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Extended Lapped Transform in Image Coding 
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Flow graph for the direct (top) and inverse (bottom) ELT. Each 

capabilities and reduction of blocking artifacts commonly present in 
block transform coding at low bit rates. Furthermore, the concept of 
lapped transforms was established and proven to be equivalent to the 
concept of paraunitary FIR uniform filter banks [3], [4]. Under this 
point of view, both the LOT and the DCT are considered as special 
choices of paraunitary filter banks [3], [4]. Cosine modulated filter 
banks [4] allow perfect reconstruction (PR) in paraunitary analysis- 
synthesis systems, using a modulation of a lowpass prototype by a 
cosine train. By a proper choice of the phase of the modulating cosine, 
Malvar developed the modulated lapped transform (MLT) [5], which 
led to the so-called extended lapped transforms (ELT) [3], [6]. The 
ELT allows several overlapping factors, generating a family of PR 
cosine modulated filter banks. Other cosine-modulation approaches 
have also been developed (see, for example, [4], [7], and references 
therein) and the most significant difference among them is the lowpass 
prototype choice and the phase of the cosine sequence. 

Let M and L be the number of channels and filters’ length, 
respectively, where, for the ELTs, L = 2 K M ,  and K is the overlap 
factor. The analysis filters (f,,,(n)) are time-reversed versions of 
the synthesis filters (g,(n)) as in any paraunitary filter bank (for 
m = 0, 1, ..., M - 1 and n = 0, 1, ..., L - 1). The ELT class 
is defined by [3], [6] 

{ ( m +  t) Ricardo L. de Queiroz and K. R. Rao 
g,(n) = fm(L - 1 - n)  = h(n)  cos 

Abstract-A modulated lapped transform with extended overlap (ELT) 
is investigated in image coding with the objective of verifying its potential 
to replace the discrete cosine transform (DCT) in specific applications. 
Some of the criteria utilized for the performance comparison are re- 
constructed image quality (both objective and subjective), reduction of 
blocking artifacts, robustness against transmission errors, and filtering 
(for scalability). Also, a fast implementation algorithm for finite-length- 
signals using symmetric extensions is developed specially for the ELT with 
overlap factor 2 (ELT-2). This comparison shows that ELT-2 is superior 
to both DCT and the lapped orthogonal transform (LOT). 

I. INTRODUCTION 
While block transforms became very popular in the image coding 

field, the lapped orthogonal transform (LOT) [ 11 arose as a promising 
competitor to such transforms as the discrete cosine transform (DCT) 
[2], which is the block transform used in most image and video 
coding algorithms [2]. The advantage of lapped transforms [3] resides 
on the length of their basis functions, providing improved filtering 

L - 1  ?T 
. [(‘-1> $ p v + ’ ) q }  2 ( 1 )  

for m = 0, l . . . ,  M - 1 and n = 0, 1, . . . ,  L - 1. h(n)  is a 
symmetric window modulating the cosine sequence and the impulse 
response of a lowpass prototype (with cutoff frequency at 7r/2M) 
which is translated in the frequency domain to M different frequency 
slots in order to construct the uniform filter bank. We will use 
ELT with K = 2, which will be designated as ELT-2, and assume 
row-column separable implementation of the transform. Therefore, 
one-dimensional (1-D) analysis of the transform implementation is 
sufficient for two-dimensional (2-D) applications. 

The lattice-style algorithm [3] is shown in Fig. 1 for an ELT with 
generic overlap factor IC. The stages 0, contain the plane rotations 
and are defined by 
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where J is the M / 2  counter-identity (reversing) matrix [31. 
Also, Rt, are rotation angles such that On is of the form indicated in 
Fig. 2, containing M / 2  orthogonal butterflies. We use the optimized 

IEEE Log Number 9411133. angles presented in [3]. 

1057-7149/95$04.00 0 1995 IEEE 



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 6, JUNE 1995 

C GTC C 

829 

GTC c GTC 

0 
M J 2  - 1 M / 2  - 1 

- cos 0 
M / 2  M / 2  

M - 1  M - 1  DCT 

LOT 

ELT-2 

QMF-8A 

CQF-SA 

QMF-16B 

CQF-16B 

IDEAL 

cos 0 
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the M / 2  butterflies. 

Implementation of plane rotations stage showing the displacement of 

M=4 M=8 M = 1 6  

3.5 7.57 5.25 8.83 7.13 9.46 

7 7.95 9.50 9.20 11.75 9.69 

9 8.39 11 9.48 13 9.90 

16 8.31 24 9.32 32 9.67 

18 8.44 27 9.47 36 9.84 

32 8.52 48 9.56 64 9.92 

34 8.54 51 9.58 68 9.94 

00 8.56 00 9.59 00 9.94 

11. THEORETICAL MOTIVATION 

The coding gain GTC,  in dB, of a transfodsubband scheme is 
defined as [8] 

I /M-I \ 1 / M  I 510 

I l n 4  I 
\ \ 2=0 ) 1 

with a: as the variance of the ith subband signal (transform co- 
efficient) for i = 0, . . . , M - l. Implementation complexity (C) 
will be measured here by the number of floating-point operations 
(additions plus multiplications) per sample (FLOPS) required to 
implement the 1-D transform. Another way to generate transforms 
with longer overlap is based on the hierarchical connection of two- 
band filter banks following the paths of a binary tree. For parallel 
M-band systems, the full-tree is applied. If S stages of filter banks 
are cascaded, the resulting filter bank will have M = 2’ channels 
and the resulting filters have length ( M  - 1 ) ( LZB - 1 ) + 1, where 
L P ~  is the length of the filters in the two-band filter bank used as a 
basic cell for the hierarchical structure. 

In Table I are shown GTC and C for the DCT, LOT, and ELT-2. 
Additionally, we included the same parameters for the tree-structured 
filter banks based on two-band systems with filters with eight and 
16 taps. We used Smith and Barnwell conjugate quadrature filters 
(CQF) [9] and Johnston’s quadrature mirror filters (QMF) [lo]. Note 
that eight-tap filters lead to equivalent filter banks whose filters have 
length closer to ELT-2. The “IDEAL” entry in this table refers to 
ideal brick-wall filters, which only can be implemented using infinite- 
length filters. The input signal was assumed to follow an AR( 1) model 
with adjacent-sample correlation p = 0.95. From Table I, we can 
see that ELT-2 has coding gain similar to 8A tree-structured filter 
banks at a much lower complexity. The complexity of the DCT is 
unbeatably low, and LOT and ELT-2 are regarded as improvements 
for which the trade-off between costs and benefits has to be taken 
into account. LOT has proven to be superior to DCT, leading to more 
pleasant images even at high compression rates. We will show later 
that ELT-2 surpasses LOT in performance. 

One of the incentives to study ELT’s of larger overlap for image 
coding resides in their longer basis functions and, therefore, in their 
potential for better spectral selectivity of each subband filter. In fact, 
the ELT-2 has filters with good stopband attenuation. The filtering 
capability is supposed to be reflected by GTC measurements, in the 
case of nonlayered image coding. However, in compatible coding 
[l 11, filtering performance is a plus. In this approach, an image, let 
us say, of size 2N x 21%’ is encoded using any transfodquantization 
method and the receiver makes the option of decoding the 2N x 2-V 
image or a reduced version of it, such as a N x N image. A 
straightforward method can be: inverse transform followed by anti- 

TABLE I 
GTC IN dB AND IMPLEMENTATION COMPLEXITY (c) IN FLOPS 
FOR VARIOUS TRANSFORMS AND BLOCK SUES. FOR THE TREE 

1 ~ 3  = 2’. WHERE s IS THE NUMBER OF STAGES OF THE TREE 
STRUCTURED FILTER BANKS, FULL-TREE IS APPLIED AND 

0 
frequency (0) 

Fig. 3. Frequency response of a lowpass filter with cut-off frequency = ~ / 2  
produced by the first four filters of a M = 8 transform. Plots for DCT, LOT, 
and ELT-2 are shown. 

aliasing filtering and subsampling. As a faster and more efficient 
approach, one can retain M / 2  x M / 2  low-frequency coefficients in 
each block (out of &I x M )  and perform a pruned inverse transform, 
resulting in a reconstructed image at a lower spatial resolution. This 
is equivalent to transform domain filtering followed by subsampling. 
Fig. 3 shows the frequency response of the first four filters for the 
eight-channel DCT, LOT, and ELT-2. They are combined into one 
band, which is the frequency response of the lowpass filter actually 
implemented when four (out of eight) coefficients are retained. 

111. FAST SIZE-LIMITED ELT-2 ALGORITHM 
One of the major problems for the use of the ELT-2 resides on 

the transform applied to blocks near the borders of the image. As the 
transform contains overlap, samples outside the image boundaries 
may be included in the analysis section. On the other hand, extra 
transformed blocks are needed in the synthesis process to reconstruct 
the signal. Periodic extensions can solve this problem, at the expense 
of inserting artificial edges caused by unequal luminance levels in 
the extremes of the image. The symmetric extension method is 
useful for linear-phase filter banks [12]. However, the ELT does 
not have linear-phase filters. In [13] a nonorthogonal solution is 
found using sample extensions (including symmetric extension) and 
post-processing techniques. Malvar devised a fast and orthogonal al- 
gorithm [3] implying change of the ELT-2 near the signal boundaries. 
In Fig. 4 we introduce a fast implementation flow-graph for the ELT-2 
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Fig. 4. Flow graph for finite-length signals for ELT-2 (IC = 2). Each 
branch carries M/2 samples. Forward transform is performed by following 
the flow-graph from left to the right, while inverse transform is performed 
by following the flow-graph in the opposite direction and substituting the Z 
matrices by their inverses. 

using symmetric extensions, where 

(7) 

The algorithm corresponds to the application of a symmetric 
extension as if the signal was folded around the borders. In these 
flow-graphs, each branch carries M / 2  samples and analysis is ac- 
complished by following the paths from left to the right, while the 
synthesis (inverse transform) is achieved by following the paths from 
right to the left, replacing the 2 matrices by their inverses. Note 
that Zy’ and Zg) are simple counter-diagonal matrices and their 
inverses have the same basic format. Zg) and 2272) are composed 
of M / 2  butterflies, similar to those in Fig. 2, but the lattice is no 
longer orthogonal [see (5) and (6)]. Their inverses are obtained by 
inverting each of the butterflies. As a result, both analysis or synthesis 
have the same fast algorithm. The DCT-IV and 0, matrices do not 
need replacement in synthesis because they are both symmetric and 
orthogonal. 

A comparison of Malvar’s solution against ours is carried in Fig. 5 
using a JPEG baseline coder and replacing DCT by ELT-2. Although 
Malvar’s solution is PR and orthogonal, the effects of quantization on 
the borders are intense and unpleasant. Our nonorthogonal algorithm 
also suffers from similar effects; however, the distortion is just 
noticeable in one of the borders (Zg’ has a somewhat high condition 
number) and on the last one or two columnsflines of pixels. Thus, 
the distortion is virtually invisible because it is masked by the 
background. 

IV. IMAGE CODING SIMULATION WITH INFORMATION Loss 
Most communications protocols packetize data into cells and 

provide cell prioritization to protect more important data, as cell 
losses can occur. This is so, for example, for ATM networks, which 
are gaining acceptance lately. For image and video transmission in 
such networks, compressed data can be unrecoverably lost and a 
more robust encoding approach is necessary, as well as developing 
reconstruction procedures. For such environments we propose the use 
of the ELT-2 as a simple and effective way to recover the lost data. 

Fig. 5. Comparison of fast ELT-2 implementation methods for fi- 
nite-length-signal regarding sensitivity to quantization errors at the borders. 
A 256 x 256-pels image is encoded at 0.7 bitslpel using the JPEG coder 
and a portion of each reconstructed image is shown. Top: proposed method; 
bottom: orthogonal method. 

In order to simplify the problem and its modeling, we assume 
that [15]: i) the DC coefficients of the transform are prioritized and 
transmitted with enough protection so that they are not susceptible 
to errors; ii) if a cell loss occurs, the information regarding all AC 
coefficients of only one block is lost. In this case, see [15] for details 
on packet losses and on efficient methods for estimating the lost AC 
coefficients using the LOT. The ELT-2 is expected to perform better 
than LOT because of its larger overlapping, since the spatial region 
affected by the lost-block will increase making the error locally less 
intense. However, this is only partially true, since the robustness 
of the ELT-2 comes from its nonlinear-phase-filters allied with the 
longer overlap. The error using ELT-2 is sparser compared to a filter 
bank with the same filters’ length but with linear-phase (such as a 
LOT with extended overlap [16], which we refer as LOT-2). We 
transformed an image using various transforms and deleted all the 
coefficients of a single block except for the DC term. After respective 
inverse transforms, Fig. 6 shows a zoom of the region where a lost- 
block occurred, using DCT, LOT, LOT-2, and ELT-2. From the 
DCT results, we can clearly see where the lost-block is located and, 
comparing all the transforms, we can see that the ELT-2 performed 
fairly better than its competitors in view of its effective error masking 
properties. 

To carry out our tests, we selected the JPEG baseline coder (JPEG) 
[14] because its algorithm is popular and well understood. We assume 
it will resemble imagehide0 coders actually used in packetized 
transmission of images. Then, we replaced the 8 x 8 DCT by ELT-2 
or LOT with M = 8. 

The objective S N R  tests were carried out using several images at 
different bit-rates and the results are shown in Fig. 7, assuming no 
cell-losses. It can be seen that the ELT-2 outperformed both LOT 
and DCT. Fig. 8 shows the 256 x 256 pels image Lena coded at 0.8 
bit/pel (bpp) using JPEG for both the DCT and the ELT-2. For a better 
visualization, a dramatic error rate was used, and we simulated 5 % 
rate of lost blocks (51 blocks are lost). The errors occur randomly, but 
we forced the position of the errors used for the DCT to be repeated 
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Fig. 6.  Trivial image reconstruction when all AC coefficients of a single 
block are lost. The AC coefficients are set to zero in this block and a zoom of 
reconstructed images for each transform are shown. Top left comer, DCT. Top 
right comer. LOT. Bottom left comer, LOT-2. Bottom right comer, ELT-2. 
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(b) 
Fig. 7. SNR difference (in dB) between ELT-2 and other transforms using 
JPEG for several bit rates. The test images have either 256 x 236-pels 
or 512 X 512-pels. and their names and sizes are indicated. (a) 
SNRCLT-~  - SNRDCT. (b) SNRELT.~ - SNRLOT. 

for the ELT-2, so that we can compare the effects of a block-loss for 
both transforms in several positions in the test image. 

(b) 
Fig. 8. Image compression results for 256 x 256-pels and eight bpp image 
Lena, using JPEG to compress the image to a rate of 0.8 bpp. Both compressed 
images are subject to a block-loss rate of 5%. (a) DCT, (b) ELT-2. 

V. CONCLUSIONS 

The finite-length implementations, presented here, allow the ELT- 
2 to be efficiently computed even near the borders. The ELT-2 
has proven to be very robust against cell losses and it can be 
implemented with a minimal increase in computation compared to 
the LOT. Actually, the ELT-2 masks so well the block-losses that 
we believe that when the data is lost, the AC coefficients in the 
block can be subject of very simple reconstruction procedures or 
simply ignored. This approach led to very good results and may 
simplify error correction and reconstruction procedures for packetized 
transmission of images. This transform reveals itself to be a very 
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attractive alternative for image coding, replacing the DCT or the LOT. 
While the DCT is computationally much simpler, ELT-2 is slightly 
more complex compared to the LOT. ELT-2, however, substantially 
improves the subjective quality for low bit-rates and/or when data is 
lost due to channel errors. 

Region-Based Fractal Image 
Compression Using Heuristic Search 

Lester Thomas and Farzin Deravi 
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Abstract-This paper presents work carried out on fractal (or attractor) 
image compression. The approach relies on the assumption that image 
rednndancy can be efficiently exploited through self-transformability. The 
algorithms described in this paper utilize a novel region-based partition 
of the image that greatly increases the compression ratios achieved over 
traditional block-based partitionings. Due to the large search spaces 
involved, heuristic algorithms are used to construct these region-based 
transformations. Results for three different heuristic algorithms are ghen. 
The results show that the region-based system achieves almost double 
the Compression ratio of the simple block-based system at a similar 
decompressed image quality. For the Lena image, compression ratios of 
41:l can be achieved at a PSNR of 26.56 dB. 

I.  INTRODUCTION 
Fractal coding is a very young science. The term fractal was first 

coined in 1982 by Mandelbrot in his book The Fractal Geometry 
of Nature [l]. In 1988, Barnsley and Sloan proposed using fractals 
generated by iterated function systems (IFS) to encode and compress 
images [2]-[7]. 

The first practical fractal compression system to appear in the 
literature was by Jacquin, who used transformations defined on 
image blocks to encode image data [11]-[13]. Since then, fractal (or 
attractor) image coders have received considerable attention. Most 
of the fractal compression systems to appear in the literature are 
based on Jacquin’s block-based compression system [ 151-[25]. This 
correspondence is based on experiments carried out to improve the 
performance of block-based fractal compression systems [8]-[lo]. A 
novel algorithm is presented that extends the traditional block-based 
fractal coders by allowing transformations that act on image regions. 
A search algorithm for finding these region transformations is also 
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20, 1994. 

given; it may be described as a transform space pruning algorithm. 
ne rest of this gives an introduction to fractal image 

presentation of the theory of ITF’s, the reader is referred to [ I l l .  Sec- 
tion II describes a new approach for fractal image compression based 
on allowing a class of region transformations. Section III presents 
heuristic search algorithms for constructing these transformations. 
This correspondence is concluded with a discussion of the merits 
of this new approach and possible future work. 

W. B, P,=nneb&er and J. L, Mitchell, JpEG: still Image Compressjon compression using a simp1e For a thorough 

A. Block-Based Fractal Image Compression 

This section will introduce fractal block coding using a simple 
example. The algorithm (called FIC-B) is a simplification of Jacquin’s 
original algorithm [ 1 1 I-[ 131. 

The FW-B algorithm partitions the image into two basic elements: 
range blocks and domain blocks. The range blocks form a tiling of the 
image and are 8 x 8 pixels (picture elements). The domain blocks are 
twice the size of the range blocks and overlap such that a new domain 
block starts every pixel. Determining the global transformation for 
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