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Fig. 8. Result yielded by the adaptive a-trimmed filter. 

Fig. 9. Result yielded by the quadratic Type 1B filter. 

a specific action of THEN- ELSE type, which is very well-suited to 
signal and image processing applications. Moreover, this mechanism 
allows THEN-rules to be conveniently grouped into subrulebases and 
effectively integrated [IO]. 
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Image Restoration Using the W-Slice Method 

Elisa Sayrol, Chrysostomos L. Nikias, and Antoni Gasull 

* 
Absfruct-We propose the use of higher order statistics (H0S)-based 

methods to address the problem of image &toration. The restoration 
stramv is based on the fact that the phase information of the original 
image and its HOS are not distorted by some types of blurring. The 
ditRculties associated with the combination of 2-D signals and their HOS 
are reduced by means of the Radon trmnsfom. WO methods that apply 
the weight-slice algorithm over the projections are developed. Simulation 
results illustrate the performance of the proposed methods. 

I. INTRODUCTION 
Higher order statistics (HOS) have been successfully applied to 

the problem of 2-D signal reconstruction. In [l], the phase of the 
Bispectrum is used to reconstruct images degraded by a jittery channel 
with additive tone interference, whereas in [2], the bispectrum is used 
to estimate a randomly translating and rotating object from a sequence 
of noisy images. Another application of HOS in a 2-D context is 
described in [3], where invariant HOS features of projections are 
used for object classification. One of the first applications of HOS 
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to image processing was to employ triple correlations to reconstruct 
astronomical images from short-exposure photographs [4], [ 5 ] .  

The bispectrum B f (  wl, W L )  of a 1-D, deterministic, discrete-time 
signal f(n) is defined as the Fourier transform (m) of its triple 

or taking the inverse Fourier transform 

( 5 )  se(s)  = a e ( s )  = b ( s )  * fe (s ) .  

We can derive similar expressions for the projections of the bis- 
pectrum. Denoting by B,s(EI, €z), &e(€],  E z ) ,  B h e ( E 1 .  E z ) ,  and 
Bfe((1.  ( 2 )  the bispectra of gs(s) ,  ( h e ( s ) .  he( s ) ,  and f e ( s ) ,  respec- 

correlation function and is given by [6. ch. 31 

B, (w1 ,  u p )  = F(wl)F(?r l2)F*(wl  + w2) (l)  tively, we obtain 

where F ( W )  is the FT of f ( n ) .  The phase of the bispectrum is 
therefore 

Bgo ( € 1  EL 
= Bae(E1 .  ( 2 )  

V f ( U 9 .  (Ll2) = ,pf(UU’l  ) + pJ(“ 2 )  - l p f ( W 1  + U ’ q ) .  ( 2 )  

where U J , ( U I ~ .  1 1 1 2 )  = i B f ( u 1 1 ,  w2) and pf(u:) = L I . ’ ( w ) .  Unlike 
the power spectrum, the bispectrum preserves the Fourier phase of 
the signal up to a linear phase factor. For a random signal, it can be 
defined as the statistical expectation of (1). The bispectrum of a zero- 
mean random process with symmetric probability density function 
(pdf) equals zero. Hence, deterministic signals embedded in Gaussian 
or non-Gaussian symmetrically distributed noise can be reconstructed 
in the third-order domain. Our goal is to exploit such properties for 
the restoration of 2-D degraded images. 

We have developed techniques that consider HOS-based methods 
that proved to attain good 1-D signal reconstruction. In [7], the bis- 
pectrum iterative reconstruction algorithm (BIRA) [8] was utilized to 
restore images from their projections. However, the BIRA algorithm 
could not be applied to those projections that had 2-transform with 
zeros on the unit circle. The weight-slice (WS) algorithm 191, on the 
other hand, can recover the signal of interest even if its 2-transform 
has zeros on the unit circle. Although possible, the extension of 
the WS algorithm to 2-D would enormously increase its analytical 
complexity. We present two algorithms that use the WS method over 
the 1-D projections of the image. 

In Section 11, we describe the assumptions of the image observation 
model. In Section 111, we set the bases for the reconstruction from 
either the phase of the Fourier transform or the phase of the 
bispectrum. In Section IV, two image restoration algorithms are 
developed, Some examples are given in Section V. Finally, Section 
VI is devoted to conclusions. 

11. PRELIMINARY DEFINITIONS 

To address the problem of recovering images from degraded 
versions of it, we assume the discrete image model given by 

dn. = h ( n  - TI ’ .  m - m’)f(n’. m’) 
, I ‘  “L’ 

+ n,(n,  7 n )  

= U ( ? 1 ,  m )  + n,ln, t r l ) ,  71”ln‘ E 5, (3) 
where 

g ( n ,  711) observed image 
h ( n ,  7 n )  

S 
f ( I ) ,  ~n ) 
71 (n,  mi ) 
a ( n ,  ~ n )  
The 2-D signal recovery problem can be uniquely decomposed into 

many 1-D signal reconstruction problems. The Radon transform of 
a 2-D function f ( n .  m )  denoted fe(s) is defined as its line integral 
along a line inclined at an angle 8 from the y axis and at a distance .5 

from the origin [lo]. Denoting by Ge(E), Ae(E), H e ( [ )  and F e ( [ )  
the Fourier transforms in polar coordinates of g(n.  m), a ( n ,  rn) ,  
h(71, m), and f(n, m), respectively, then, in the absence of noise 

point spread function that can be deterministic or 
random 
region of suppoR of h h n ,  n)  
original undistorted image 
symmetrically distributed noise 
2-D convolution of h ( n .  m) and f(n, m ) .  

Our purpose is to recover each projection f ~ ( s )  in nonideal con- 
ditions. Next, we shall study two possible situations in which the 
reconstruction is possible: first, when the image is degraded by a 
deterministic PSF and additive noise and second, when the PSF is 
random. 

A. Deterministic Blur Model 

We consider the optical transfer function (OTF), which is the 
Fourier transform of the PSF, to have linear or zero phase [ll].  Let 
$7g8(<)3 w ( < h  and P ~ H ( € )  be thephasefunctionsofGe(E), & ( E ) ,  
F e ( ( ) ,  respectively. Let us also denote by W g e ( [ l ,  &), v a e ( € l .  € 2 ) .  

and u l f e ( € ~ ,  € 2 )  the phase functions of B,s(<I. E 2 ) -  Bae(E~, (21, 

and B p  ((1, € 2 ) .  As it can be seen in (4), if the phase of the OTF is 
linear, the phase of the 1-D Fourier transform of a projection differs 
from the phase of the Fourier transform of the projection of the 
original image by a linear factor, and therefore, i ; g e ( E )  = yae(E) = 
rot + vje((), where T ~ ,  characterizes the phase of the OW. If ro 
is zero, they are equivalent pge(<)  = pfe((). In the third-order 
domain, & B ~ ( E ~ ,  ( 2 )  = V , ~ ~ ( € L .  € 2 )  = 4fs(h,  E z ) ,  where the linear 
phase component has been canceled out. Fe(() and B f e ( [ l ,  € 2 )  

are uniquely specified, except for a constant factor, by p p  ( E )  and 
ufe(E1, t2 ) ,  respectively, as is explained in Section III. 

When the signal of interest is contaminated with noise, reconstruc- 
tion from the phase functions is no longer acceptable. Nevertheless, 
we can estimate the bispectra of the projections in the case many 
independent, although possibly shifted, observations of the image are 
available. We will study the statistical properties of the estimation and 
take advantage, as stated above, of the fact that third-order statistics of 
zero-mean symmetrically distributed noise are zero. Our immediate 
goal is to obtain a good estimation of Bae(E1. € 2 )  and, therefore, 
$ j e ( < l ,  ( 2 )  or p , ~ ( ( ) .  It can be shown that when the relative shift 
among the projections has a uniform or triangular distribution, the 
bispectrum estimation is only biased near the origin and limited to 
the axis El = 0, = 0, and El  +E2 = 0 for white noise. We can also 
take advantage of the fact that the phase of the bispectrum is zero 
at the ongin, where the magnitude is biased and then approximate 
$ f e  (51. €2 ) by 11 ( < I ,  EL), from which we can reconstruct the signal 
of interest. 

, 

B. Random Blur Model 

In astronomical speckle interferometry, speckle masking is a 
method based on triple correlations that is capable of reconstructing 
true diffraction-limited images [4]. Without loss of generality and 
since we process the projections of the image, the description is 
given in I-D. A sequence of short exposure speckle interferograms 
i,,(.r) is given by 
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where or, ( . r )  is the intensity distribution of the object, and p,,  ( x )  is 
a random PSF combination of' the atmospheric turbulence and the 
telescope. In [4], the FI of the random medium is modeled as a 
stationary random process with independent zero-mean Gaussian real 
and imaginary parts. It is shown that the average bispectrum of the 
transfer function B,  ( w 1 .  us2 is strictly positive for a11 frequencies 
up to the diffraction limit. Therefore 

h, ( ( l ' ,  . w . 2  ) = & , ( U ' ,  . 0 '  ! )& ( ( 1 ' 1  , (L'g ), 

L l 3 , ( l l ~ l ,  ( 1 2 )  = !!B,,(u.,.  1122). ( 9) 

The phase information of the bispectrum of the object is given by 
the phase of the average bispectrum of the observed intensities. 
Usually, k,, ( 11' I , ti'2 ) IS obtained from accurate measurements of a 
point source. As pointed out in [12], it is desirable to use only the 
phase information in the reconstruction. Therefore, as in the previous 
model, our purpose is to retrieve the object of interest from its true 
bispectrum phase. 

111. UNIQUENESS OF THE R~CONSTRUCTION 
FROM THE PHASE FL:NCTIONS 

The restoration of each projection is based on the fact that we have 
exact knowledge of its Fourier phase er its Bispectrum phase. Once 
we have this information we need to ensure that we can uniquely 
reconstruct the desired signal. We first show that it is possible to 
recover the sequence FH ( E )  from the phase of Go ( E ) .  Analogously, 
D f ~ i E l ,  & )  will be determined from the phase of B g 8 ( < [ ,  ( 2 ) .  To 
show that a sequence is uniquely specified by the phase only of its 
Fourier transform, Hayes et al. [13] set the conditions under which 
this is possible: 

Theorem I: Let x [ u ]  and y [ ~ ]  be two tinite sequences that are zero 
outside the interval 0 5 11 5 N - 1 with 2-transforms that have no 
zeros in reciprocal pairs or on the unit circle.' If LAY( U ' )  = LY( u t )  

at 12 - 1 distinct frequencies in the interval 0 < U) < T ,  then 
.r[n] = $y[rr]  for some positive constant d. 

A consequence of this theorem is the following: 
Corollary 1:  Let x [ n ]  be a finite sequence that is zero outside 

the interval 0 5 J I  5 A' - 1 and where zeros are '1: - 1 = 
Z< - 1 + 4P + 2P*, where (li - 1) is the number of nonreciprocal 
zeros, and P and P* are the number of reciprocal and real reciprocal 
pairs, respectively. There is a unique sequence y[nl, except for some 
positive constant factor, that is zero outside the interval 0 5 n 5 
li - 1 for which L S (  t i ' )  = LY( U ) )  at N - 1 distinct frequencies 
in the interval ( I  < I I '  < T .  

We have created a new set of conditions to reconstruct a sequence 
from another with the same FouGer phase but different length. 
This is the case of projections blurred by a zero phase OW. The 
reconstruction is only possible if the 2 transform of x[n] has the same 
zeros as the Z transform of y[n] plus, necessarily, the rest of the zeros 
in reciprocal pairs. In our case, these zeros will correspond to the 
zeros of the PSF. The proof of Cbrollary 1 follows from considering 
that it is false and leading to a contradiction of Theorem 1. To identify 
the sequence y [ r i ] ,  only li - 1 points of its Fourier phase are needed. 
However, our original signal . c [ ) i ]  is specified by N - 1 points of its 
Fourier phase. Therefore, we need W - 1 points to ensure that all 
information about y[u] is contained in the Fourier phase of ~ [ n ] .  

We are also interested in extending these results to 2-D sequences. 
This extension can be achieved by mapping the 2-D sequence into a 
1-D sequence and then applying Theorem 1, although in this case, the 
election of the pairs of distinct frequencies ( w l ,  w z )  is not arbitrary 

' Although not demonstrated in [ 131, the theorem could be modified to allow 
zeros on the unit circle. 

(see Appendix A). Thus, it is possible to state a similar corollary for 
2-D signals: 

x 4, 
then there is a unique sequence y[n, n ~ ] ,  except for some positive 
constant factor, with dimensions li x li < .Ti x '1; such that 
L S ( i i r , .  11'~) = LY(W~, w z )  at ( A r  - 1 ) 2  distinct frequencies in 
the region 0 < u31 < x .  0 < U'Z < x .  

Corollary 1 set the theoretical bases to reconstruct a I-D signal 
degraded by a zero-phase OTF from the phase of the blurred signal. 
We can include the case of the linear-phase OTF only if it has 
been previously compensated. The first algorithm we develop in this 
correspondence is based on this result. Corollary 2 set the theoretical 
bases to reconstruct a I-D signal degraded by a zero-phase or linear 
OTF from its bispectrum phase. This result motivates the second 
algorithm developed in this work. 

Corollary 2: If z[n. m] is a finite sequence of dimensions 

IV. ALGORITHMS 

In this section, we derive two different methodologies to solve 
the image restoration problem for the deterministic and random blur 
models. We assume that a sequence of images is provided. For 
example, we might have several observations of the same image 
embedded in noise with possibly different phase shifts, or a sequence 
of images of an object moving in a noisy background, or a sequence 
of short exposure speckle interferograms, etc. 

The structure of both algorithms is motivated by the following 
facts: 

1) To avoid the high complexity associated with the HOS of 2-D 
signals, we restore images from their projections. 

2) Use of HOS allows reducing the presence of Gaussian noise 
while retaining phase information from the signal. 

3) Reconstruction from the phase information can be motivated 
considering the following properties and common assumptions: 

The F T  of a discrete finite length Pgnal can be uniquely 
reconstructed from its phase (Corollary 1). 
Analogously, the bispectrum may be recovered from its 
phase (Corollary 2). 
The phase from many blurring functions is zero or 
linear. 

a) 

h) 

c) 

t 

4) Finally, the WS is chosen to retrieve the signal from its third- 
order moments since it is a robust and well-proven method. 

Algorithm 1: The first algorithm is summarized in the following 
steps: 

1) For each image of the sequence, compute the Radon transform 
to obtain the projections. 

For each angle, do the following: 

2) Estimate the bispectrum from the set of projections available. 
3) Reconstruct the projections by means of the WS algorithm [9] 

(noise has been removed; however, the signal is still blurred). 
4) From the Fourier phase, retrieve the desired signal. 
5) Obtain the image applying the inverse Radon transform. 

In the first step of the algorithm, the Radon transform is calculated 
from an interpolation of the Cartesian sampling grid to the polar grid 
of the 2-D FFT of the image. There is an intrinsic loss of information 
in this operation. However, using FFT lengths larger than the size 
of the image and using polynomial interpolations in each direction 
of order (m - 1) for WL 2 2 [15], we get good estimations for the 
projections. See [ 161 and references therein for other implementations 
of the Radon transform. In Step 2), we calculate the third moment 
sequence or the triple correlation in the frequency domain for each 
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I1 

I I 

Fig. 1. 
and X z .  The symmetry regions from I to VI are also shown. 

Third-order moment region of support for sequences of length 

projection and then average over the realizations of the projections at 
the same angle [6] .  In Step 3), we obtain the estimated sequence 
through the WS algorithm, we only make use of the third-order 
moment sequence. In the next step, we obtain fo (s) from the phase 
of go (s). We use an iterative algorithm similar to the one proposed 
in [13]. Some modifications are necessary to adapt the scheme to the 
new set of conditions. The algorithm is as follows: 

Obtain the M-point DFT of go ( ? t  ) and derive its phase function 
pgO(IF) 
Form another 3equence y,e(n) given by 

X.  = (1, . . . .  Ai - 1, where M 2 2 N  

0 5 7t < 1 ' l L t ( k / 2 )  
yttl(n) = f , H ( / L )  I/Lt(K/2) 5 72 < [n; - zn t (h- /2)]  

[.V - I n t c I i / 2 ) ]  5 n 5 ill - 1 
(10) 

{I 
where f l e ( n )  = g ~ ( n ) ,  I< is the length of the blurring filter, 
and Int(  s) indicates the closest integer smaller than .P. 
Obtain a new estimation F , + l s ( k )  = IT:0(k)l rxp[p(;o(k)], 
where l? ,e (k)  IS  the Wpoint DET of y,e(n), and F , + l o ( k )  is 
the M-point DIT of the new estimated signal f ig  ( n  ) .  

In the first iteration of Step 2, we use the blurred signal. We set to 
zero the left and right margins to obtain a signal with the same length 
than the one we are trying to reconstruct. That provides a convenient 
initial guess for the magnitude of the Fourier transform and at the 
same time speeds up the process. 

Steps 2 and 3 are repeated until the algorithm converges. Finally, 
the inverse Radon transform is implemented reversing the Radon 
transform procedure. 

It must be pointed out that any linear phase factor should be 
corrected before applying Step 4); otherwise, the iterative procedure 
will not converge to the right solution. 

Algorithm 2: The second algorithm consists of the following 
steps: 

1 ) For each image of the sequence. compute the Radon transform 
to obtain the projections. 

For each angle, do the following: 
2) Estimate the bispectrum from the set of projections available. 
3) Retrieve the bispectrum of each original projection from its 

4) Reconstruct the projections by means of the WS algorithm [9]. 
5) Obtain the reconstructed image applying the inverse Radon 

Steps 3) and 4) differ from the ones of the first algorithm. To 
retrieve the bispectrum of the original signal from the 2-D bispectrum 

2-D estimated phase. 

transform. 

Fig. 2. (a) Original image; (b) image obtained after applying Radon and 
inverse Radon transform; (c) blurred image by a 5 x j Gaussian filter, 
CI = 0.35; (d) restored image from (c) using Algorithm 1. 

phase of the blurred signal, we implement an analogous iterative 
algorithm to the one for 1-D sequences. The new intervals in Step 2 
take into account the third-order moment region of support depicted 
in Fig. 1 .  For signals of length NI. the third-order moment sequence 
is zero outside an outer hexagonal region [14]. Suppose we know the 
dimensions of the object to be where .;Yz < NI; in this case, 
the region of support is the inner hexagonal region. Its boundaries 
establish the new intervals in the iterative algorithm. We could also 
speed up the process by taking advantage of the symmetry regions 
of third-order moments and use only the samples in the region 
0 5 n I 5 N I ,  0 5 n 2  5 X 2 ,  nl 2 n2. In Step 4) the WS Algorithm 
reconstructs the signal from its moments. After this step, any linear 
phase factor should be corrected before projecting back the image. 

The computational burden of the two algorithms to restore each 
projection is given by 

1) the sample estimation of the bispectrum, which is the same 
for both algorithms and of order 0 ( 2 1 i N 2 ) ,  where I< is the 
number of available realizations and N the length of the signal 

2) the WS, which requires 0 ( 2 0 / 3 K 3 )  operations 
3) the iterative reconstruction step, which differs for both algo- 

rithms. 
Thus, Step 4) in Algorithm 1 entails a computational cost to 
0 ( 2 I ,  MI log, -til), where 11 is the number of iterations, and 
M I  is the size of the FFT. For Algorithm 2, Step 3) requires 
0(212,11$ log, &I:) operations, where MZ x M Z  is the size of the 
2D FFl7. 

, 

V. SIMULATION EXAMPLES 
Example 1: In this example, we examine the behavior of Algo- 

rithm l when an image is degraded by a zero-phase blurring filter. 
Fig. 2(a) shows a 64 x 64 image, and Fig. 2(b) shows the same 
image after applying the Radon transform followed by the inverse 
Radon transform, where the 2-D FFT's to compute the projections 
are 256 x 128. Fig. 2(c) is a blurred version of this image with 
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10 20 30 40 50 60 

0 10 20 30 40 50 60 

Fig. 3. (a) Original image; (b) image obtained after applying Radon and 
inverse Radon transform; ( c )  blurred image by a 3 x 3 Gaussian filter a = 0.7; 
(d) restored image from (c) using Algorithm 1 ; (e) same as (c) but SNR = 25 
dB: (0 restored image from (e) using Algorithm 1; (g) restored image using 
parametric Wiener filter; (h) restored image using parametric Wiener filter 
and the true phase of the signal. . 
a .5 x 5 Gaussian filter, with ( k  = 0.35 Fig. 2(d) is the restored 
image from the Fourier phase using Algorithm 1. Steps 2) and 3) 
are not performed since no noise is present. From this image, we see 
that high frequencies have been properly recovered. However. we 
observe some distortion. This is due to a slight relative shift among 
projections. 

ExampZe2: In this example, we show the performance of the 
first algorithm and compare the restoration when other existing 
methods are applied. The original image is a computer-generated 
image shown in Fig. 3(a). The reconstructed image after applying the 
Radon transform followed by the inverse Radon transform is shown 
in Fig. 3(b). Fig. 3(c) presents a blurred version of this image when 
a 3 x 3 Gaussian filter with CY = 0.7 is utilized. Fig. 3(d) shows the 
restored image obtained from Algorithm 1. The phase reconstruction 
step is applied with FFT's of dimension 128 and 50 iterations. In 

"0 10 20 30 40 50 60 70 

(d) 

1 

o L L  10 20 30 40 50 60 70 

(e) 

50 

10 20 30 40 50 60 70 

Fig. 4. (a) Original projection at angle 0"; (b) degraded projection, blurred 
by a 5 x 5 Gaussian filter, cy = 0.9, S N R  = 5 dB; (c) restored signal using 
parametric Wiener filter; (d) restored signal using the magnitude of the Wiener 
filter and the true phase of the signal; (e) restored signal using Algorithm 1; 
(0 restored signal using Algorithm 2. 
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0 5 10 15 20 25 30 35 

(b) 

I I 
0 5 10 15 20 25 30 35 

(C) 

Fig. 5 .  (a) Projection of a diffracted image of three stars; (b) one of the 
300 simulated speckle interferograms; (c) solution from the reconstructed 
bispectrum using Algorithm 2 and assuming length 16. 

Fig. 3(e), the image is blurred with the same filter, and Gaussian 
noise for SNR = 25 dB is added. The restored image is shown in 
Fig. 3(f) when Algorithm 1 is used. The third-order moments are 
estimated from 50 shifted realizations. To compare this result with 
a correlation-based method, we consider in Fig. 3(g) the parametric 
Wiener filter, where the periodogram-based estimates of the power 
spectra of the noise and the image are obtained considering 50 noisy 
realizations [17]. A modified version of this filter is suggested in 
[18], where the Fourier phase of the restored image is estimated 
from the bispectrum. In Fig. 3(h), we show the restored image from 
the magnitude of the parametric Wiener filter and the true phase 
of the signal. As we can observe, the method proposed in this 
correspondence gives better results than the Wiener filter and similar 
results when the true phase is incorporated. However, we must point 
out that the proposed restoration scheme does not make use of the 
blurring filter: only its size. In this sense, this method realizes a blind 
restoration. 

Example 3: In this experimtnt, we compare the algorithms in a 
IOW SNR scenario. Fig. 4(a) corresponds to the projection of the 
image in Fig. 2(a) at angle 0". Fig. 4(b) corresponds to the same 
projection when the image is degraded by a 5 x 5 Gaussian blurring 
filter with (I = 0.9 and the SNR = 5 dB. Fifty noisy and randomly 
shifted realizations are available. The results using the parametric 
Wiener filter and the modified Wiener filter are shown in Fig. 4(c) 
and (d). The small details have been lost, and even if we use the true 
phase of the signal, we cannot properly restore the original projection. 
Fig. 4(e) and (0 show the results using Algorithm 1 and Algorithm 2, 
respectively, where the FFT size and the number of iterations are 256 
and 50 for the first algorithm and 256 x 256 and 25 for the second 
one. The restoration is better accomplished by Algorithm 2 (except 

Fig. 6. (a) Third-order moment for the projection of Fig. 5(a); (b) average 
third-order moment interferogram: (c) reconstructed tbd-order moment from 
the iterative step in Algorithm 2. 

at the extreme of the signal) at the expense of a higher computational 
cost. We clearly see that high frequencies are better preserved, and 
the error is much lower when the proposed algorithms are utilized. 
Unfortunately, for this low SNR, although the quality of the 1-D 
projection has been considerably improved, small error contributions 
from all projections will propagate and add up to the final image. 
In order to avoid this effect, we should apply HOS-based methods 
directly to the image. 

Example4: We have simulated a sequence of short exposure 
speckle interferograms assuming Gaussian statistics for the atmos- 
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Fig. 7. (a) Projection of a diffracted image of two stars; (b) solution from 
the reconstructed bispectrum using Algorithm 2 and assuming length 8. 

phere. Assuming that we know the dimensions of the object, we 
uniquely reconstruct the third-order moment sequence from the phase 
of B,( WI.  u - 2 )  by means of Algorithm 2. Fig. 5(a) shows a projection 
of a group of three simulated stars of different intensities. The image 
was difiacted through a rectangular pupil function. Fig. 5(b) shows 
one of the 300 interferograms that were generated using Gaussian 
distribution for the real and imaginary part of the FT of the random 
medium. The reconstructed signal using Algorithm 2 is depicted 
in Fig. 5(c). where we assumed that the length of the three stars (b) 
was 16 samples. Fig. 6(a) shows the Ihird-order moment of the 
original projection, whereas Fig. 6(b) shows the average third-order 
moments computed from the interferograms. In Fig. 6(c), the third- 
order moment sequence of the object has been estimated through 
Step 3) of Algorithm 2 using 2-D FFT’s of sizes 256 x 256 with 150 
iterations. Fig. 7(a) shows a projection of a group of two simulated 
stars. Fig. 7(b) shows the reconstructed signal using Algorithm 2 from 
300 speckle interferograms assuming a length equal to eight samples. 
Fig. 8(a) shows the image of the two simulated stars. Fig. 8(b) is 
one of the 300 speckle interferograms. Finally, Fig. 8(c) shows the 
reconstructed image. 

Example 5: In this example, we apply Algorithm 2 to real astro- 
nomical images. They were provided by the Astrophysics Institute of 
Canaries and recorded from the “William Herschel” 4.2-m telescope 
at the Observatory of Roque de Ids Muchachos. Fig. 9 is one of 
the 300 speckle interferograms of size 256 x 256 that corresponds 
to a binary star separated 0.4 s-arc (ADS 4265). Fig. 1O(a) shows 
one of the projections at 0” (vertical projection). Several choices 
for the length at this angle were given and found that the two stars 
were visible for length around 20 pixels. Algorithm 2 was employed 
using 2-D FFT’s of sizes 512 x 512 with 25 iterations. The estimated 
projection is shown in Fig. 10(b). 

VI. CONCLUSIONS 

In this correspondence, we have shown that it is possible to restore 
degraded images from the HOS of its projections. Two different 
approaches were given to reconstruct the 1-D signals from either 
the phase of the Fourier transform or the phase of the bispectrum. 
They were applied to images distorted with deterministic PSF and 
Gaussian noise and to simulated astronomical images degraded by 
turbulent atmosphere of known statistics. The motivation behind the 

(C) 

Fig. 8. (a) Simulated double star; (b) one of the 300 speckle interfero- 
grams using Gaussian statistics for the atmosphere: (c) restored image using 
Algorithm 2. 

use of these methods is the following. First, using HOS allows us 
to reduce the effects of the noise and at the same time obtain an 
estimate of the Fourier phase or the bispectrum phase of the signal 
that leads to the original signal. Second, employing the projections 
of the image reduces the high complexity associate with HOS of 
images. The capability of the WS to reconstruct the projections from 
its third-order moments is demonstrated. Furthermore, for the case 
of deterministic PSF, the blurring filter was not used: only its size. 
Although the complexity using HOS over 2-D signals is reduced, 
the computational load is still high. Nevertheless, the quality of the 
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then 
‘k -1 

~ ( i i t l ,  u 2 )  = z(w1, ii2)e-’wzR2 

F(w1, IO?). and .c(wl, 712) can be seen as a 1-D Fourier pair 
with parameter w1. Therefore, applying Theorem 1, we can obtain 
x ( w l ,  n 2 )  from the phase of F(w1, W Z )  at any N - 1 distinct wz 
frequencies. Analogously, we can see %(MI. n2) and f (n i ,  n z )  as 
a 1-D Fourier pair with parameter nz and thus recover f(n1. n2) 

from the phase of z(w1, 7 ~ 2 )  at any N - 1 distinct wl frequencies. 
Hence, ( N  - 1)(N - 1) points of the phase of F ( u ~ 1 ,  W Z )  in 
0 < W I  < T ,  0 < UIZ < R are needed to reconstruct f (w1,  nz). 
Since ufl has been used as a fixed parameter in the first place, the 
pairs (toI, w2) are not arbitrarily taken. Although w1 could be placed 
at any Ar - 1 distinct frequencies, they must remain the same for 
any u12. Thus, the grid of frequencies (wl,  w) forms N - 1 aligned 
columns in u11 of N - 1 points arbitrarily distributed in U ’ Z .  

n?=O 

Fig. 9. 
corresponds to a binary star 

One of the 300 speckle interferograms of size 256 x 2.56 that 

:I , [I\ 1 
OO 50 100 150 

(b) 
Fig 10. 
projection. 

One of the projections at Oo (vertical projection); (b) estimated 

images shown in this work was considerably improved. The results 
proved to be quite good for moderate SNR. For low SNR, the 
restoration of the projections was also good, although small errors 
in some of the projections are easily propagated to the image. It is 
necessary to avoid using projectidns for strongly degraded images. 
However, the analytical complexity grows considerably when the 
bispectrum of an image (not the projections), which is a 4-D signal, is 
estimated. Future work should be directed toward low-cost procedures 
to extract the phase informatioq from the bispectra of images as well 
as low-cost HOS-based restoration methods. 
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