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Rate-Distortion Optimal Fast Thresholding with
Complete JPEG/MPEG Decoder Compatibility

Kannan Ramchandran and Martin Vetterli

Abstract— We show a rate-distortion optimal way to threshold or
drop the DCT coefficients of the JPEG [1] and MPEG {2] compression
standards. Our optimal algorithm uses a fast dynamic programming
recursive structure. The primary advantage of our approach lies in its
complete compatibility with standard JPEG and MPEG decoders.

I. INTRODUCTION

JPEG {1] and MPEG (2] are popular DCT-based compression
standards for still images and video sequences, respectively. Standard-
ization of these compression formats has spurred the wide usage of
JPEG (and recently MPEG) decoders. The key to good compression
when using these standards while still being compatible with the
standard decoder lies in determining an optimal thresholding strategy
for the DCT coefficients. We are thus interested in retaining that
subset of the DCT coefficients for the image or video frame that is
the “best” in a rate-distortion (R-D) sense. Thresholding or dropping
the less significant DCT coefficients may be desirable in the R-D
sense, as it may lead, at a marginal sacrifice of coded quality, to
a significant reduction in coding bit rate, due to fewer coefficients
needing to be transmitted. This is especially so when deciding the
last nonzero coefficient, which is typically followed by an inexpensive
“end-of-block” code [1], [2]. Thus, it may especially pay to get rid of
compression-hindering sparsely interspersed insignificant coefficients
that represent the last nonzero values before the end-of-block. In the
case of JPEG, where the standard does not permit variable scaling
of the different image blocks, intelligent adaptive thresholding of the
coefficients would essentially amount to changing the quantization
scales at the block level, without breaking the rules of the game!

In this paper, we formulate an R-D optimal strategy to threshold
the quantized DCT coefficients by using a fast recursive dynamic
programming (DP) technique. Starting from the “highest quality
point” after quantization at a fixed scale (for JPEG [1] or QP-level (for
MPEG [2]), one can sweep the entire thresholding R-D curve over
a continuous range of target bit rates (or equivalently target-coding
qualities) by dropping insignificant coefficients in the image or video
frame. Thus, our algorithm could find all points that reside on the
convex hull of the thresholding R-D curve. The appeal of the strategy
lies in its combination of R-D optimality, speed of operation, and
its complete compatibility with standard JPEG and MPEG decoders,
which remain blissfully oblivious to the thresholding gymnastics
performed by the encoder. A point to note is that our algorithm
exploits the monotonic nature of bit rate versus the zero run length
count preceding a nonzero coefficient inherent in the Huffman tables
of JPEG and MPEG, to specify a fast “pruning” operation in the

Manuscript received October 30, 1992; revised August 4, 1993. The work
of K. Ramchandran was supported by the New York State Science and
Technology Foundation’s CAT. The work of M. Vetterli was supported in
part by the National Science Foundation under grants ECD-88-11111 and
MIP-90-14189.

K. Ramchandran is with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

M. Vetterli is with the Department of Electrical Engineering and Center for
Telecommunications Research, Columbia University, New York, NY 10027-
6699.

IEEE Log Number 9402241.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3, NO. 5, SEPTEMBER 1994

QUANTIZER THRESHOLDER

Fig. 1. Block diagram of problem statement: X' is the input image, X is
the quantized prethresholded version (after JPEG or MPEG), and X is the
output of the thresholder. We want to minimize the distortion, for a fixed
quantizer, between the original and the thresholded images subject to a bit
budget constraint.

DP recursion. Thus, the computational complexity of the algorithm
becomes low enough for it to be implementable.

The problem of thresholding using an “efficiency” measure was
tackled in [3] and was the inspiration for the work described here.
The approach of [3] does not attain R-D optimality, as is our goal
here. Moreover, in this work, we use a faster dynamic programming
formulation than that of [3] and additionally exploit the monotonicity
of the bit rate versus zero run-length counts of the JPEG and MPEG
codebooks to appreciably reduce the computational complexity of the
algorithm. The subject of finding a locally optimal quantization matrix
that matched the image was tackled in [7], using a computationally
intensive descent algorithm which is not block-adaptive.

This paper is organized as follows. Section II defines the problem
quantitatively. Section III describes the optimal solution, which
is presented in algorithmic detail in Section IV. Finally, coding
applications using JPEG and MPEG are described in Section V.

II. PROBLEM STATEMENT

We wish to find that optimal set of quantized DCT coefficients to
be retained for every 8 x 8 block of an image or video frame such
that the mean-squared-error (MSE) distortion (any additive distortion
metric is feasible in general, e.g., activity-weighted MSE) between
the original image and the thresholded version is minimized subject
to a maximum target coding-bit-rate constraint, or equivalently,
the coding bit rate is minimized subject to a maximum allowable
distortion constraint.

Thus, if X is the input signal, X the quantized output correspond-
ing to a fixed scale or “anchor” level representing the maximum
quality operating point, and X the thresholded version of X, we
seek to minimize the MSE distortion between X and X given the
quantized image X, subject to a total coding-bit budget of Ryyudget
for X. That is, our goal is to find

min[D(X, X)|X]subject to R(X) < Rbudger (1

where X is a thresholded version of X (see Fig. 1).
III. OPTIMAL SOLUTION

A. R-D Optimality: The Constant Slope Condition

The “hard” constrained thresholding problem of (1) can be solved
by being converted to an “easy” equivalent unconstrained problem by
“merging” rate and distortion through the Lagrange multiplier A [4].
The unconstrained thresholding problem becomes the determination
(for a fixed A) of that set of coefficients, which results in the minimum
total Lagrangian cost defined as

J(A) = D(X,X)+ AR(X). 2
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The optimal coefficient search for the image can be done indepen-
dently for every 8 x 8 image block for the fixed quality “slope™ A,
which trades off distortion for rate. This is because it can be shown
[4], [5] that, at R-D optimality, all blocks must operate at a constant
slope point X\ on their R-D curves.

This result is fairly intuitive as seen from the argument that, at
optimality, each allocated bit must do an equal amount of “good” (in
the distortion-removal sense), for otherwise one could redistribute
bits from “unprofitable” to “profitable” blocks. It is obviously cost-
effective to keep doing this until an optimum is reached, where no
block can spend the next available bit any more profitably than any
other, i.e., until all signal blocks have the same slope (\) on their
rate-distortion function. The desired optimal constant slope value A”
is not known a priori and depends on the particular target budget or
quality constraint. Fortunately, however, A* can be obtained relatively
painlessly via a fast convex recursion in A using the bisection
algorithm [5]. The main advantage of the Lagrangian approach is its
independent optimization property for each signal element, enabling
the independent analysis of the 8 x 8 image blocks in our case!

For a more mathematical formulation, if 7 is {0.1.2.---.63}, the
set of all 8 x 8 coefficients in each block ordered in the 1-D zigzag
scan order, S < T any feasible ordered subset of 7', and D(S). R(.S)
the distortion and bit rate, respectively, associated with retaining the
coefficients in S, our problem of finding:

Duin = gngl D(S)subject to R(S) < Ryudget 3)

is solved by introducing J(\) = [D(S) + AR(.S)] representing the
Lagrangian cost of S associated with the quality factor A and solving
the following equivalent unconstrained problem

Imin(A) = mgin J(\) = mgin[D(S) + AR(S)]. )

The desired optimal constant slope value A* is not known a priori
and depends on the particular target budget or quality constraint but is
obtained using a fast convex search using the bisection algorithm [5]

Jmin(A) = r}\lgg[Jm;n(A) — ARyudget] &)

B. Fast Dynamic Programming Algorithm

Since the optimal convex-hull solution can be found, as described
above, by independently finding the minimum-Lagrangian-cost op-
erating point (i.e., one that minimizes J = Dyiock + A™ Rulock) for
each block of the sequence, it suffices to consider a single block
for analysis. The problem is solved using a dynamic programming
approach.

The zigzag scan that is part of the standards [1], [2] is used to
order the 2-D coefficients. As an initialization, one has to gather the
AJ;«’s associated with the incremental Lagrangian cost of going
from coefficient j to coefficient & (i.e., dropping all the coefficients
between them) for all nonzero valued (j. k) coefficient pairs with
J < k.AJjr = —E; + AR; i represents the “net gain” of including
k conditioned on the previous nonthresholded coefficient being ;.
E\ represents the “goodness™ measure as calculated by the decrease
in squared error caused by not thresholding %, and is given by
C%—(Cr—C%), where Cy and C';. are the unquantized and quantized
coefficient values, respectively, while R is the conditional bit rate
in encoding coefficient k, given that the previous nonzero coefficient
is j, i.e., it is the conditional cost of not thresholding k. See Fig. 2.
the values R, can be “read off” from the standard Huffman coding
tables for both JPEG and MPEG and can be prestored. Note that to
find the optimal algorithm, only the run lengths need to be stored,
and not the actual Huffman-coded bit stream, and this represents a
trivial memory requirement.

.2
{Eg=CE-(Cx-Cp”) is the thresholdi 4 with cocfficient # k

c R; & is the conditional bit rate cost of NOT thresholding coefficient #k given that
o the previous non-zero coefficient is #j.
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Fig. 2. DCT coefficients of a typical 8 x 8 image block of JPEG/MPEG

ordered in 1-D according to the zigzag scan order. Coefficient #0 is the
dc coefficient. Ey and Rj; are shown as the thresholding distortion and
nonthresholding cost associated with coefficient k conditioned on the previous
nonzero coefficient being J.

The optimal operating point, for a fixed value of A, can be done
(see Fig. 3) in a recursive fashion by finding (i) the minimum
Lagrangian cost, J*(k), and (ii) the optimal predecessor coefficient,
predecessor (k), associated with choosing coefficient & as the last
nonzero coefficient for all & = 1,2, -,63. Then, starting from that
coefficient &*, which is the cheapest to retain as the last nonzero
coefficient, i.e., minimum .J” (-), the optimal set can be “backtracked”
from the optimal predecessor chain calculated for all predecessors of
k.

A more elaborate step-by-step description of the algorithm follows.
The recursion begins with coefficient 0. The cost of dropping all ac
coefficients is stored in J*(0). Then, one proceeds with the minimum
cost “path” that ends in coefficient 1. There is not much choice here,
as there is only one path that ends in coefficient 1, namely, dropping
all coefficients from 2 to 63. This cost is saved in J*(1), and the
optimal predecessor to 1 is obviously 0. Proceeding to coefficient 2,
the most efficient recursive way of determining the best path that
ends in 2 is to find the optimal predecessor to 2, i.e., either 0 or 1.
Since the optimal costs associated with ending at 0 and 1 are known
from J*(0) and .J* (1), respectively, the job of finding the cheapest
cost path ending in 2 is simply the minimum of [J*(0) + AJoz]
(where AJy, is the incremental cost of going from O to 2) and
[J*(1)+ AJi2]. The smaller of these two costs is saved in J*(2), and
the optimal predecessor of 2 (i.e., the one among O or 1 responsible
for the smaller total cost leading to 2) is saved in predecessor (2).
Proceeding similarly to coefficient 3, the best path ending in 3 has to
have a direct predecessor that is either 0 or 1 or 2. As the best costs
associated with ending at all predecessors are known from previous
iterations and are stored in J* (predecessor), and the incremental cost
of going from each predecessor to 3 is known from the precomputed
AJpredecessor.3 for all predecessors 0, 1, and 2, the best path ending
in 3 is computed as the cheapest of the total costs (J* (predecessor)
+ AJpreecessor.3 for all predecessors 0, 1, and 2. This cheapest cost
is saved in J"(3), the optimal predecessor is saved in predecessor
(3), and the recursion continues to coefficient 4 and so on until the
last coefficient 63 is done. At this point, the optimal last nonzero
coefficient k* is obviously the one with the smallest J™(k) for
k = 0.1.---.63. See Fig. 3. By backtracking from k", one can
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Fig. 3. Block diagram of the dynamic programming recursion of the optimal
algorithm for each 8 x 8 image block. E is the ac energy, AJ;, j is the
incremental Lagrangian cost of going from coefficient ¢ to coefficient j while
dropping all coefficients inbetween, and J; is the minimum Lagrangian cost
associated with ending at coefficient k. Note that k* = min

1 X
b : o<k<es Jk 18
the optimal “last” coefficient.

find the optimal predecessor chain sequence starting from predecessor
(k™) and going back to 0, at which point the entire optimal set of
coefficients to be retained for each block is known for the given .

In finding the optimal predecessor at a particular iteration k as
described above, one generally has to consider as candidates all
coefficients j < k. However, for the particular case of monotonicity
of Ry in the zero run length count (k — j — 1) (see Fig. 4), which
is true for the default coding tables of JPEG and MPEG,' a fast
pruning algorithm can be used to speed up the search. This results
in a substantial decrease in computational complexity and leads to
a fast optimal algorithm. The above optimal dynamic programming
algorithm is performed independently on all blocks. The composite
R-D point for the picked A is obtained simply as the sum of the
optimally obtained R-D points for each block for that A. Finally, the
optimal slope A that solves the desired budget or quality constraint
is found using a fast convex search.

IV. ALGORITHM

We now explain somewhat rigorously the algorithm employed to
find the optimal solution to our problem. The optimal algorithm
flowchart for a fixed operating slope A will be described for a single
typical 8 x 8 image block in Phase I. Note that the algorithm is applied
independently and in parallel to each signal block to determine the
optimal coefficient sequence to be retained for that block. Then in
Phase II, the optimal operating slope \* for the composite problem
will be obtained.

! This is a highly reasonable condition even if custom codebooks are used.
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Fig. 4. Fast pruning of nonoptimal predecessors to coefficient & made
possible thanks to the monotonicity of the JPEG/MPEG codebooks in the
runlengths preceding a nonzero coefficient.

A. Data Gathering

Prior to running the optimal algorithm, a one-time fixed cost of
gathering the statistics needed for running the optimal algorithm
must be endured. See Fig. 2. This involves gathering, for each
DCT coefficient k, its thresholding distortion E} and its conditional
nonthresholding coding cost R;: conditioned on every preceding
nonzero coefficient j < k.

B. Phase I: Finding the Optimal Set of Coefficients for a Given \

Note that, in the algorithm flowchart to be described, E refers
to the total unquantized ac energy in the signal block; ie., E =

o2 | C%, Ey, refers to the thresholding distortion associated with
coefficient k, R ;i refers to the incremental bit-rate cost of coding k
after j, AJ;x refers to the incremental Lagrangian cost of including
k after j, Ji is the minimum Lagrangian cost associated with having
k as the last nonzero coefficient, and Sy is the set of all candidate
optimal predecessor coefficients to k. See Fig. 3.

1) Finding the Optimal LAST Coefficient:

1) For the A of the current iteration, compute AJ;; = —E;+AR;;
for all nonzero coefficient pairs 7, j with j > i.

2) (Initialization) k* «— 0; k « 0; S35 « {0};
E; predessor(0) « nil.

3) k—k+1; If k = 64, go to Step 7. Else, continue to the
next step.

4) If Ex = 0, set Sy «— Sk_1 and go to Step 3. Else, continue
to the next step.

5) Ji — mines,  [JI + AJi). If I < Jiu k* — k.

6) Sk — {k}U{i|(¢ € Sk—1 and J} < J§)}.
predecessor(k) — mi“,_elsk,l[J: + AJii]. Go to Step 3 .

J5

The best “path” ends in k™, i.e., the optimal set of coefficients to be
retained for the given A for the current block has coefficient k* as
its LAST nonzero coefficient.
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2) Backtracking to Find Entire Optimal Set of Coefficients:

1) Initialize the set of optimal coefficients as optset — {k*}.
2) If predecessor (k) = nil, go to Step 10. Else continue to the
next step.
3) Get the optimal predecessor to k and include its membership in
the set {optset}. {optset} — {optset} U {predecessor(k)}.
Go to Step 8.
4) Done! Optimal solution of coefficients to be retained for given
A is the set {optset}.
Note that a key operation that ensures a fast algorithm is the
pruning action described in Step 6. This step (see Fig. 4) eliminates
from contention for predecessor to the next nonzero coefficient, all
prior coefficients whose lowest cost of retaining as the last nonzero
coefficient exceeds that of the current iteration’s coefficient. Thus,
if the current coefficient produces the lowest cost so far, it is the
only candidate for predecessor to the next nonzero coefficient! This
is due to the monotonic nature of the bit rate versus zero run length
Huffman tables for JPEG and MPEG, where the cost of coding a
nonzero coefficient is monotonically nondecreasing in the length of
the zero-run preceding that coefficient.

V. APPLICATION

The optimal algorithm outlined in Section III can be used to
quantify the benefits of adaptive thresholding applied to the JPEG and
MPEG coding environments. R-D curves are obtained by sweeping
the Lagrange multiplier A through all positive values for typical
quantization scales of interest. Fig. 5 shows the R-D curves for a
typical image (“House”) using JPEG for prethresholding quantization
scales of 1.0 and 0.7. Note the significance of Fig. 5. Point X on curve
“a” is the unthresholded “reference” obtained for a scale of 1.0. Let
us fix the bit rate for the problem at the reference X’s bit rate of
0.615 b/pixel. Now, to see the advantage of optimal thresholding,
observe curve “b” corresponding to a finer quantization scale of
s = 0.7 instead of 1.0. For this finer scale, the nonthresholded
bit rate, corresponding to point Z, is obviously greater than that of
X. However, if we now start thresholding optimally until the bit
budget constraint imposed by curve “a” is satisfied, we will get an
adaptive thresholding gain in terms of increased SNR for the same
bit rate. Thus, point Y enjoys a 0.7 dB gain at the same bit rate over
X. Alternatively, if we fix the PSNR according to that of X (35.7
dB), point W enjoys a compression advantage at the same PSNR of
roughly 15%. Fig. 6 shows a similar curve using optimal thresholding
using an MPEG intraframe codebook, applied to an intraframe coded
frame of the “mit” sequence.

In our experiments, we found that “backing off” to a finer quan-
tization scale and thresholding optimally until we achieved the same
reference bit rate (or PSNR) as an unthresholded coarser quantized
version resulted in a decent coding gain. However, there was an
optimal back-off point, beyond which the performance started to
degrade. See Fig. 6. Intuitively, overdoing the act of thresholding
after starting with a finer quantization scale is inadvisable beyond
a point, as the gain of representing the nonthresholded coefficients
with less distortion is no longer outweighed by the drastic step of
dropping entire coefficients, since for fine quantization scales, there
is not much distortion to begin with.

While the “optimal back-off point” depends on he particular input
image as well as the target bit budget (or quality) constraints, it
was found in all our simulations (corresponding to typical images
and video sequences used in the image-processing community) that
the thresholding gain is a convex function of the amount of “back-
off” from the reference point. Thus, not “backing off” enough is
suboptimal, as is “backing off” too much, with the best performance
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Fig. 5. Optimal thresholding R-D curves for “House” image using JPEG.
Curve “a” corresponds to a JPEG quantization scale of 1.0, while curve “b”

corresponds to a finer scale of 0.7. Note that if we fix the reference at point
X on curve “a” corresponding to a scale of 1.0, we can achieve point Y
by “backing off” to a finer scale of 0.7 (point Z on curve “b”) and then
thresholding optimally to point Y at the same bit rate as X. Note that the
thresholding gain for this example (reference X) is approximately 0.7 dB at
a bit rate of 0.615 bpp (point Y), or alternatively about 15% reduction in bit
rate (point W of curve “b”) at the same PSNR of 35.17 dB.
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Fig. 6. Optimal thresholding R-D curves for an intraframe coded frame of
the “mit” sequence using MPEG. Curve “a” corresponds to a QP level of
48, curve “b” corresponds to a finer quantizer QP level of 40, and curve “c’
corresponds to a still finer QP = 32. Note that if we fix the reference at point X
on curve “a” corresponding to a QP of 48, we can achieve point Y by “backing
off” to the finer QP = 40 and thresholding optimally to point Y at the same
bit rate as X. Note that the thresholding gain for this example (reference X)
is approximately 0.52 dB at a bit rate of 0.377 bpp (point Y), or alternatively
about 12% reduction in bit rate (point W of curve “b”) at the same MSE of
112.5. Note that if we back off too much to curve “c” with QP = 32, the
achieved coding gain diminishes to point Z (about 0.26 dB) over point X.

achieved somewhere (uniquely) in between. Due to the convex nature
of this relationship, binary-search methods can be used to find this
optimal back-off point.

Coding results obtained from performing optimal thresholding
on typical images and video-sequence frames used in the image-
processing community revealed a coding gain of about 0.5-1 dB
or alternatively about 12-15% bit-rate compression improvement
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Fig. 7. Subjective results of optimal thresholding in a JPEG framework for
the “House” image: (a) Unthresholded image (JPEG scale = 3.0, PSNR = 31.5
dB, bit rate = 0.28 bits per pixel); (b) optimally thresholded image (JPEG scale
= 2.0, PSNR = 32.3 dB, bit rate = 0.28 bits per pixel).

while retaining complete decoder compatibility. Optimal thresholding
seems to be most subjectively beneficial in the case of low to
medium bit-rate coding, as evidenced by Fig. 7. Fig. 7(a) shows
as a nonthresholded reference the “House” image coded with JPEG
using a quantization scale of 3.0. The thresholded versions using
a scale of 2.0 are shown in Fig. 7(b). The coding gain is 0.8 dB,
and as can be seen, the subjective quality is also better. Intuitively,
this is because for low-bit-rate applications, it is better to represent
the low-frequency coefficients with maximum fidelity while dropping
the expensive high-frequency coefficients. This gives a smoother but
less noisy image, which is the best one can do at low bit rates. Thus,
adaptive thresholding can take the place of noise shaping or low-pass
fillering without any external processing and without the decoder
“skipping a beat.”

Using the optimal algorithm as a benchmark, we compared the
performance of a fast heuristic algorithm that retains the A" largest
(in absolute magnitude) DCT coefficients for each 8 x 8 block
for ' < 64 as in [6]. When the heuristic of [6] is extended to
a JPEG quantization framework, it can be seen from Fig. 8 that
considerable gain can be obtained (over 5 dB) by resorting to our
optimal algorithm, with the gain getting larger as the number of
retained coefficients A” per block decreases. Our optimal thresholding
algorithm took a CPU time of about 1.3 s on a SPARC-II workstation
to run a typical iteration of the thresholding algorithm on a 256 x 256
image and about 6.1 s on a 512 x 512 image.

Thus we have established, both subjectively and objectively, the
benefits of optimally thresholding the DCT coefficients in a JPEG or
MPEG coding environment. The primary advantage of our approach
is that it is completely compatible with existing JPEG and MPEG
decoders.
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