” (or expected /, norm) corresponds to the princi-
pal axes with largest eigenvalues (see Fig. 6).

The orthogonal transform given by the eigenvectors of
R, (ordered by decreasing eigenvalues) is of course the
well-known Karhunen-Loeve transform (KLT) as ex-
plained by Goyal [20], but it is useful to recapitulate its
essential property: it is the best basis for linear subspace
approximation of a vector process specified by second or-
der statistics. Again, the second-order statistics are as-
sumed to be known a priori, so the subspace is chosen a
priori as well and is fixed. (If the correlation matrix has to
be estimated on the fly, then we have a different, adaptive
situation, which is not a linear approximation. For an ex-
ample of such an adaptive KLT, see [22].)

In the case of a jointly Gaussian vector process, a
stronger result holds, namely, it is also the best “com-
pression” transform (when transform coefficients are
quantized and entropy coded). See [19]-[21] for a re-
view of this result.

Nonlinear Approximation in Orthonormal Bases
Consider the same set up as above, but with a different ap-
proximation rule. Instead of (38), where the first M coef-
ficients in the orthonormal expansion are used, we keep
the A1 largest coefficients instead. That is, we define an
index set I, of the M largest inner products, or

Kgm,f>‘2‘<gn,f>‘ for every mel, and nel,. (45)

Then, we define, the best nonlinear approximation as:

.}FM: Z<gn>f>ﬂn3

nel y (46)
which leads to an approximation error
~ ~|? 2
e =|f-T] = Ska.ro.
2 nel 5
Clearly
€, <E,. (47)

(We could call this adaptive linear approximation or
adaptive subspace approximation. However, the com-
monly used term is nonlinear approximation. More gen-
eral nonlinear schemes could also be considered, but are
beyond the scope of this article.)

Let us show that the simple modification of picking
the largest rather than the first A inner products creates
indeed a nonlinear scheme. Consider two functions f and
h. In general, the M largest coefficients will not corre-
spond to the same set for f and /4, and thus, approximat-
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A 6. Two-dimensional distribution indicated by a scatter plot. The
principal axes are indicated, and the best one-dimensional ap-
proximation is the axis corresponding to the biggest spread.

ing f+ h1is certainly not the sum of the approximations of
f and 4, which has typically more than M terms.

Linear versus Nonlinear Approximation

Now, the question is if (45) leads to large differences in
approximation quality, and if there are bases where the
difference is larger than in others. Consider the example
of a piecewise constant function with a discontinuity.
While simple, it exposes fundamental differences be-
tween linear and nonlinear approximation, as well as be-
tween Fourier and wavelet bases.

To be specific, take the interval [0,1]and use Fourier se-
ries or wavelet series to represent a function which is con-
stant except for a jump at a random point ¢, distributed
uniformly over [0,1].

Consider Fourier series first. Because of the disconti-
nuity, the Fourier series coefficients decay slowly

~1/n, (48)

n

‘aﬂ"ﬁ

wherea,, and , are the cosine and sine coefficients at fre-
quency 2mz. Linear approximation by the first A terms
(or first M /2 sines and cosines) leads to an error of the
order

g > 1
e~ N 1/n> ~—.
" 214 M (49)

Picking the M largest coefficients will not change the ap-
proximation order for the following reason. While some
ofthea, ,B, coefficients will be small in the early terms of
expansion (the sine and cosine in the numerator of the
Fourier series coefficient can sometimes be small), most
of the M largest coefticients are still gathered in the first
kM coefficients, where % is a small integer. So, to first ap-
proximation, the set of M largest coefficients has a large
overlap with the set of the first M coefficients, and thus
the nonlinear approximation error satisfies

(50)
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Consider now the wavelet expansion using a Haar
wavelet, where

1 0<z<l1/2
Y()=<-1 1/2<zr<1
0 else

(51)

and the wavelets are defined as in (34) with
m=0,—-1,-2,... While such a wavelet seems unfairly close
to the function to be represented, let us point out that
there are still an infinite number of nonzero wavelet coef-
ficients unless #, is a dyadic rational. In addition, the be-
havior we are about to show holds much more generally.

0 100 200 300 400 500 600 700 800 900 1000

1t 4

0 100 200 300 460 560 600 700 800 900 1000

1F 4

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

T T T T T T T T T T

0 100 200 300 400 500 600 700 800 900 1000

T T T T T T T T T T

0 100 200 300 400 500 600 700 800 900 1000
(b)

A 7. Fourier versus wavelet bases and linear versus nonlinear
approximation. The signal is discrete time of length 1024, and
M = 64 coefficients are retained. (a) Fourier case. Original on
top, linear approximation in the middle, and nonlinear approx-
imation at the bottom. The MSE is 2.7 and 2.4 respectively. (b)
Wavelet case, with six levels of decomposition and a wavelet
having three zero moments. Original on top, linear approxima-
tion in the middle, and nonlinear approximation at the bottom.
The MSE is 3.5 and 0.01, respectively.
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First, recall that there will be a single nonzero wavelet
coefticient at each scale m around the discontinuity, and
this coefticient has size
| c | . 2 m/2

bl

(52)
where 7 — —eo. When doing linear approximation, one
takes coarser scales first (where the larger coefficients lie),
and goes to finer scales next. While all coefficients but one
are zero, we are not allowed to adapt. If M =27, one can
take J -1 scales (from 0 to —J +2), at which point the
only nonzero coefficient is of order 27//*. The residual
quadratic error is then of order 27/ and thus

(53)

just as in the Fourier case. However, if we go to the non-
linear approximation scheme, things change dramati-
cally. Picking the M largest coefficients allows us to go
across M scales (since there is only one nonzero coeffi-
cient per scale) at which point the coefficient is of order
27> The quadratic error is then
g ~2m,

on

(54)

We have gone from 1/ M decay in Fourier (linear and
nonlinear) or wavelet linear approximation, to exponen-
tial decay with nonlinear approximation in wavelet bases.

What we have just seen holds much more generally. It a
function is piecewise smooth, with isolated discontinuities,
then Fourier approximation is poor because of the disconti-
nuities. In the wavelet case with a wavelet that has enough
zero moments so that the inner products in the smooth re-
gion are small, few wavelet coefficients are sufficient to cap-
ture the discontinuities, and nonlinear approximation
outperforms linear schemes by orders of magnitude. Fig. 7
shows an example, where it can be seen that nonlinear ap-
proximation is vastly superior in the wavelet case, while it
makes little difference in the Fourier case. Also, note that
with linear approximation, there is little difference between
Fourier and wavelets. For a review of some strong approxi-
mation results for wavelet expansions of smooth and
piecewise smooth functions, see [12], [ 24].

Nonlinear Approximation
and Compression

So far, we have considered keeping M elements from a
basis, either a fixed set (the first M typically) or an adap-
tive set (corresponding to the largest projection). In com-
pression, we have first to describe the coefficient set,
which has zero cost when this set is fixed (linear approxi-
mation) but has a nontrivial cost when it is adaptive (non-
linear approximation). In that case, there are (¥ ) possible
subsets, and the rate to describe the subset is equal to the
entropy of the distribution of the subsets, or at most
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N
log, mt

In addition, it is necessary to quantize and entropy
code the various inner products. For complexity reasons,
one usually considers only scalar quantization and en-
tropy coding of individual coefficients, rather than vector
quantization and vector entropy coding. Using usual
high rate quantization results [19], [20], spending R bits
on a particular coefficient leads to a distortion-rate
trade-oft of the form

(55)

D(R)=C,27", (56)
where C, depends on the distribution of the coefficient
(e.g., 6> for a uniform distribution of variance 6* or
(me/6)c” fora Gaussian random variable of variancec * ).
Using the M-term approximation rates (as for example in
(49), (50) or (53), (54)) together with the set description
complexity (55) and distortion-rate for coefficients (56),
one can derive achievable upper bounds for the distor-
tion-rate tradeoft of linear and nonlinear approximation
schemes.

An Example of Linear versus Nonlinear
Approximation and Compression
An example that highlights the fundamental difference
between linear and nonlinear approximation in compres-
sion is as follows. Consider a random vector process of
size N, where each realization has only one nonzero value
at a random location £, the others being zero, or
X[n]=0-8[n—rk] nel0,...,N -1}, (57)
where o is Gaussian N (0,67 ) and % is an integer uniformly
distributed over {0...N — 1}. In other words, for each realiza-
tion, we pick uniformly a location between 0 and N —1, and
at that location, place a Gaussian random variable of mean
zero and covariance 6, as shown schematically in Fig. 8.
Consider first the linear approximation problem. The
autocovariance matrix is equal to

2
R, =21,

YN (58)
and therefore, using the KLT approach, the standard ba-
sis is already the best basis (not unique) for linear
subspace approximation. Thus, R bits are evenly distrib-
uted across N positions, and the overall distortion-rate
behavior is
D,(R)=C-c* 278N, (59)
Note that this is what the linear, KLT approach would
tell us to do, even though it is clearly suboptimal. A better
approach, at least if R is large enough, is to spend
[log, N'|bits to point to the location that is active in a
given realization, and spend the remaining R —log, N
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R —log, N bits on describing the Gaussian random vari-

able. This leads to

Dy, (R)=C.g* .272(Fe:) (60)
which for R >>log, N is clearly superior to (59). For low
rates (R ~log, N and below), the situation is more diffi-
cult; refer to Weidmann [45] for a thorough analysis.

The lesson from the above example is that the linear
theory is misleading when processes are far from jointly
Gaussian. The KL T leads to decorrelation, which means
independence only in the Gaussian case. And it turns out
that many signals of interest for compression are not
jointly Gaussian.

Real Coders Do Nonlinear Approximation

Let us see what “real” coders do. Actually, long before
wavelets and nonlinear approximation theory, compres-
sion engineers developed methods to adapt the linear,
KLT-based theory to real world signals. Two main ingre-
dients are used, namely locality and adaptivity. First, sig-
nals are divided into localized subsignals (for example
using blocking as in block-based transform coding), and
these subsignals are transformed individually. Then,
these “local” transforms are coded adaptively, depending
on their characteristics. This is reminiscent of our previ-
ous example: if only a few large coefficients appear but in
unknown locations, then it pays to localize them. With-
out getting into too much details, Fig. 9 shows a typical
set of discrete cosine transform (DCT) coefticients as
used in JPEG and the subsequent quantization, run
length, and entropy coding. With this method, when
there are few large coefficients, they can be represented
with few bits, and we have indeed a nonlinear approxima-
tion scheme in a local Fourier-like basis.

It is worthwhile to point out that any adaptive scheme
creates nonlinearity. For example, adaptive bit allocation
between transform blocks (more bits to high activity
blocks, less to low activity ones) is already a nonlinear ap-
proach. Also, adaptive best bases [6], [34], dynamic pro-
gramming based allocations [29], [34], adaptive
segmentation [31], [32], and matching pursuit [26] are
all examples of nonlinear schemes used in compression.

It is worth pointing out that the investigation of the
rate-distortion behavior of “real” coders is a difficult
topic, both because of the nonlinearity of approximation

~N(0,1)

A 8. Pointing process, with uniform choice of a single location
where a Gaussian random variable is placed.
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[

A 9. Example of 64 DCT coefficients from an 8 x 8 block and
zig-zag scanning. (a) Zig-zag scanning of the 8 x 8 block of
DCT coefficients to obtain a one-dimensional array of coeffi-
cients. (b) Example of an array of 64 coefficients (magnitude
only) with a threshold T (deadzone quantizer) and
quantization of the coefficients above T. Subsequently, run
length coding is used to index the large coefficients, and en-
tropy coding to represent their value.

=1 T T T T . T T T T

I~

0O 02 04 06 08 1 12 14 16 18 2

A 10. Squared error (on log scale) versus bit rate for JPEG (upper
curve) and SPIHT [35] (lower curve). At high rates, the typical
—6 dB/bit is apparent, while at very low rates, a steeper decay
is typical.
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and quantization and because the interplay of approxima-
tion, quantization and entropy coding is nontrivial. In
particular, the low rate behavior is tricky. Fig. 10 shows
the logarithm of the squared error of JPEG and of'a wave-
let-based coder (SPIHT [35]). While the high rate behav-
ior is as expected (namely, —6 dB per bit on log scale), the
low rate behavior is different, since the quadratic error
falls oft much more rapidly at very low rates. An intuitive
explanation is that at very low rates, the classic rate alloca-
tion does not hold, since many transform coefficients do
not get any rate at all. The few remaining coefticients are
thus getting more precision, leading to a faster decay of
the error. Using a different analysis, Mallat et al. [24]
have shown a 1/ R behavior at low rates for transform
codes.

Compression of Piecewise Polynomial Signals
Let us return to one-dimensional piecewise smooth sig-
nals. Wavelets are well suited to approximate such signals
when nonlinear approximation is allowed. To study com-
pression behavior, consider the simpler case of piecewise
polynomials, with discontinuities. To make matters easy,
let us look again at the signal we used earlier to study non-
linear approximation, but this time include quantization
and bit allocation. A simple analysis of the approximate
rate distortion behavior of a step function goes as follows.
Coefficients decay as 2”/?, so the number of scales ] in-
volved, if a quantizer of size A is used, is of the order of
log, (1/ A). The number of bits per coefficient is also of
the order of log, (1/A), so the rate R is of the order

R ~log2(1/4) ~ J2. (61)

The distortion or squared error is proportional to A* (for
cach coefficient), times the number of scales or, using
A=27

D~ 27, (62)
Using (61), we get
D, (R)=C, VR -27¢'% (63)

for the distortion-rate behavior of a wavelet scheme. Note
that we ignored the cost of indexing the location. This
cost turns out to be quite small (order J), because the co-
efficients are all gathered around the discontinuity. For
more general signals, Prandoni [31] has shown that non-
linear approximation of piecewise polynomials with max-
imal degree N, using a wavelet compression where the
wavelet has N + 1 zero moments, leads to

D, (R)=Cj, (1 + Cj, JR) - 27{%* 64)

where the constants depend on N and the number of dis-

continuities. The disturbing news is the VR term in the
exponent, which is very far from the expected high rate
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behavior. Such behavior has been shown more generally
tor piecewise smooth functions by Cohen etal. [5]. (Note
that this is a much broader class than piecewise polynomi-
als.) A direct approach to compression of piecewise poly-
nomials, based on an oracle telling us where
discontinuities are, leads to

(65)

and such behavior is achievable using dynamic program-
ming [31]. Clearly (65) is much superior to (64) at high
rates. Now, why is the wavelet compression performing
suboptimally? The intuitive reason is simple: by com-
pressing the coefficients across scales independently, one

does not take advantage of the interscale dependencies.
Several attempts have been made to use such dependen-
cies. For example, zero trees [37] predict lack of energy
across scales, and hidden Markov models [8] indicate de-
pendencies across scales. In the case of piecewise polyno-
mials with discontinuities, the behavior across scales is
actually deterministic, and this can be modeled using
wavelet footprints [16]. Using footprints on a wavelet
decomposition of a piecewise polynomial allows one to
achieve the best possible behavior given in (65), while us-
ing a wavelet transform. Examples of using footprints for
denoising can be seen in Fig. 11.

The Two-Dimensional Case

Given the good performance of wavelets for piecewise
smooth functions in one dimension, one would hope for
good results in two dimensions as well.(Here, we con-
sider separable wavelets in two dimensions, which are
commonly used in practice.) Unfortunately, such is not
the case. In essence, wavelets are good at catching
zero-dimensional singularities, but two-dimensional
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(c)
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02y
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A 11. Denoising in wavelet domain using thresholding and footprints. (a) Original. (b) Noisy version (SNR = 11.1 dB). (c) Denoising us-
ing footprints (SNR = 31.4 dB). (d) Denoising using standard wavelet thresholding (SNR = 20.1 dB).

SEPTEMBER 2001

IEEE SIGNAL PROCESSING MAGAZINE 69



A 12. Typical ridgelet, at angle 6 with a profile given by v, ,(t)

w2

v

wi

A 13. Frequency division of a directional filter bank with 8 bands.

piecewise smooth signals resembling images have one-di-
mensional singularities. That is, smooth regions are sepa-
rated by edges but edges themselves are typically smooth
curves. Intuitively, wavelets will be good at isolating the
discontinuity orthogonal to the edge, but will not see the
smoothness along the edge. This can be verified by look-
ing at the approximation power of a two-dimensional
wavelet basis. Such a basis is obtained by a tensor-product
of one dimensional wavelets. An analysis similar to thatin
the “Linear versus Noninear Approximation” Section
shows that the Af-term nonlinear approximation of a
simple piecewise constant function with a linear disconti-
nuity leads to a quadratic error of the order
g, ~ 1/ M. (66)

This disappointing behavior indicates that more pow-
erful bases are needed in higher dimensions.
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True Two-Dimensional Bases

As the wavelet example shows, separable bases are not
suited for “true” two-dimensional objects. What is
needed are transforms and bases that include some form
of “geometry” and that are truly two dimensional. (The
notion of geometry is not easy to formalize in our con-
text, but the intuition is that the dimensions are not inde-
pendent, and certain shapes are more likely than others.)

Besides the two-dimensional Fourier and wavelet

transforms, which are both separable, the Radon trans-
form plays a key role. This transform, studied early in the
20th century [33], was rediscovered several times in fields
ranging from astronomy to medical imaging (see [11] for
an excellent overview). The Radon transform maps a
function f(x,y) i.nto RA, (6,7) by taking line integrals at
angle 6 and location #
RA, (6,7) :J I (2, 9)8(x cos® + ysin® — t )dxdy. (67)
A key insight to construct directional bases from the Ra-
don transform was provided by Candes and Donoho [2],
[3] with the ridgelet transform. The idea is to map a
one-dimensional singularity, like a straight edge, into a
point singularity using the Radon transtform. Then, the
wavelet transform can be used to handle the point singu-
larity. To develop the intuition, consider a
two-dimensional Heaviside-like function which is —1 on
the left of a line §(xcosO + ysin®, —7 ), and 1 on the
right. This is an “infinite” edge function of angle 8, and
location £ .

Because of the infinite extent, we cannot take the inte-
gral in (67) without additional constraints (like applying
a smooth window), but intuitively, for any angle 66 ,
the projection RA " (6,¢) is smooth in ¢, while for 8, the
result is a one-dimensional Heaviside function in # with a
singularity in . It is thus natural to take a wavelet trans-
tform along ¢, leading to the definition of the continuous
ridgelet transform as [3]

RI,(a,b,0)=] v, , ())RA, (8,)dr, (68)

where v, (£)=a7"? y(t —b/a) and () is a wavelet
with at least one zero moment. The “atoms” of analysis
are infinite ridges at an angle 6, location & and scale a,
where the profile of the ridge is given by the wavelet. One
such ridgelet is shown in Fig. 12.

The transtorm in (68) is continuous in all parameters.
Appropriate discretization and localization leads to sets
of localized directional ridges that can efficiently repre-
sent two-dimensional functions with edge-like disconti-
nuities (more precisely, one can show that a frame
representation is obtained [3]).

It is also possible to develop discrete schemes that work
directly on finite size, sampled data, while emulating the
principles of the ridgelet transform. Such schemes typically
implement a discrete Radon transform in space or Fourier
domain (in the latter case, using the projection slice theo-
rem) followed by a discrete wavelet transform. One exam-
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ple is given in [40], where ridgelet frames are constructed
for image denoising. Another example is the construction
of an orthonormal ridgelet basis from the finite Radon
transform and the discrete wavelet transform [13].

The important point with ridgelets is that unlike
wavelets, they achieve fast N-term approximation of ob-
jects with straight edges [3]. For the example of a
Heaviside function, one gets an A-term nonlinear ap-
proximation with

iy -M
€, ~27".

(69)

Therefore, they can be used as building blocks in more
complex schemes to approximate objects with smooth
edges. One such scheme uses localized ridgelets of appro-
priate size along edges (e.g., with fixed or adaptive
blocksizes [40]).

Ridgelets can be combined with multiresolution
schemes to get multiscale ridgelets. Combined with
bandpass filtering, this gives rise to curvelets [4].

Directional Filter Banks

To get directional analysis, one can alternatively use di-
rectional filter banks [1]. In such a case, the basis func-
tions are given by the filter impulse responses and their
translates with respect to the subsampling grid. Such fil-
ter banks can be designed directly, or through iteration of
clementary filter banks. They lead to bases if critically
subsampled, or frames if oversampled.

Fig. 13 shows the frequency division achieved by an
ideal directional filter bank with eight channels. When
this is combined with a multiresolution, pyramidal de-
composition, one obtains a curvelet-like decomposition
[4], [14]. Specifically, a pyramidal decomposition into
bandpass channels (see Fig. 14(a)) is followed by a direc-
tional analysis of the bandpass channels. The number of
directions is increased as frequency increases, and the re-
sulting frequency split is shown in Fig. 14(b). This system
is called a pyramidal directional filter bank (PDFB). A
test image and its decomposition is shown in Fig. 15,
showing how different directions are separated, and this
in a multiresolution manner.

As an example application, a simple denoising algo-
rithm (based on thresholding the small magnitude coefti-
cients in the decomposition) is applied on both a wavelet
decomposition (this is a standard denoising procedure)
and a pyramidal directional filter bank decomposition. As
can be seen in Fig. 16, the PDFB catches directionality
more efficiently, producing more pleasing visual results
and better SNR performance. This indicates the potential
of such nonseparable, directional multiresolution schemes.

Two-Dimensional Bases and Compression

As we had seen in one dimension, a good N-term approx-
imation is not yet a guarantee for good compression.
While a powerful N-term approximation is desirable, it
must be followed by appropriate compression. Thus, the
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A 14. Pyramidal directional filter bank. (a) A standard multiscale
decomposition into octave bands, where the lowpass channel
is subsampled while the highpass is not. (b) Resulting fre-
quency division, where the number of directions is increased
with frequency.

(a) (b)

A 15. Pyramidal directional filter bank decomposition. (a) Simple
test image. (b) Decomposition into directional bandpass im-
ages (8, 4 and 4) and a lowpass image.

topic of compression of two-dimensional piecewise
smooth functions is still quite open. Several promising
approaches are currently under investigation, including
compression in ridgelet and curvelet domain, compres-
sion along curves using “bandelets” [30] and generaliza-
tion of footprints in two dimensions or edgeprints [17].
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(@) (b)

A 16. Comparison of threshold-based denoising methods using
wavelets (a) and a pyramidal directional filter bank (b). The
SNR is 13.82 dB and 15.42 dB, respectively.

Conclusion

The interplay of representation, approximation, and
compression of signals was reviewed. For piecewise
smooth signals, we showed the power of wavelet-based
methods, in particular for the one-dimensional case. For
two-dimensional signals, where wavelets do not provide
the answer for piecewise smooth signals with curve singu-
larities, new approaches and open problems were indi-
cated. Such approaches rely on new bases with potentially
high impact on image processing, for such problems as
denoising, compression and classification.
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