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Segmentation of Polarimetric Synthetic Aperture 
Radar Data 

Eric Rignot and Rama Chellappa, Fellow, IEEE 

Abstract-A statistical image model is proposed for segment- 
ing polarimetric synthetic aperture radar (SAR) data into re- 
gions of homogeneous and similar polarimetric backscatter 
characteristics. A model for the conditional distribution of the 
polarimetric complex data is combined with a Markov random 
field representation for the distribution of the region labels to 
obtain the posterior distribution. Optimal region labeling of the 
data is then defined as maximizing the posterior distribution of 
the region labels given the polarimetric SAR complex data 
(maximum a posteriori  (MAP) estimate). An implementation of 
the MAP technique on a parallel optimization network is pre- 
sented. A fast alternative solution is also considered. Two pro- 
cedures for selecting the characteristics of the regions are then 
discussed: one is supervised and requires training areas, the 
other is unsupervised and is based on the multidimensional 
clustering of the logarithm of the parameters composing the 
polarimetric covariance matrix of the data. Results using real 
multilook polarimetric SAR complex data are given to illus- 
trate the potential of the two selection procedures and evaluate 
the performance of the MAP segmentation technique. The im- 
pact of reducing the dimension of the polarimetric measure- 
ments on segmentation accuracy is also investigated. The re- 
sults indicate that dual polarization SAR data may yield almost 
similar segmentation results as the fully polarimetric SAR data. 

I.  INTRODUCTION 
HE electromagnetic wave transmitted by a radar sys- T tem is characterized by its frequency and its polar- 

ization state which describes the relative motion of the 
vector representing the electrical field when the wave 
moves towards an observer. Conventional radars use the 
same antenna polarization configuration for both trans- 
mission and reception of the electromagnetic signal and 
operate at a fixed polarization. These systems do not per- 
mit a complete characterization of the mechanisms of in- 
teraction of the electromagnetic wave when the surface 
and the depolarization properties of natural targets cannot 
be studied. In recent years, fully polarimetric radars have 
been developed [ l ]  that acquire all the information con- 
tained in the radar response. The radar signal is decom- 
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posed into two orthogonal signals, one horizontal, the 
other vertical (Fig. l ) ,  that are received and processed 
independently in separate channels. By using various 
combinations of horizontal and/or vertical polarization 
configurations of the transmission and reception ends, the 
complete polarimetric scattering matrix is measured for 
each resolution element of the imaged scene. The re- 
corded elements of the scattering matrices can then be 
combined to synthesize any type of transmit/receive po- 
larization configuration and study the variation with po- 
larization of the intensity and phase of the backscatter re- 
sponse of natural targets [2]. 

Polarimetric synthetic aperture radar (SAR) data help 
researchers understand and quantify the scattering prop- 
erties of natural scenes and their variability under differ- 
ent conditions better than single polarization SAR data. 
Along with the diffusion of this type of radar data among 
the scientific community, a number of polarimetric radar 
analysis techniques have been reported in the literature to 
measure and characterize the polarization response of nat- 
ural targets [2], to maximize the contrast between targets 
based on polarimetric filtering [ 11, or to classify SAR data 
based on the type of scattering mechanisms [3]. SAR data 
also received some attention recently in terms of seg- 
menting them into edges [4] or regions [ 5 ] ,  [6], [7]. In 
[7], a method was proposed for segmenting single look 
single polarization SAR complex data into regions of ho- 
mogeneous and similar backscatter characteristics. In this 
paper, we consider the case of multilook multipolariza- 
tion SAR complex data and evaluate the performance of 
the segmentation technique using real polarimetric SAR 
data. 

There is a considerable interest in developing segmen- 
tation procedures for polarimetric SAR data as they may 
yield a more quantitative, time, and cost effective analysis 
of the data than visual interpretation of photo products. 
Further, they may facilitate the inference of geophysical 
parameters from the surface and the near surface (e.g., 
surface roughness, soil moisture content, dielectric con- 
stant, etc .) as model inversion techniques are computa- 
tionally more efficient when applied on the polarimetric 
backscatter characteristics of large homogeneous regions 
than on a pixel by pixel basis [8]. 

A maximum likelihood (ML) polarimetric classifier was 
derived by Kong et al .  [9] assuming that the polarimetric 
complex data are multivariate circular Gaussian. As con- 
fusion may occur between regions when the radar re- 
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Fig. 1 .  Definition of H and V in a polarimetric imaging radar. EH is the 
horizontal component of the electrical field, k is the wave vector, and S is 
the surface imaged by the radar. 

sponse significantly varies with the incidence angle [lo], 
a normalized ML classifier was derived by Yueh et al. 
[ 111 which, in some cases, produces better results than 
the unnormalized classifier. Yet, the resulting segmenta- 
tion maps are not satisfactory and appear noisy. Van Zyl 
and Burnette [ 121 proposed a subsequent improvement of 
the results using a simple deterministic relaxation tech- 
nique that locally estimates the probability of the regions 
and smoothes out the ML segmentation map. In our work, 
a more elegant framework is given based on a composite 
image model for the polarimetric data. Each sample point 
or pixel is characterized by two attributes: 1) a polari- 
metric measurement vector; 2) a region label which iden- 
tifies the region to which the pixel belongs. A model for 
the posterior distribution of the region labels, given the 
polarimetric measurement vectors, is proposed and opti- 
mal region labeling of the pixels is defined as maximizing 
the posterior distribution of the region labels (maximum 
a posteriori (MAP) estimate). The MAP method is im- 
plemented on a parallel optimization network as in [7], 
[13]. A fast alternative solution to the MAP estimate is 
also considered. Several examples using real multilook 
polarimetric SAR data are given to illustrate the potential 
of the method and evaluate its accuracy. Additionally, two 
procedures for selecting the polarimetric characteristics of 
the regions are discussed: one is supervised and requires 
training areas, the other is unsupervised and is based on 
the multidimensional clustering of the logarithm of the 
parameters composing the polarimetric covariance ma- 
trix. Examples using both techniques are given and dis- 
cussed. Finally, the impact of reducing the dimension of 
the polarimetric measurements on classification accuracy 
is evaluated. Classification results using single, dual, and 
fully polarimetric SAR data are compared. 

The paper is organized as follows. In Section 11, a 
model for the conditional distribution of the polarimetric 
SAR measurements is discussed. Section I11 presents a 
model for the distribution of the region labels using a 
Markov random field. The two models are combined in 
Section IV to obtain the posterior distribution of the re- 
gion labels given the polarimetric SAR data. Optimal re- 
gion labeling is then defined as maximizing the posterior 
distribution of the region labels. The implementation of 
the method on a parallel optimization network is dis- 
cussed in Section V. In Section VI, two procedures for 
selecting the polarimetric characteristics of the regions are 

presented. Section VI1 gives several examples using real 
multilook polarimetric SAR complex data to illustrate the 
potential of the selection procedures and evaluate the per- 
formance of the MAP technique. Section VI11 concludes 
the paper. 

11. STATISTICS OF POLARIMETRIC SAR DATA 
In this section a model for the conditional distribution 

of the polarimetric SAR complex data, given the region 
labels, is presented. The region label of pixel site s of the 
image plane is designated as L, = l with l E { 1, * - , K} 
where K is the number of regions, X ,  denotes the single 
look polarimetric measurement vector at pixel site s, i.e., 
the vector of the three single look polarimetric complex 
amplitudes measured at site s by the polarimetric radar: 

(1) x, = [HH, HV, W ] ,  

HV = IHV( exp { i + H v } .  

where, for instance 

(2) 

(HVI and +HV are, respectively, the amplitude and the 
phase of the electromagnetic return at the HV polariza- 
tion. The HV amplitude, or cross-polarized return, is the 
complex amplitude of the V-polarized response given that 
the transmitted signal is H-polarized. The HH and W am- 
plitudes are referred as the copolarized returns. The VH 
return is not present in ( 1 )  as it is symmetrized with the 
HV return during compression and calibration of the data 
based on the reciprocity principle [l]. The conditional 
distribution of the single look polarimetric measurement 
vector X ,  given its region label L, is circular Gaussian [9]: 

(3) 
The superscript * denotes complex conjugation and the 
superscript T means the transpose of the vector. The 3 by 
3 complex matrix C, = ( X * T X ) , ,  where ( ) denotes en- 
semble averaging, is the polarimetric covariance matrix 
of the data in region 1. 

The circular Gaussian model (3) assumes that each re- 
gion has stationary backscatter statistics, i.e., the covari- 
ance matrix Cl is translation invariant. The only source of 
spatial variability of the SAR signal at different polariza- 
tions and within a homogeneous region is image speckle. 
In the case of the real polarimetric SAR data used in this 
paper, measures of local statistical characteristics of the 
signal such as its variance and its correlation coefficient 
reveal that the Gaussian assumption is quite reasonable. 
Yet, other examples have been reported in the literature 
where the SAR signal is also significantly modulated by 
a spatial variability of the backscatter coefficient of the 
imaged surface, in which case multivariate K-distribu- 
tions may better model the statistics of the polarimetric 
SAR data [14], [15]. 

The direct evaluation of (3) at each pixel location in- 
volves prohibitive calculations of the Hermitian form 
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( X g C ; ' X % ) .  A simplification is possible in the presence 
of azimuthally symmetric targets (the case of a large va- 
riety of natural targets), in that the HV amplitude is un- 
correlated with the HH and W complex amplitudes [16] 
and the covariance matrix is 

where 

In (4), C, can be inverted analytically, leading to 

where 4"Vv = 4" - 4vv, Re denotes the real part of a 
complex number, and 4p, is the phase of pI .  The evalua- 
tion of (6) now requires a much smaller number of oper- 
ations. 

To improve the process of assigning a region label to 
each pixel site s, one can replace the conditional distri- 
bution of a single polarimetric measurement vector (6) by 
the joint conditional distribution of a small set of polari- 
metric measurement vectors contained in a neighborhood 
N, of site s. Region labeling will then exploit the addi- 
tional polarimetric information provided by the neighbors 
of s. Because of the presence of the SAR system impulse 
response, typically two pixels wide, these measurements 
are slightly correlated. In [7], following an analysis of the 
correlation properties of single look single polarization 
SAR complex data, an accurate analytical expression of 
their joint distribution function was derived. Yet, in this 
paper, we will assume that the N polarimetric measure- 
ment vectors X, = [X,, - * , XN] contained in N, are 
spatially nearly uncorrelated, i.e., conditionally inde- 
pendent as they are circular Gaussian, and the conditional 
distribution of X, is the product of the conditional distri- 
butions of the Xi's.  Several reasons preclude the use of a 
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spatially corrrelated model. The first one is that the po- 
larimetric covariance matrix of the joint measurements 
would not have an inverse with a simple closed form an- 
alytical expression, thereby severely increasing the com- 
putational cost of the joint distribution approach. Sec- 
ondly, in the case of multilook SAR data samples, the 
correlation properties of the signal are much more difficult 
to track analytically [17]. Thirdly, tests using both sim- 
ulated and real single look single polarization SAR com- 
plex data have already shown that the improvement in 
segmentation accuracy resulting from a spatially corre- 
lated measurement model is only on the order of a few 
percentage points [ 171. Indeed, the uncorrelated assump- 
tion may seem contradictory to the fact that we want to 
use contextual information in the segmentation technique, 
i.e., some form of spatial correlation between pixel ele- 
ments, but this is exactly what the model for representing 
the interactions between neighboring region labels does 
(Section 111) , and the segmentation results obtained indi- 
cate that it is not necessary to also account for the spatial 
correlation of individual pixel elements in the SAR mea- 
surement model. 

In addition to the uncorrelated assumption, we view the 
polarimetric data array as composed of M X M (where M 
is the image size) overlapping windows N,  such that each 
of these windows is homogeneous, i.e., all pixels have 
the same region label. The conditional distribution of X,, 
therefore, only depends on the region label L,. The con- 
ditional distribution of the entire polarimetric data array 
X given the entire region label array L is then expressed 
as 

with the conditional distribution of X, in each window 
being 

p(X , /L ,  = I) = .rI P(Xi /L i  = 1) .  (8) 
i e N s  

Using a Gibbs representation of (8), we have 

(9) 
exp { - N U ;  ( X , / L ,  = I ) >  

a 3N 
P(X,/L, = 1 )  = 

where the energy function U ;  is 

Re ( H H W * p l )  
- 2  

U/& (1 - I & I 2 )  
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The operation of computing (1 1) is exactly equivalent to 
a multilook operation performed on N single look polari- 
metric SAR complex data samples [ 181, known as reduc- 
ing image speckle, which demonstrates that the condi- 
tional joint distribution (9) provides better information 
about the polarimetric backscatter characteristics of site s 
than the conditional distribution (6). To compute (9) at 
each pixel location, either N single look polarimetric SAR 
complex data samples or one N-look polarimetric SAR 
complex data sample are necessary as each N-look polari- 
metric SAR complex measurement contains all the com- 
plex elements computed in (1  1 ) .  Hence, the segmentation 
technique described in this paper is applicable in a 
straightforward manner to the case of multilook polari- 
metric SAR complex data. The reader may note that the 
absolute phases of the polarimetric amplitudes, lost dur- 
ing the multilook operation, are not required as they do 
not appear in (lo),  which is an advantage resulting from 
the assumption that the single look data samples are spa- 
tially uncorrelated. 

The ML approach proposed in [9] defines optimal re- 
gion labeling of the data as maximizing the conditional 
distribution of the polarimetric measurement vector (3) at 
each pixel location. The results appear noisy and are not 
satisfactory for practical applications. One reason is that 
the regions are assumed to have equal probabilities which, 
locally, in the presence of a dominant region, is rarely 
correct, increases the classification error, and leaves pix- 
els or ensembles of pixels isolated and not connected to a 
region. Another reason is that the information provided 
by neighboring region labels and polarimetric measure- 
ment vectors is ignored. Contextual information is fun- 
damental to deriving appropriate image models for seg- 
menting SAR data as neighboring surface elements of 
natural scences usually have similar polarimetric charac- 
teristics, sometimes textured, that locally define homo- 
geneous regions of similar physical attributes and smooth 
and straight boundaries. To capture this spatial organi- 
zation of the data in a mathematical form, a statistical 
model for representing the interactions between neigh- 
boring region labels is included in our description of the 
polarimetric SAR data. 

111. REGION LABELING USING A MARKOV RANDOM 
FIELD 

Markov random fields (MRF) are both mathematically 
and computationally convenient for representing local in- 
teractions between neighboring pixel attributes. They can 
model the spatial extent, the structure, and the geometry 
of the interactions. They have an equivalent descrip- 

tion in terms of Gibbs energy functions which provides a 
more practical way of describing the state of organization 
of physical attributes within a system than local probabil- 
ities. An example is the two-level Ising model [19] which 
defines a Gibbs energy consistent with the regularity ob- 
served in the orientation of the spin of atoms in ferro- 
magnets as the spins tend to line up. A multilevel exten- 

(11) 

sion of this energy model is used in our work to model 
the distribution of the region labels. The multilevel king 
model is one of the simplest models describing the inter- 
actions between neighboring region labels as the region 
labeling is assumed isotropic and the degree of clustering 
of the region labels is independent of the region. 

The conditional distribution of the region label L,, given 
the region labels elsewhere, is only dependent on the re- 
gion labels of an immediate neighborhood (Markovian 
property) and is expressed as 

p(L, = l/Lr, r E N,”)  

1 
= - exp { -NUq(L, = l/Lr, r E N,”)} (12) 

z2 

where the Gibbs energy function U; is 

P 
U;(Ls = l / L r ,  r E N ,” )  = -- N rcNS C 6,(Ls - Lr). (13) 

The distribution of the entire region label array L is given 
as 

where ZI is the number of neighbor pairs having the same 
region label [20], is a positive constant, 6, is the Kro- 
necker delta, N,” is a neighborhood of N elements exclud- 
ing its center s, and Z2 is a positive normalizing constant 
independent of 1. 

To be consistent with (9), the same neighborhood struc- 
ture is selected for both modeling of the Polarimetric com- 
plex amplitudes and the region labels. N, is a 3 by 3 square 
box, i.e., a second-order neighborhood window. Higher 
order neighborhoods provide better smoothing of the data 
and segmentation accuracy within homogeneous areas but 
impair the detection of small structural details and also 
increase the classification error at the region boundaries 

The positive constant 0 encourages neighboring pixels 
to have the same region label and also determines the de- 
gree of clustering of the data. In [7], tests using simulated 
SAR data indicate that best segmentation results are ob- 
tained for P in the range of [1.0-1.61 independent of the 
data set. The value /3 = 1.4 was adopted in all our ex- 
periments. Larger values of P lead to excessive smoothing 
of the regions and leaking of region labels into neighbor- 
ing regions, whereas P = 0 corresponds to the ML ap- 
proach. Similar values of /3 have been found useful for 
segmenting textured incoherent optical images [ 131 and 
medical imagery [20]. 

171. 
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IV. THE MAP CLASSIFIER 
Using Bayes’ theorem, the posterior distribution of the 

region label L, given the single look polarimetric ampli- 
tudes X, and the region labels L, of a neighborhood N: is 

p(Ls = l /Lr,  r E N,”, xs) 

since X, and L, are independent. As X, is known, p(X, )  is 
just a positive constant independent of the region labels. 
Using (9) and (12), we then have 

p(Ls = l /Lr,  r E N:,  Xs) 
a exp { -NU”,Xs/L, = I )  

- NU;(Ls = l /L , ,  r E N : ) } .  (16) 
The posterior distribution of the entire region label array 
L given the entire polarimetric array X, is 

As X is known, p ( X )  is just a positive constant. Using 
(7), (9), and (12), (17) is found to be proportional to 

p ( L / x )  oc exp [ - -N  c [ U ~ ( x , / L ,  = 1 )  

+ U;(& = Z/L,, r E N:)]  . (18) 

The estimate of L that maximizes (18) is the Bayes’ most 
likely estimate of the region labels given the polarimetric 
data, or its MAP estimate. Expressed in terms of an en- 
ergy function, the MAP estimate of L minimizes 

1 

EMAp = C [Ui(X, /L ,  = 1 )  + U;(L, = Z/Lr, r E N : ) ] .  

(19) 
The energy functions U ,  and U, only depend on local 

conditions, i.e., local polarimetric amplitudes and region 
labels. It is consistent with the assumptions of our sim- 
plified image model. 

In a Bayesian framework, other optimality criteria may 
be considered. In [21], the minimization of the posterior 
expected error rate was selected as the optimality crite- 
rion, leading to the maximum posterior marginal (MPM) 
algorithm. As it minimizes the expected number of mis- 
classified pixels [21], the MPM estimate may be more 
appropriate than the MAP estimate for classifying natural 
scenes. Yet, in [7], by using simulated single look single 
polarization SAR complex data, we observed that the 
MAP estimate performs slightly better than the MPM es- 
timate unless the intensity contrast between the regions is 
less than 0.5 dB. The result may seem counter-intuitive 
as MPM is expected to perform better [21]. A possible 
explanation is that, as is well known, MAP favors the use 
of a single region label for the entire scene, and therefore, 

S 

has a tendency to smooth out the results more than MPM 
which uses local decisions. As simulated data are com- 
posed of perfectly homogeneous regions, the tests favor 
the method that does more smoothing, i.e., MAP. In the 
case of real single look single polarization SAR data, the 
segmentation results shown in [7] were very similar and 
the lack of extensive ground truth information did not per- 
mit a confident ranking of the two methods. As the MAP 
criterion seems to perform extremely well and is much 
simpler to implement than the MPM criterion, it is se- 
lected as the optimality criterion in this paper. In the next 
section, we show how the minimization of the nonconvex 
MAP energy function (19) is camed out using a parallel 
optimization network. 

V. IMPLEMENTATION OF THE MAP CLASSIFIER 
The energy function minimized by a one-layer full in- 

terconnected Hopfield parallel optimization network [22] 
is expressed as 

(20) 

T,j , l ,m,n,p are the interconnection weights of the nodes of 
the network, Vj , j , /  their output states, and Zj,j,! their bias 
input currents. By comparing (19) and (20), if (i, j )  are 
the image coordinates of pixel site s, and 1 is its region 
label, the weights of the corresponding network are 

7;:,j , l ,m,n,p = 0 ,  otherwise (21) 

(22) 

the bias input currents are 
. .  

ZjJ , /  = u;J(x i , j /L j , j  = 1 )  
and the outputs of the nodes of the network are 

v,j,l = 1, ifL,i,j) = 1 

Vj, j , l  = 0 ,  otherwise. (23) 

Heiice, only a simple change in notation is necessary to 
establish the correspondence between the energy function 
(19) and the energy function (20) minimized by a Hop- 
field parallel optimization network. The interconnection 
weights of the network only depend on the region labeling 
process (parameter p),  and the bias input currents only 
depend on the polarimetric measurements. From one im- 
age to another, the network keeps the same structure and 
connectivity but receives different bias input currents. 
Further, the selection for each pixel (i, j )  of the label 1 
that produces the largest value of Z j , j , l  corresponds to the 
computation of the ML estimate of the region labels since 
the prior distribution (9) will be maximized. The ML so- 
lution also corresponds to p = 0. 

Given the bias input currents and an initial region la- 
beling configuration, the optimization network will evolve 
towards an equilibrium state solution for which E H  (i.e., 



286 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. I ,  NO. 3. JULY 1992 

EMAP) is a minimum. During optimization, each pixel is 
visited in a random fashion to update its region label based 
on the current region labeling of other pixels and on its 
bias input currents. One iteration of the network corre- 
sponds to a number of visits equal to the number of pixels 
in the image. At equilibrium, the optimal region label of 
each pixel site (i, j) is read from the output state of 
the corresponding node. 

To obtain a close approximate to the MAP estimate, a 
stochastic relaxation technique based on simulated an- 
nealing [23] guides the convergence of the network as in 
[7], [ 131. The method requires several hundred iterations 
of the network and a few cooling cycles. An alternative 
strategy is to use the Iterative Conditional Modes (ICM's) 
algorithm of Besag 1201, [13]. ICM converges in a few 
iterations, with no cooling cycles and no restrictions on 
the order of visiting of the pixels. However, instead of 
minimizing ( 1  8), ICM minimizes the posterior condi- 
tional distribution of the region labels at each pixel loca- 
tion (16). In [7], MAP was shown to significantly out- 
perform ICM in the case of single look single polarization 
SAR data, and in [ 131 ICM was shown to be sensitive to 
the initial configuration of the network. Additional com- 
parisons are provided in Section VI1 of this paper using 
real multilook polarimetric SAR data and an increasing 
number of regions. In fact, much light can be shed on 
what ICM does by considering the case where the pixels 
are visited in a random fashion with no simultaneous up- 
dating of contiguous pixels. ICM is then exactly equiva- 
lent to the zero temperature solution of (19), i .e.,  yields 
a poorer local minimum than the one obtained using sim- 
ulated annealing, easily gets stuck in local minima close 
to the ML solution when initialized with the ML solution, 
and is more sensitive to an increase in size of the search 
space. The maximization of (16) does not seem to be an 
appropriate objective function because it misses a mea- 
sure of the degree of equilibrium of each region labeling 
configuration and a joint probability law over various pos- 
sible labeling configurations. 

VI. SELECTION OF THE POLARIMETRIC FEATURE 
VECTORS 

According to the circular Gaussian model (3), the po- 
larimetric complex covariance matrix Cl completely char- 
acterizes a class of polarimetric amplitudes. It is, there- 
fore, natural to select the regions based on the parameters 
composing the polarimetric covariance matrix of the data. 
Two methods for selecting these parameters are discussed 
in this section. One is supervised, and the other is unsu- 
pervised. 

If the natural regions of the image are known in ad- 
vance, for example, by coregistering the data with a 
ground map of the terrain cover, training areas may be 
selected to estimate the covariance matrix of each region 
as in [9]. A large number of elements is usually necessary 
to correctly estimate these parameters as speckle biases 

the statistics of the data. The segmentation results are also 
quite sensitive to the selected set of training areas and a 
series of trials and errors is often required to obtain sat- 
isfactory results. More sophisticated training sets and 
training algorithms may also be necessary to account for 
a variability of the polarimetric characteristics of a region 
with the incidence angle due to changes in terrain slope 
or differences in range location within the image. 

When training areas are not available, clustering tech- 
niques may help select the regions. There is a consider- 
able interest in performing an unsupervised selection of 
the regions as: 1) the selection of training areas can rap- 
idly become costly and time consuming; 2) clustering can 
give some meaningful insights into the dimensionality, 
nature, and structure of the data; 3) systems of automated 
analysis of a large volume of polarimetric data at high 
data rates need to be able to work with little or no operator 
supervision. A method is proposed in [24] based on the 
multidimensional clustering of the logarithm of the pa- 
rameters composing the covariance matrix. The following 
polarimetric feature vector is defined 

\ / ( J H H  

where, for instance, aHV = 10 loglo (( IHVI2>) .  The first 
three components correspond to the backscatter cross sec- 
tion of the area in decibels at different linear polariza- 
tions. The last two components are proportional to the 
real and imaginary parts of the logarithm base ten of the 
complex correlation function between HH and W. One 
measures the magnitude of the correlation between HH 
and W ,  the other measures the phase difference. For nat- 
ural targets, the first four components have a typical dy- 
namical range of about 30 dB, whereas the last one has a 
dynamical range of 27.2 dB as E [ - T ,  +a]. An 
Euclidean distance is used to measure the separation be- 
tween polarimetric feature vectors. 

The advantages of operating in the log domain com- 
pared to the linear domain are that weighting of the dif- 
ferent channels is not necessary and speckle does not bias 
the selection of the cluster centers [24]. Furthermore, the 
decibels unit is a convenient and commonly used measure 
of the backscatter cross section of natural targets. Given 
the polarimetric feature vectors (24) of a small number 
(i.e., a few percent) of points uniformly distributed across 
the polarimetric data array, the ISODATA clustering rou- 
tine [25] is used to estimate the polarimetric cluster cen- 
ters from the iteratively determined sample means. Among 
the several input parameters needed to guide clustering 
1261, we kept constant and minimum number of samples 
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Fig. 2. Color overlay at three polarizations (HH is red, HV is green, and 
W is blue) and L-band frequency of a four look image of the Pisgah scene 
in the Mojave desert, CA. 

TABLE I 

L-BAND 

per cluster ON = 5, the maximum number of pairs of clus- 

of iterations Z = 100, and the splitting parameter y = 0.5. 
ters which can be lumped L = 20, the maximum number POLARIMETRIC CHARACTERISTICS OF THE TRAINING AREAS. PlSGAH SCENE- 

The other parameters, K, the expected number of cluster Training Area OHH OHV uVV ulHHW*1112 6 H H V V  

(dB) (dB) (dB) (dB) (rad) centers, e,, the standard deviation parameter, and Bc, the 
-9.8 0.01 

experimental results discussed in Section VII, only a lim- phase I lava - ]6.0 -26.9 - ]5.3 - 16,9 -0.16 
lumping parameter are application dependent; but in the i:fiifa 1;:; 1:::; -;::: 0.01 

ited knowledge of the scene characteristics was necessary Alluvial fan -23.8 -34.4 -22.8 -24.7 -0.03 
Dry lake bed -29.2 -41.5 -28.0 -29.6 -0.05 to manually select these parameters. 
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(b) 

Fig. 3. Supervised classification of the Pisgah scene using the complete polarimetry. The five training areas outlined in (a) are: 
(1) phase I1 lava; (2) phase 111 lava; (3) phase I lava; (4) alluvial fan; ( 5 )  dry lake bed. (6) is a man made comer reflector. In 
the segmentation maps, these areas are, respectively, colored in white, brown, red, green, and blue. (a) ML classification map 
along with the location of the five training areas. (b) ICM classification map. (c) MAP classification map. 

VII. EXPERIMENTAL RESULTS 

The performance of the ML polarimetric classifier was 
studied by Kong et al. [9] using both simulated polari- 
metric data and theoretical analysis. It was shown that 
fully polarimetric data (i.e., HH,  HV,  W) always yield 
the best results compared to any subset of the complete 
polarimetry such as single channels (e.g., H H ) ,  channel 
ratios (e.g., H H / W ) ,  or phase differences (e.g. bHHW). 
The performance of the MAP classifier was evaluated in 

TABLE I1 

SCENE-L-BAND 
CLASSIFICATION ACCURACY IN PERCENT OF THE TRAINING AREAS. PISGAH 

Training Area No. ML ICM MAP 

Phase I1 lava 1 86.82 93.16 97.63 
Phase 111 lava 2 80.67 89.09 95.81 
Phase I lava 3 87.51 89.59 91.47 
Alluvial fan 4 99.50 99.95 100.00 
Dry lake bed 5 94.21 95.08 96.05 
Total 89.74 93.37 96.18 
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(C) 

Fig. 3. (Continued.) 

TABLE 111 
POLARIMETRIC CHARACTERISTICS OF THE CLUSTER CENTERS. PISCAH 

SCENE-L-BAND 

TABLE IV 
POLARIMETRIC CHARACTERISTICS OF THE TRAINING AREAS. FLEVOLAND 

SCENE-L-BAND 

‘JHH 
Cluster (dB) 

1 -8.9 

2 -13.2 

3 -17.7 

4 -20.9 

5 -23.7 

6 -28.2 

‘JHV ‘JVV ‘JIHHW*(1/’ 

(dB) (dB) (dB) 

-19.4 -9.4 -10.5 

-24.2 -13.2 -14.4 

-29.1 -17.1 -18.6 

-32.7 -20.1 -21.7 

-36.3 -22.9 -24.4 

-41.0 -27.0 -28.8 

+“VV 

(rad) 

0.02 

0.11 

0.15 

0.09 

0.04 

0.05 

Nature 

Phase I1 
lava 
Phase I11 
lava 
Phase I 
lava 
Alluvial 
fan 1 
Alluvial 
fan 2 
Dry lake 
bed 

[7] using simulated single look single polarization SAR 
complex data as a function of the contrast between re- 
gions, the clustering parameter, the size of the neighbor- 
hood window, the spatial variability of the signal, and the 
number of regions. The study is not repeated here using 
simulated polarimetric data as the only difference is in the 
distribution of the radar measurements. In this section, 
experimental results are presented using real multilook 
polarimetric SAR complex data. 

A. Classijication of Fully Polarimetric Data 
Fig. 2 shows a color overlay at L-band frequency and 

three polarizations (HH,  HV and W a r e ,  respectively, en- 
coded in red, green, and blue) of the Pisgah scene in the 
Mojave Desert, CA, acquired by the NASAIJPL multi- 
frequency polarimetric aircraft SAR during the MFE Ex- 

Potatoes 
Stem Beans 
Forest 
Red Beet 
Peas 
Beet 
Bare Soil 
Lucerne 
Winter Heat 
Grass 
Flax 
Summer Barley 
Water 

-8.6 
-9.1 
-9.9 

-11.4 
-11.4 
-13.0 
- 14.0 
- 16.1 
- 17.4 
-18.2 
-20.3 
-20.3 
-23.2 

- 16.3 
- 19.2 
- 15.1 
- 19.5 
-21.4 
-21.1 
-25.2 
-26.0 
-26.8 
-28.7 
-35.7 
-28.9 
-36.9 

-9.0 
-11.4 
-9.7 

-11.5 
-9.8 
- 13.6 
-12.3 
- 18.2 
-14.2 
- 18.6 
- 17.2 
- 19.6 
- 16.3 

-11.3 
- 16.3 
- 18.5 
- 13.5 
-12.0 
- 15.8 
- 14.0 
-27.7 
-18.8 
-21.2 
-19.2 
-23.5 
-20.2 

0.12 
1.44 
0.37 

-0.14 
-0.24 
-0.13 
-0.19 

0.11 
-0.50 
-0.47 
-0.17 
-0.43 
-0.01 

periment [27]. The saturation of each color is proportional 
to the intensity of the signal at that polarization and the 
average intensities of the different polarizations are set to 
the middle of the display dynamic range. The image is 
4-look and 750 by 1024 pixels in size. Pixel spacing is 
6.66 m in range (top to bottom in Fig. 2(a)), and 12.01 
m in azimuth. The radar moved from right to left and the 
illumination direction is from the top. The scene contains 
various geological surfaces of different ages [28] which 
can be divided up into five main classes of terrain cover: 
phase I lava, phase I1 lava, phase I11 lava, alluvial fan, 
and dry lake bed. For each class of terrain cover, a train- 
ing area was selected in the image. The average polari- 
metric characteristics of the training areas are indicated in 
Table I. 
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(b) 
Fig. 4. Unsuperivsed segmentation of the Pisgah scene based on the six 
cluster centers of Table 111 and using the complete polarimetry. The regions 
corresponding to cluster one to six are respectively colored in white, brown, 
red, light green, dark green, and blue. (a) ML segmentation map. (b) MAP 
segmentation map. 

These characteristics were used to generate the super- 
vised ML classification map shown in Fig. 3(a) along with 
the location of the training areas. The image is 512 by 
1024 in size. The first 256 records of the original scene 
have not been classified to reduce the computational bur- 
den, and also because they correspond to a portion of the 
image where radar backscatter fluctuations with the inci- 
dence angle are more significant and impair a segmenta- 

tion scheme that does not account for incidence angle ef- 
fects. Near range data are also affected by radar 
ambiguities that decrease the radiometric fidelity of the 
data. 

To evaluate the quality of the results, the classification 
accuracy of the training areas is computed. Although we 
would prefer to compute the classification accuracy of the 
entire scene, it is not possible as ground truth information 
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Fig. 5. Color overlay of HH (red), HV (green), and VV (blue) at L-band 
frequency of a four look image of the Flevoland scene in The 
Netherlands. 

is limited to a few large areas and does not permit an ac- 
curate pixel by pixel classification of the image. Collect- 
ing extensive ground truth information is, in general, very 
expensive and we do not have SAR data for which it is 
available. 

The classification accuracies of the training areas of 
Fig. 3(a), given in Table 11, indicate that the different 
types of terrain cover are correctly separated. The ICM 
and MAP supervised classification maps are shown in Fig. 
3(b) and (c), respectively. Classification accuracy is im- 
proved by 3.6% using the ICM method and by 6.4% us- 

ing the MAP method. As expected, the MAP method per- 
forms better than the ICM method, although the 
segmentation maps look rather similar in this example. 

The next figures show the segmentation maps resulting 
from an unsupervised selection of the polarimetric char- 
acteristics of the regions. An array of 51 by 101 elements 
extracted from the polarimetric data was clustered using 
K = 6 and 8, = 8, = 3 dB. The characteristics of the six 
cluster centers are given in Table 111. The clusters have a 
good degree of homogeneity as the standard deviation of 
their elements is less than 2 dB and are well separated as 
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TABLE V 

FLEVOLAND SCENE-L-BAND 

Training Area No. ML ICM MAP 

CLASSIFICATION ACCURACY IN PERCENT OF THE TRAINING AREAS. 

Potatoes 
Stem Beans 
Forest 
Red Beet 
Peas 
Beet 
Bare Soil 
Lucerne 
Winter Heat 
Grass 
Flax 
Summer Barley 
Water 
Total 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

92.30 
97.81 
79.50 
74.97 
86.38 
85.16 
92.77 
96.86 
93.14 
91.30 
98.46 
81.24 
97.32 
89.79 

100.00 
97.52 
82.86 
84.29 
95.18 
89.87 
99.02 
99.55 
98.45 

100.00 
99.29 
88.42 
97.19 
94.74 

100.00 
100.00 
100.00 
99.66 

100.00 
99.47 

100.00 
100.00 
100.00 
100.00 
100.00 
96.85 
97.46 
99.50 

(a) 

Fig. 6. Supervised classification of the Flevoland scene using the complete polarimetry. The thirteen training areas in (a) cor- 
respond to: (1) potatoes; (2) stem beans; (3) forest; (4) red beet; (5) peas; (6) beet; (7) baresoil; (8) Lucerne; (9) winterheat; 
(10) grass; (1  1) flax; (12) summerbarley; (13) water. (a) ML classification map along with the location of the thirteen training 
areas. (b) ICM classification map. (c) MAP classification map. 

the distance between the closest cluster centers is 5.9 dB. 
Clustering appears to be mainly driven by the radiometric 
information contained in the first three components of the 
polarimetric feature vector as the fourth component cor- 
responds to a magnitude of the normalized correlation 
coefficient between HH and W of about 0.74 for all clus- 
ters, and the fifth component is mostly zero. Indeed, an 
examination of the data indicates that the HH - W cor- 
relation coefficient is a poor discriminant (e.g., Table I), 
and that the phase difference is close to zero almost every- 
where in the image. The ML and MAP segmentation maps 
shown in Fig. 4(a) and (b), respectively, were generated 
using the polarimetric characteristics of the cluster centers 
as the polarimetric characteristics of the regions. The 

clustering routine is clearly able to separate the different 
types of terrain cover outlined in the previous maps. The 
MAP method produces better looking and more homo- 
geneous regions than the ML method, yet, as opposed to 
what would be expected with a straightforward box filter- 
ing technique, detection accuracy is not impaired as the 
metallic trihedral comer reflectors (strong return in the 
bottom center of Fig. 2) and other small features (upper 
right portion of the image) about a few pixels wide are 
still present after optimization of the region labels. 

The next example addresses the case of a larger number 
of classes. The data are 4-look fully polarimetric SAR 
data of the agricultural fields of Flevoland, The Nether- 
lands, acquired by the NASAIJPL aircraft SAR. A color 
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(C) 

Fig. 6 .  (Conrinued.) 

overlay at L-band frequency and three polarizations of the 
SAR data are shown in Fig. 5 .  A large variety of vege- 
tation types and crops are present in the scene, along with 
seawater, roads, and inhabited areas. The site has been 
used for calibration studies and multitemporal monitoring 
of crops [29], and ground truth data are available for a 
portion of the image. Yet, such information must be used 
with care as crops may have grown between the collection 
of ground truth data and the SAR overflight, and some 
fields may have likely been harvested. The polarimetric 
characteristics of thirteen different types of terrain cover 

selected across the scene, and for which we have good 
confidence in the ground truth data, are given in Table 
IV . 

The resulting ML classification map is shown in Fig. 
6(a) along with the location of the training areas. Again, 
only the last 512 records of the original scene have been 
classified. The result appears noisy although the classifi- 
cation accuracy of the training areas, given in Table V, is 
high. The ICM and MAP classification maps, shown in 
Fig. 6(b) and (c) respectivcely , are significantly better. 
The MAP method leads to an overall classification accu- 
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TABLE VI 
POLARIMETRIC CHARACTERISTICS OF THE CLUSTER CENTERS. FLEVOLAND SCENE-L-BAND 

~ H H  b ~ v  bvv @ I H H W * I I I Z  ~ H H W  
Cluster (dB) (dB) (dB) (dB) (rad) Nature 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

-2.6 
-9.9 

-10.3 
-11.3 
- 12.8 
- 14.0 
- 15.2 
- 16.5 
- 17.2 
- 17.8 
- 19.4 
-20.1 
-22.2 

- 19.4 
- 16.9 
-20.2 
-17.3 
-21.5 
-21.4 
-25.1 
-25.8 
-26.7 
-28.7 
-29.0 
-29.3 
-35.8 

-9.1 
- 10.2 
-11.8 
-11.5 
-11.9 
- 14.2 
-13.0 
- 17.3 
- 15.6 
- 18.4 
-20.6 
- 18.6 
- 17.5 

-8.6 
- 13.0 
- 18.0 
- 17.0 
- 14.5 
- 19.0 
-15.8 
-24.5 
- 19.0 
-28.2 
-28.6 
-22.2 
-20.6 

2.08 
0.13 
1.63 
0.13 

-0.19 
-0.09 
-0.28 
-0.45 
-0.40 

1.21 
-2.32 
-0.43 
-0.17 

Man made targets 
Forest + Potatoes 
Stem Beans 
Forest 
Red Beet + Peas + Beet 
Beet 
Bare Soil 
Lucerne 
Winter Heat + Grass 
N.A. 
N.A. 
Grass + Summer Barley 
Flax + Water 

(b) 
Fig. 7. Unsupervised segmentation of the Flevoland scene based on the thirteen clusters of Table VI and using the full polarimetry. An index overlayed 
on top of the segmentation map indicates the coloring of the regions corresponding to each cluster center. For example, index “2” is colored in white 
and corresponds to cluster two. (a) ML segmentation map along with the index of the clusters. (b) MAP segmentation map. 
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TABLE VI1 

FLEVOLAND SCENE-L-BAND 
CLASSIFICATION ACCURACY IN PERCENT OF THE TRAINING AREAS. ML CLASSIFIER- 

Training Area No. FullPol.  HH HV W HH + HV VV + HV HH + VV 

Potatoes 
Stem Beans 
Forest 
Red Beet 
Peas 
Beet 
Bare Soil 
Lucerne 
Winter Heat 
Grass 
Flax 
Summer Barley 
Water 
Total 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

92.30 
97.81 
79.50 
74.97 
86.38 
85.16 
92.77 
96.86 
93.14 
91.30 
98.46 
81.24 
97.32 
89.79 

54.63 
19.28 
32.01 
23.01 
27.09 
36.89 
44.71 
5 1.62 
33.50 
29.68 
20.41 
43.10 
83.85 
46.45 

60.03 
42.51 
57.30 
25.36 
56.41 
30.76 
47.98 
22.04 
42.11 
76.94 
48.00 

0.00 
73.65 
44.85 

55.94 
32.00 
9.59 

15.37 
24.82 
34.22 
30.25 
22.50 
44.34 
18.15 
21.96 
70.70 
35.01 
31.91 

65.03 
70.27 
66.83 
54.55 
55.08 
68.09 
66.67 
52.63 
50.69 
59.74 
70.19 
79.38 
85.49 
64.97 

67.32 
46.09 
61.04 
34.68 
83.97 
86.49 
68.55 
76.91 
79.70 
48.77 
56.00 
66.62 
77.64 
65.68 

90.34 
87.65 
61.22 
64.76 
78.61 
73.60 
91.10 
95.43 
90.61 
88.09 
97.66 
81.40 
97.14 
84.86 

TABLE VI11 

L-BAND 
CLASSIFICATION ACCURACY IN PERCENT OF THE TRAINING AREAS. MAP CLASSIFIER-FLEVOLAND SCENE- 

Training Area 

Potatoes 
Stem Beans 
Forest 
Red Beet 
Peas 
Beet 
Bare Soil 
Lucerne 
Winter Heat 
Grass 
Flax 
Summer Barley 
Water 
Total 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Full Pol. 

100.00 
100.00 
100.00 
99.66 

100.00 
99.47 

100.00 
100.00 
100.00 
100.00 
100.00 
96.85 
97.46 
99.50 

HH 

36.77 
26.44 
17.63 
23.01 
62.08 
98.31 
43.38 
91.35 
65.25 
31.19 
15.50 
96.64 
98.23 
54.29 

HV 

55.61 

87.11 
71.26 
50.12 
0.00 

49.63 
52.18 
94.06 

100.00 
27.85 

6.20 
77.19 
59.32 

100.0 

W 

100.00 
22.94 
74.32 
99.89 
50.35 

100.00 
39.70 
55.32 
35.60 
23.25 
38.07 
95.97 
69.07 
61.88 

HH + HV 

100.00 
99.85 
94.55 

100.00 
100.00 
95.29 
99.00 
98.46 
96.25 

100.00 
97.93 

100.00 
91.38 
97.90 

VV + HV 

100.00 
73.41 
98.13 

0.00 
100.00 
100.00 
93.84 

100.00 
100.00 
100.00 
80.27 

100.00 
79.64 
86.56 

HH + VV 

100.00 
100.00 
99.78 
99.55 

100.00 
91.64 

100.00 
99.79 
99.90 

100.00 
99.76 
97.31 
97.23 
98.84 

racy improved by 9.7% and close to a perfect score 
whereas the ICM method only produces a 5% increase in 
classification accuracy. Hence, the difference in classifi- 
cation accuracy between MAP and ICM increases with 
the number of regions. As mentioned in Section V, a 
probable reason may be that ICM gets easily stuck in 
poorer local minima as the energy function becomes more 
complicated. 

These results were also computed to those obtained us- 
ing the method described in [ 121, which is similar to ICM, 
but does not use a MRF for representing the distribution 
of the region labels, and allows the neighborhood window 
N, to contain a number of elements roughly equal to ten 
times the number of possible classes. As the number of 
elements is too large to maintain minimum classification 
error at the region boundaries, a comparison of the three 
methods was performed using a 3 by 3 neighborhood win- 
dow in each case. The method presented in [12] resulted 
in a 93.7% classification accuracy of the training areas, 
which is comparable to ICM (Table V), but 5.8% worse 
than MAP. 

As in the previous example, an array of 51 by 101 ele- 
ments extracted from the polarimetric data was clustered 
using K = 13 and 8, = 8, = 3.5 dB. The polarimetric 
characteristics of the thirteen clusters are indicated in Ta- 

ble VI. The standard deviation of their elements is less 
than 3.2 dB and the cluster centers are separated by more 
than 4.4 dB. Again, the radiometric information of the 
first three components seem to determine clustering, ex- 
cept for cluster one and three which have a significant 
contribution from the phase difference term. A compari- 
son of the resulting segmentation maps with the ground 
truth data reveals that cluster one corresponds to the tri- 
hedral metallic comer reflectors deployed in the area for 
calibration purposes and other unidentified man-made 
structures characterized by a highly polarized high back- 
scatter return. Cluster three corresponds to areas covered 
with stem beans where the large nonzero phase difference 
between the HH and W channels could be attributed to 
the particular structure of the stem beans, that are verti- 
cally oriented scatterers, thereby generating a difference 
in wave velocity between the horizontal and vertical di- 
rections as in the corn fields studied in [30]. The ML and 
MAP segmentation maps are shown in Fig. 7(a) and (b), 
respectively. The MAP technique improves the separa- 
bility of the regions and their degree of homogeneity. Fine 
structures such as roads and comer reflectors are still pres- 
ent after optimization of the region labels, and regions 
have sharp and straight boundaries. 

Based on the polarimetric distance between the cluster 
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(b) 
Fig. 8.  Supervised classification of the Flevoland scene using the thirteen 
training areas of Fig. 6(a) and the HH channel. Coloring of the regions is 
the same as in Fig. 6.  (a) ML classification map along with the location of 
the thirteen training areas. (b) MAP classification map. 

centers and the mean polarimetric characteristics of each 
training area, a correspondence was established between 
clusters and natural classes as shown in Table VI. In this 
example, there is not a one to one correspondnece be- 
tween clusters and classes of terrain cover. Classes only 
separated by a few decibels (Table V) are merged into one 
cluster. Yet, in the absence of extensive ground truth data, 
the unsupervised selection of the regions provides useful 
information about the polarimetric feature space, i.e., the 
regions naturally separated by the radar, that is consistent 
with the spatial structure of the scene (rectangular ho- 

mogeneous fields of Fig. 7(b), and that may be useful to 
the analyst. For instance, cluster ten and eleven map two 
homogeneous fields that were misclassified as a mixture 
of different crops (Lucerne, summer barley, and grass) in 
Fig. 6(b) which is probably incorrect. 

B. ClassiJication of Single and Dual Polarization Data 

To illustrate the effect of reducing the dimension of the 
polarimetric measurement vector (1) on segmentation ac- 
curacy, a supervised classification of the data was per- 
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(b) 
Fig. 9 .  Supervised classification of the Flevoland scene using the thirteen 
training areas of Fig. 6(a) and the HH and HV channels. Coloring of the 
regions is the same as in Fig. 6 .  (a) ML classification map along with the 
location of the thirteen training areas. (b) MAP classification map. 

formed using various combinations of the polarimetric 
channels. For each combination, (9) was modified ac- 
cordingly to account for a reduction in the number of 
components of the polarimetric measurement vector. The 
classification accuracy results are indicated in Tables VI1 
and VI11 for the Flevoland data. As discussed in [9], the 
fully polarimetric data always yield the best results when 
the ML method is used (Table VII). Classification accu- 
racy is improved by more than 40% compared to single 
polarization classification schemes. When the MAP 
method is used the fully polarimetric classifier is also 

much better than any single channel classifiers (Table 
VIII). For illustration, the ML and MAP classification 
maps using the HH channel are given in Fig. 8(a) and (b), 
respectively. In this case where the likelihood function U, 
is a poor discriminant, the smoothing effect of the region 
labeling optimization process is more apparent. 

On the other hand, classifiers based on the combination 
of two channels yield results, that are considerably closer 
to that of the fully polarimetric classifier, especially when 
the MAP algorithm is used. An example is given on Fig. 
9 with the MAP classification map using the HH and W 
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TABLE IX 
CLASSIFICATION ACCURACY IN PERCENT OF THE TRAINING AREAS. ML CLASSIFIER-PISGAH SCENE-L-BAND 

Training Area No. Full Pol. HH HV VV HH t HV VV t HV HH i VV 

Phase I1 lava 1 86.82 56.70 84.88 60.94 85.08 71.86 79.52 
Phase Ill lava 2 80.67 62.20 73.23 61.85 78.22 58.57 77.30 
Phase I lava 3 87.51 88.35 67.85 91.78 84.29 83.87 89.59 
Alluvial fan 4 99.50 98.14 90.12 97.71 98.46 96.30 99.70 
Dry lakebed 5 94.21 92.86 96.38 92.10 94.65 93.67 92.43 
Total 89.74 79.65 82.50 80.88 88.14 80.86 87.71 

TABLE X 

L-BAND 
CLASSIFICATION ACCURACY IN PERCENT OF THE TRAINING AREAS. MAP CLASSIFIER-PISGAH SCENE- 

Training Area No. Full Pol. HH HV VV HH i HV VV t HV HH t VV 

Phase11 lava 1 97.63 74.50 100.00 88.96 98.76 99.73 98.95 
Phase I11 lava 2 95.81 61.70 97.57 94.96 96.50 97.54 96.66 
Phasellava 3 91.47 94.90 90.32 97.81 91.05 92.30 92.72 
Alluvial fan 4 100.00 100.00 98.11 100.00 100.00 100.00 100.00 
Dry lake bed 5 96.05 97.08 99.40 96.43 97.94 97.19 96.10 
Total 96.18 85.64 97.08 95.63 96.85 97.35 96.89 

channels. The three possible dual polarization combina- 
tions lead to nearly similar performances although the 
combination (W + HV) completely misses the red beet 
training area. 

Similar observations can be made from the results ob- 
tained with the Pisgah scene (Tables IX and X). Single 
polarization classifications are considerably better in that 
example as the HV channel alone produces the best over- 
all classification accuracy of the tranining areas. Although 
such results are uncommon, several factors may explain 
why single or dual polarization systems may sometimes 
outperform fully Polarimetric systems. Firstly, as the di- 
mension of the radar measurements decreases, the energy 
function U, will (in general) decrease and U, remain the 
same leading to more smoothing of the region labels. 
Since the training areas are assumed to be perfectly ho- 
mogeneous, additional smoothing may in some situations 
help improve the classification accuracy. Secondly, in real 
systems, noise perturbations in polarimetric channels may 
be uneven so that confusion between the classes may ac- 
tually increase with the number of polarimetric channels. 
Thirdly, training areas as seen by the fully polarimetric 
radar may not be as homogeneous as single polarization 
radars seem to indicate. The assumption that training areas 
are perfectly homogeneous is indeed a major flaw of this 
method of comparison between different algorithms. 

The main observation remains that although fully po- 
larimetric SAR data yield the best segmentation results 
over all polarization combinations, dual polarization; and 
that sometimes single polarization SAR data may produce 
the same level of classification accuracy. Fully polari- 
metric SAR data are still essential to completely interpret 
and understand the scattering mechanisms of the imaged 
surface, but these few examples show that classification 
algorithms for natural scenes could probably accommo- 
date for a reduction in the dimension of the polarimetric 

SAR measurements. Similarly, model inversion tech- 
niques may be able to accommodate for the use of only 
one or two polarimetric channels to infer useful geophys- 
ical parameters from the surface in given applications 
[31]. As single and even dual polarization radar systems 
are considerably less complex and cheaper than fully po- 
larimetric radar systems, such a possibility offers inter- 
esting technological prospects. 

VIII. CONCLUSIONS 

A method based on a representation of the posterior dis- 
tribution of the region labels, given the polarimetric mea- 
surements, has been presented for segmenting multilook 
polarimetric SAR complex data. The maximization of this 
distribution produces the most likely region labeling given 
the observed polarimetric SAR complex data. Results us- 
ing real multilook polarimetric SAR data show a 10-20% 
improvement in segmentation accuracy of the MAP 
method compared to that of the ML method [9], and dem- 
onstrate the importance of using correlative information 
from neighboring pixels to improve the segmentation ac- 
curacy of the data. ICM, a fast alternative to MAP, ap- 
pears to be a reasonable approximate solution that could 
be used during optimization of the selection of the regions 
leaving the use of the MAP method for the final iteration. 
The rapid progress of computer technology may also soon 
render the MAP method itself practical and computation- 
ally inexpensive. 

Comparisons of classification results using single, dual, 
and full polarization data indicate that dual, and some- 
times single, polarization SAR data may yield segmenta- 
tion results nearly equivalent to that of fully polarimetric 
SAR data. More studies are needed to determine the best 
compromise between classification accuracy and com- 
plexity of the imaging and processing systems in various 

. 
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applications, at different frequencies, and using a larger 
data set. 

Further work is necessary to develop incidence angle 
dependent segmentation techniques that account for a 
strong variability of the polarimetric characteristics of 
natural targets with the incidence angle of the radar sig- 
nal. The effect of a significant spatial variability of the 
SAR signal on classification accuracy must also be inves- 
tigated using real image data. 
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