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Nonuniform Image Representation 
in Area-of-Interest Systems 

Natan Peterfreund and Yehoshua Y. Zeevi 

Abslruct- This paper is concerned with image representa- 
tion by data distributed nonuniformly and in particular with 
a representation scheme suitable for “area-of-interest” imaging. 
The class of signals under consideration, whose information 
density varies with position, can be represented according to 
a nonuniform sampling scheme. Position-varying projection op- 
erators are presented as simple low-pass filtering operations 
in a Fourier-lie domain. Sequential projections are used for 
pyramidal representation of nonuniformly sampled images. It is 
shown that irregular random sampling, prevents, under certain 
mild restrictions, aliasing effects. 

I. INTRODUCTION 

N A VARIETY of applications of image technology such I as wide field-of-view sensing, communications, and display 
systems, which are designed to exploit the advantages inherent 
in the structural organization and functional characteristics of 
the human visual system, it is desirable to present an image 
by a set of nonuniformly distributed samples. 

Studies of the structure of the sampling grid of the human 
eye have revealed inhomogeneities in the distribution of cones 
over the retina. While the receptors density is uniform over the 
center of the fovea, it monotonically decreases as a function of 
eccentricity [6], [9]. This principle of nonuniform allocation 
of computational resources is further elaborated in later stages 
of visual processing [8]. The problem of aliasing that may 
arise due to low-density distribution of cones over the retina is 
prevented, according to Yellot [ 151, [ 161, by the irregularities 
in the receptors location. 

In the biological visual system, the optics of the eye 
processes the image nonuniformly [9] by projecting it (in 
both mathematical and physical sense of projection) to prevent 
aliasing effects that may arise due to nonuniform distribution 
of cones over the retina. In the present study, we elaborate a 
projection technique to be used for image conditioning prior to 
the application of nonuniform sampling. Based on the studies 
of Clark et al. [3], Porat and Zeevi [12], Zeevi et al. [18], 
and Zeevi and Shlomot [19], we elaborate a formalism for 
projection suitable for nonuniform sampling and processing 
of images. We show that suboptimal sampling treated as 
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irregularities in the locations of the sampling points prevents, 
under some mild restrictions, aliasing effects such as jagged- 
ness and/or appearance of phantom images. A Fourier-like 
transform to be presented simplifies the projection of images 
under consideration, similarly to the role of the conventional 
Fourier transform in the case of bandlimited functions. We 
show that nonlinear projection operations degenerate in this 
“compatible domain” (in the sense of Zadeh’s compatible 
transform) to simple linear lowpass filtering operations. Fi- 
nally, we generalize the pyramidal approach [2], [ l l ]  and 
apply it to images sampled nonuniformly both in Cartesian 
and polar coordinate systems. 

11. PRELIMINARIES 

In this section, we review the essentials of the classical 
sampling theorem and its extension to nonuniform sampling of 
class of functions that are not bandlimited. For further detail, 
see 131, PI ,  [ W .  

Given a vector z E R” and a matrix A, let zt and IAldenote 
the transpose of z and the determinant of A, respectively. 

For x = [XI, z2It and w = [WI, w#, let g(x) and G(w)  be 
a 2-D signal and its Fourier transform. Suppose that G ( w )  = 0 
outside a bounded region R and 

A A 

G ( w )  = G(w - Uk) VU E R (k E Z2) 
k 

for some nonsingular matrix U. Under these conditions, g(x) 
can be reconstructed from its samples on a uniform grid 
according to the formula [5] 

g(x) = I det VI c g ( x n ) @ ( x  - Vn) (n E Z2) (1) 
n 

where V, which is the sampling matrix, satisfies UtV = 2rI  
and 

(2) 

A function g(x) whose Fourier transform vanishes outside a 
finite region R is said to belong to BO. 

Let ~ ( x )  = [yl(x), y2(x)lt be a continuous function called 
a distortion function and y,(x) the corresponding Jacobian 
matrix. We require that ~ ( 0 )  = 0, l+y,(x)l > 0 for all x and 
1 1  ~ ( x )  11-  03 as ( 1  x I [ +  03 so that the inverse function 

A 
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r-'(x) exists. The space I?$?,, which is called the space of 
locally bandlimited functions, is defined as follows [ 191: 

It can be readily verified that g(x) E L 2 ( R z )  iff for f(x) = 
dr(x)l 

(4) 

The space of functions that satisfy (4) will be denoted by 
L2~(x)(IR2). According to (l), a function f(x) E B z x )  
can be reconstructed from its samples on a nonuniform gnd 
xn = r-'(Vn) according to 1191: 

f(x) = I det VI f(XnP(7(X) - Vn). ( 5 )  
n 

The operator that projects a given signal w(x) into the space 
of locally bandlimited functions B:x, is [19] 

where a(.) is given by (2). This operation, which is used 
for signal conditioning prior to the application of nonuniform 
sampling x, = -y-'(Vn), is an extension of the conventional 
lowpass filtering and is used as a first step in applying a 
nonuniform sampling scheme. 

111. PROJECTION INTO THE SPACE OF 
LOCALLY BANDLIMITED FUTKTIONS 

A. A Fourier-Like Characterization of Signals and Systems 
Similar to Fourier analysis and synthesis of bandlimited 

functions, it is of interest to find a compatible domain in 
which signals from B$x, can be analyzed and synthesized 
in a natural manner. 

Consider a 2-D position-varying system characterized by a 
superposition integral [ 171: 

where f(x) and y(x) are the system's input and output, re- 
spectively, and h(x, ,$) is a position-varying impulse response. 
Define 

(9) 

as the Fourier-like transform of f(x) and the corresponding 
inverse transformation. Define 

as the system's position-varying transferfunction. Substituting 
@)-(IO) into (7), we obtain the superposition integral as a 
filtering operation in the Fourier-like domain: 

where D is the appropriate support in the Fourier-like domain. 
An important case of the position-varying transfer function 
H7(w,x) is independent of x. Given the system (7), a 
transformation (10) that satisfies this condition is said to be 
a compatible transfom with respect to the particular system 

Lemma 3.1: The transformation given by (8)-( 11) is com- 
(7) MI. 

patible with respect to system (7) iff 

for some h,(.) E L ' ( IR~) .  
Proof: Substituting (12) into (lo), we have 

Hy(w,x) = SJ ho(z)eiwfzdz = H,(w) 

where H,(w) is the Fourier transform of h,(.). Since 

0 the converse statement can be readily proven. 
Theorem 3.1: For any signal f(x) E L;(x , (R2)  and a 

transfer function H ,  (U), the Fourier transform of h, (.), which 
is bandlimited in a finite region R' 5 R, the solution of (1 1) 
((7)) belongs to B$x,. If H,(w) = 1 in R and zero elsewhere, 
then (1 1) defines the projection operator into B g x , .  

Proof: Let G ( w )  = Fy(w)H,(w), where F7(w) is a 
Fourier-like transform of the input signal f(x). Since G(w is 

where g(.) is the inverse Fourier transform of G(w). For 
f(x) E BZx, ,  however, Fy(w) is bandlimited in R. It follows 
that if H,(w) = 1 in R and zero elsewhere, then 

bandlimited in R, by ( l l ) ,  we have y(x) = g[r(x)] E BrCx,, fl 

U and y(x) = f(x) in (1  1) as asserted. 
The latter result generalizes the results of [19] concerning 

the projection into B z x , .  In fact, for the special case where 
H,(w) = 1 on R and zero elsewhere, the superposition 
integral (7) degenerates to the projection operator (6) given 
by Zeevi and Shlomot [19]. 

A special case of interest is the projection into "subband"- 
like regions. This projection, as will be shown, serves as a 
first step in a sampling and decimation procedure applied to 
functions that belong to Bzx, space. In the following, we 
shall assume that R is a bounded region that contains the 
origin. The projected functions may then be viewed as low- 
pass versions of the original signals with a Fourier-like support 
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R' c R. In the sequel, we show the correspondence between 
the bandwidth of g(x) E BO and the distortion function ~ ( x )  
in the B Z x ,  space. 

R,,(x) c R(x), which is given by scaling w1(x) and w2(x) 
in (15) to become 9 and F, respectively. For the 
special case where 

Lemma'3.2: Consider the bounded region R c Et2 that 
contains the origin. For m , n  2 1 

A 
7 m n ( x )  = [ n ( x ) / m ,  72(4/nlt 

and 

1 if [mwl, nw2It E R 
0 otherwise 

we have 

Pro08 Suppose that f(x) = g[^lmn(x)], where g(x  E 

and f (x)  = w[r(x)], it follows that f(x) E El$;;, and hence, 

BO. Let w(x1,x2) = g(?,?-. Since w(x1,z2) E B fl m n  

BrmncX, f2 c €I$;;. The converse statement can be readily 

B7,n(x) R 

proved. 0 
According to the above result, the projection operator into 

is given by the simple lowpass filter 

Hence, signals from B y  for m,  n > 1 may be treated in 

In certain representations [3], [7] via simple variable 
changes, signals in the BZX,  space are characterized as 
having position-varying bandwidth. In this representation, 
the projection operator can be viewed as a lowpass filtering 
operation to a position-dependent band-area R( x). This area 
is a position-dependent scaled version of R. 

Let ~ ( x )  = [wl(x)x1, w2(x)x2It and suppose that F7(w) 
is bandlimited to R. Substituting ~ ( x )  into (9), we have 

mn 

the BrCx, R space as signals that are bandlimited in R,, c R. 

r r  

This region, which is denoted as the focal band-area of f (x) ,  
is given by scaling R along the frequency axes by w1(x) and 

can be interpreted as having a local band-area R(z). Using 
this representation, the projection from B z x ,  
can be viewed, according to Lemma 3.2, as lowpass filtenng 
a signal with local band-area R(x) to a local band-area 

w ~ ( x ) ,  respectively. Thus, locally, a function f(x) E BTJx, R 

R 
into 

7(x) = Mll x 11)~1,W(II x 11).21t (16) 

we have the local band area R(x) = w(ll x Il)R, which is 
a function of the radial distance from the origin. Obviously, 
in this case ) I  ~ ( x )  [ I =  d$(x) +$(x) = y(r), where 
r =ll x 11. 

B. Discrete Implementation 

Consider the projection from B y c x ,  space into B7(,, R 
some distortion functions ~ ' ( x )  and ~ ( x ) .  Let f(x) E B7,(x) R 

for 

be given by its values on the sampling grid Xk = -y'-'(Vk), 
where, by (1) and (5), V is the sampling matrix of the 
unwarped grid that prevents aliasing. Substituting (5) with 
~ ( x )  = ~ ' ( x )  into (6), the discrete projection operator of 
f ( x )  E B y c x ,  into B g x ,  is given by [18] 

Y(x) = f (Xk)Ck(X) k E z2 (17) 
k 

where 

ck(x) 1 @(?"(t) - Vk)@('Y(x) - 7 ( t ) ) d 7 ( c ) .  

The projected function g(x) can be reconstructed from its 
samples on the grid x, = 7-1 (Vn) according to (5). Although 
the above equation considers the projection between two 
distinct function spaces, a special case of interest is the 
projection into a "subband"-like region, i.e., the projection 
from BrcX, into B7 where rmn = [ n ( x ) / m ,  y2(x)/nIt 
and R contains the ;;gin. This projection, as noted, serves as 
a first step in a decimation procedure. According to Lemma 
3.2, the corresponding continuous projection operator is given 
by (1 1) with the filter (14). Substituting (5) into (8), we have 

-03 

R R A 

@(-y(x) - Vk)eiwt7(x)I-yx(x)Idx 

= I det VI f(xk)eutVkHo(w) 

where Ho(w) = 1 in R and zero elsewhere. Substituting 
F7(w) into ( l l ) ,  with H7(w,x) = H,,(w) given by (14), 
the projection operator into BY 

k 

is 
m n  

Y(x) = I det VI f(Xk)@mn(7(X) - V k )  (18) 
k 

where a,,(.) is the inverse Fourier transform of H,,(w). 
Since y(x) E B y  (x), by (5), it can be reconstructed from 
its samples on a $d that satisfies the condition 

(k  E Z2) 
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Fig. 1 .  
The reference image (level 1) is of 80 x 80 pixels, and each higher level is a decimated version of the previous one. 

First three levels of a pyramid of images sampled nonuniformly along Cartesian coordmates. The images are shown distorted into uniform grids. 

or, equivalently 

Hence, the projection operator permits decimation of the 
sequence along the sampling grid by 1 : m and 1 : n along 
the 1c1 and 2 2  axes, respectively. Note that in the special case 
where yl(x) and y2(x) are linear functions of z1 and x2, 
respectively, this procedure degenerates to the conventional 
decimation process of bandlimited functions. 

Example 3. I-Sampling in Cartesian Coordinates: Let Bo 
denote the space of all functions that are bandlimited to the 
radius 7 r .  A function f(x) will be said to belong to B+(x, iff 
there exists g(x) E Bo such that f(x) = g[y(x)]. By (l), the 
appropriate sampling matrix that would prevent aliasing will 
be the identity matrix. Alternatively, one can use a hexagonal 
sampling matrix 

v =  [";" l/&] 
-1 . 

Such a sampling scheme is more efficient and requires 13.4% 
fewer samples than the rectangular [ 5 ] .  Using (2),  we have 

(19) 

where ( 1  x I)= d m  and Jic(a) e e (Jl(a) is the 
first-order Bessel function of the first kind). According to (3, 
the interpolation formula of f(x) E B&, is then given by 

7r 
Q(x) = - Jic(7r 1 1  x ( 1 )  2 

f(x) = I d e t v ~  S 
B+.cx)lm9 by (18), is 

f(xn)Jic(T II 7(x) - v n  1 1 )  (20) 
n 

where Xn = r-'(Vn). The projection of f(x) E into 

(21) 
Compared with the sampling grid of f(x) E BZx,  given 
by xn = y-'(Vn), the set of samples that represents the 
projected signal is given by xn = y-l(mVn). Hence, the 
projection operator permits decimation of the sequence along 
both axes of the sampling grid by 1 : m. 

Example 3.2-Sampling in Polar Coordinates: Since polar 
coordinates are defined only on the right half plane, we 
define an extended polar system over the entire (T ,  e )  plane. 
According to this extension, the values of f ( ~ ,  0) for the left 
half plane are obtained by f ( r ,O)  = f ( - r ,  O + 7r). This 
extension preserves the smoothness property of the original 
image at the origin. The Fourier transform of this function 
will be denoted by F(p,$) .  

Let R r , ~  denote the class of all functions f (r ,O),  defined 
on the extended polar system, with a finite Fourier series 
expansion in 0, C,"=_, cn(r)e-Zao, and with F ( p , $ )  that 
vanishes for ( ( p ( (  > 7r, where c,(T) are the appropriate 
coefficients, and K is some positive integer. According to 
this definition, it can be readily shown that the corresponding 
Fourier transform F ( p ,  4) vanishes outside the rectangular 
region R = [ -7r ,7r]  x [-K,K].  By (l), a function f(r,O) E 
R x , ~  can be reconstructed from its samples on the uniform 
grid with the sampling matrix (see (Al) in [13]) 

v = [ '  0 6  0 1  

where W = F. Using (2), we have 

Q(T, 0) = Wsinc (r)sinc (WO) (22)  

where sinc (a) = -. 
A function Q(T ,  0) is said to be in R,(,.),K iff there exists 

a function $(T,  6') E R r , ~  such that a(r,  0) = $[?(T) ,  6'1. We 
present sampling schemes and projection operations related to 
functions in the R,(,.I,~ space. The proofs are given in the 
Appendix. 

A function a(r,  0) E R,(,.),K can be reconstructed from its 
samples on the sampling grid [r,1,0n2] = [y-'(nl),nn/W] 
according to the formula (see the Appendix) 

n 

00 2K 

sin[7rW(O - &2)] 

(2K + 1) sin[(O - On2)/2]. 
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(b) 
Fig. 2. 
level is the difference between the corresponding level and the higher level of the pyramid shown in (a). 

(a) First three levels of the pyramid shown in Fig. 1 interpolated into 255 x 255 pixels; (b) First three levels of “Laplacian-like” pyramid. Each 

The projection operator of Q(T ,  0) into R,(,),K is (see the 
Appendix) 

distortion function satisfies ~ ( ~ k ) / n  = k, the sampling grid 
of the projected image can be decimated along the r and 0 
variables by 1 : n and 1 : m (for K >> m), respectively. 

Q(T, 0) = qm M P )  lT W d P ,  P)sinc - Y(P)l. 
-O3 Iv. SYNTHESIS OF IMAGE-PYRAMID GENERATING KERNELS 

(24) 

As was noted, the projection (24) may be used as a first step 
in a decimation procedure. Projection of the image a(r,  0) E 
R,(,),K into R,(,)/,,JK/~J (where LuJ is the integer value of 
a) can be obtained by substituting (23) into (24). The function 
P ( T ,  0) E R T ( T ) / ~ ,  LK/mj is then given by 

03 2K 
Wm 

P(r, 0) = * Q ( T k ,  0e)sinc - k)/nI. (25) 
k = - o o  e=O 

Burt and Adelson [2] had constructed an image pyramid by a 
2-D decimation processes only in the case of uniform sampling 
over a Cartesian grid. In the present study, we elaborate on 
a pyramidal scheme for a variable-resolution image, sampled 
over either a Cartesian or polar system of coordinates. 

A. A Pyramid Scheme in Cartesian Coordinates 

We assume that our 2-D image f 1  (x) belongs to BZx,  and 
is represented as such by a set of samples Xk = 7-’(Vk). By 
projecting it into ”half bands,” i.e., B$x)/m m = 2,4,8,  . . ., 
we get a set of blurred images with vanable resolution that can 
be decimated. Projection into BZx),,,, can be accomplished 
by using (21) 

(2Km + 1) sin[(0 - 0,)/2] f q ( X n )  = 1 det V I S  f l  ( x k ) J i c (  1 1  v ( m  *n - k, 11) 
A k where r k  and 0, are defined as in (23), Km = LK/mJ and 

w, = A 2 ~ ; + + l .  Since p(.,s) is bandlimited along the 0 where X, = n 7-’(mVn) is a decimated sampling sequence 
that represents fq(x) and q = A 1 +log2 m. The set of projected variable to the region [L-K/mJ, LK/mJ], and since the new 



PETERFREUNLI AND ZEEVI: NONUNIFORM IMAGE REPRESENTATION IN AREA-OF-DIEREST SYSTEMS 1207 

images f 1 ,  f z ,  ’ . . f n  forms a pyramidal representation of an 

that represents each fi(x) is given by decimating the one of 
fi-l(x) by 1:2 along both axes. The interpolation formula for 
each level of the pyramid, according to (20), is 

image in the BrcX, R space. Note that the sampling sequence 

where 

are the basis functions of the qth level. These functions, which 
vary with position (see, e.g., Fig. 3), appear in different scales, 
depending on the pyramid level (see, e.g., Fig. 4). 

Motivated by the properties of the visual system and by 
the need for display systems that are matched to our visual 
requirements, we next elaborate on an image whose resolu- 
tion is monotonically decreasing as a function of the radial 
distance from the center of the visual field. For the purpose 
of illustration, we arbitrarily select the following distortion 
function: 

5x1 
7(x) = [(I x ((1/2 +5 ’ ( 1  x $ + 5 ] .  

This function is characterized according to (15) and (16) by a 
local band area proportional to w(ll x 11) = 6, which 
is directly related to the decrease in the image resolution as a 
function of the radial distance. 

The first three levels of a pyramidal representation of an 
image in B+(x, are shown in Fig. 1. The first level was 
obtained by the discrete projection (17) of an image in Bo. 
In Fig. 2(a), we present the interpolated version of the first 
three levels of the pyramid. The position-varying property of 
the basis function @):(x) is illustrated in Fig. 3. It shows, as 
expected, that the increase in the spread of these functions with 
the radial distance is inversely proportional to the resultant 
resolution of the corresponding image. The scale relation 
between the basis functions in the first three levels of the 
pyramid is illustrated in Fig. 4. 

In order to compress an image of variable resolution, one 
can use the “Laplacian pyramid” technique [2]. The first three 
levels of the nonuniform ”Laplacian-like” pyramid are shown 
in Fig. 2(b). 

B. A Pyramid Scheme in Polar Coordinates 

The procedure of decimation can also be applied in polar 
coordinates. Let the image ,B~(T, e )  E R,(,),K be represented 
by a set of samples (rnl,  O n z )  = (y-’(n1), z) ,  where 

A 

W = -  Using (25), we obtain the formula for projection 
into R,(r) /m,LK/mj (for K B m): 

n2 =o 

(2Km + 1 )  sin[(me - n2)/2W] 

0.71  

0.48 

0 . 1 9  

I5 

-0.10 

1 

0 . 1 9  

-0.10 

0.71  

0.48 

I5 

I 

--I 5 
X 36 

Fig. 3. 
distance from the origin for I; = [lo, O l t ,  [20, O I t ,  and [30, O l t .  

Increase in speed of the basis function Qk(z) as a function of the 

A 
where the sampling set { ? k , j , }  = {yV1(mk),e/Wm} deci- 
mates the original sequence by m : 1 along both axes. The 
variable q specifies the level of the pyramid. According to 
(23), the interpolation formula for each stage is 

03 ZK, 

where 

are the basis functions of the qth level. Unlike the basis 
functions presented in Cartesian coordinates, these functions 
are position varying only in the r variable. 

To illustrate this scheme, we elaborate on an example where 
the resolution decreases monotonically along r according to 
the distortion function 

5r 
Y(T) = m. 

The first three levels of the pyramid are shown in Fig. 5. 
The first level was obtained by a discrete projection of an 
image in R T , ~ .  The interpolated images of the first three levels 
are shown in Fig. 6(a), and the corresponding images of the 
nonuniform “Laplacian-like” pyramid are shown in Fig. 6(b). 

v. ON IRREGULAR SAMPLING OF 
LOCALLY BANDLIMITED FUNCTIONS 

Consider an irregular set of sampling points { Xk} for which 
the ”recovery condition” xk = -y-l(Vk) is not satisfied. Such 
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40 i 

Fig. 4. Scale relation between the basis functions of the first three levels 
of the pyramid. The upper one corresponds to the first level and the lower 
one to the third. 

a set of sampling points may result from misevaluation of the 
distortion function r( .) and/or quantization noise. 

When a random process $(t)  with a spectral density * ( U )  

bandlimited to [-T, T] is sampled at unit intervals, the spectral 
density $ ( U )  of the sequence $(n) satisfies (see, e.g., [l]) 

$ ( U )  = Q(w - 2Tn) - 7r 5 w 5 T .  

m 

In such a case, where the spectral density of $(t)  is directly 
determined from that of {$(n)} ,  sampling is said to be alias- 
free. Such a condition also holds for deterministic signals with 
a Fourier transform bandlimited to [-T, T I .  

In generalizing the concept of alias-free sampling [lo], 
[l], we next consider the properties of irregular and random 
sampling in the space of locally bandlimited functions. 

Fig. 5. First three levels of a pyramid of images sampled nonuniformly along 
polar coordinates. The images are shown distorted into uniform grids. The 
reference image (level 1) is of 80 x 80 pixels, and each higher level is a 
decimated version of the previous one. 

A. One-Dimensional Irregular Sampling 
Let B denote the class of functions in L 2 ( R )  that are 

bandlimited to ( - T ,  T). In analogy to (3), a function f ( t )  is 
said to be in iff there exists a function $(t)  E B such 

Let F, denote the class of Fourier-like transforms of signals 
in the By(t) space. These signals, by (8), are bandlimited to 
(-T, T). We next adopt the following definition of alias-free 
sampling [l], [lo]. 

De$nition 5.1: A sampling sequence {t,} is alias-free rel- 
ative to F, if no two functions in with different 
Fourier-like transforms yield the same sampling sequence 

As a direct consequence of the above definition and the 

Lemma 5.1: The sampling sequence {t,} is alias-free rel- 

that f(^t) = $[dt)l. 

{f ( t n ) } .  

inverse transformation (9), we have the following result. 

ative to F, iff for F,(w) E F, 

1; F,(w)eiwY(tn)dw = 0 for all n implies that F,(w) E 0. 

Under the conditions of Lemma 5.1, due to Levinson [lo], 
given some E > 0, it is possible to find a polynomial in 
{e iu7( tn ) } ,  P,(w), such that 

/; IFy(w) - w 4 1 2 d w  < E. 

For the special case where $tn) = n, we have the Fourier 
series 

which converges uniformly to F, (w ) .  In general, however, 
this result does not imply that F,(w) can be represented by a 
Fourier-like series of the form E, a,eiuY(tn). 
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(b) 

Fig. 6. 
is the difference between the corresponding level and the higher level of the pyramid generated over a polar coordinate system. 

(a) First three levels of the pyramid shown in Fig. 5 interpolated into 255 x 255 pixels; (b) first three levels of “Laplacian-lie” pyramid. Each level 

Lemma 5.2 [IO]: If { tn}  is a sequence such that 

1 
Iy(tn) - - I  < - cc < n < 00 (26) 

the conditions of Lemma 5.1 are satisfied. Furthermore, 
{ eiwY(t-)} incorporates a unique biorthogonal set {Hn(w)} 
such that for all F.,(w) E L2(-n,n) 

9 une-iwy(tn), where U, = F.,(w)H,(w)dw 
n=-cc L 

converges uniformly to Fy(w) over any interval (-n + 6 5 
w 5 n - 6) for any 6 > 0. 

Using the results of Levinson [lo], [14], it follows that 
$(t) E B, sampled along the sequence {in = y ( t n ) }  that 
satisfies (26), can be reconstructed from its sampled values 
according to 

$(t)  = $(y( tn) )hn( t )  (27) 
n 

where h, (t) , which is the inverse Fourier transform of H ,  ( w )  , 
satisfies 

and 

Note that in the case where $tn) = n, the interpolating 
function h,(t) degenerates to the known sinc (t - n) [lo]. 
According to (27), for f ( t )  E we finally have the 
reconstruction formula: 

f ( t )  = f( tn)hn(-Y(t))  (29) 
n 

where the set of sampling points { t n }  satisfies condition (26), 
and h,(t) is given by (28). 

Next, we consider the problem of matching an optimal 
sampling scheme to some function f ( t )  E By.(t) with an 
unknown distortion function. Let ?(t) be the estimated y(t) 
[3], [19] and {in = ?-‘(a)} the corresponding sampling 
sequence. Using the latter results, it follows that if 

the sampling sequence {in} is alias-free with respect to signals 
in the space. Let 

f( t)  = f(i,)sinc [q(t) - n] (30) 
n 
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be the reconstruction formula wi$ the estimated distortion 
function ?(t). Obviously, we have f(i,) = f(i,) and f ( t )  + 

f(t)  as ?(t) + r(t). 

B. Stochastic Approach 

We denote the class of real stationary random processes 
with spectral densities bandlimited to (,-T,T] by B. A real 
stochastic process is said to be in B,(t) iff there exists 
$(t)  E B such that f ( t )  = $[r(t)] .  

is a nonstationary random process 
whose autoconelation function Rf(t1,  t 2 )  relates to the one of 
the original processes R$ ( a )  by [ 191: 

Evidently, f ( t )  E 

Rf ( t l J2 )  5 Ef[f(tl)f(t2)1 = E+,[74(r(t1))$(7(t2))1 = 

RdY(t1) - y(t2)). 

A Consider RF(t1) = Rf(t1, t 2 )  as a 1-D parametric function. 
Using th? Fourier-like approach, the spectral-like density of 
f ( t )  E B,(t) is then defined as 

03 

s,(w) = S_, RF ( t l )e i"[~(t l ) -~( t2)1r ' ( t l )dt l  

where y'(.) is the derivative of y(.). The inverse transforma- 
tion is given by 

It can be ^readily verified that for a real stochastic process 
f ( t )  E By(t) ,  the spectral-like density is bandlimited to 
[-7r, 7r]. In the sequel, we denote the class of spectral-like 
densities bandlimited to [-n, 7r] by S,  . 

Next, we extend the concept of alias-free sampling to 
stochastic processes that belong to the space. As was 
noted, a deterministic regular sampling {t ,  = n} is alias- 
free with respect to stochastic processes with spectral densities 
bandlimited to [-7r, n]. Using the spectral-like approach, it 
can be readily verified that for a distorted sampling sequence 
{t, = y- ' (n)} ,  the spectral-like density of f ( t )  is directly 
determined from that of f(t,). Hence, the latter sampling is 
alias-free with respect to signals in the fir(t) space. 

In generalizing the concept of alias-free sampling, we next 
consider the properties of random sampling sequences. Sup- 
pose that {t,} constitutes a point process independent of f(t). 
The correlation sequence of the discrete parameter process 
f ( t n )  will be denoted by [l] 

R(tm+,, t m )  = E [ f ( t m + n ) f ( t m ) l  (31) 

in which the expectation is taken over both f ( t )  and {t,}. It 
is assumed that (7, = T(t,)} constitutes a stationary-point 
process and that the probability distribution of r(tn+m) - 
y ( tm)  is independent of m. Under these conditions {f(t,) = 
$[r(t,)]} is stationary, so that R(t,+,, tm)  in (31) depends 
only on n [l]. 

As a direct extension of the alias-free sampling proposed 
by Beutler [l], we have the following definition. 

De$nitifn 5.2: A sampling sequence {t,} is alias-free rel- 
ative to S,  if there do not exist two random processes in 
fir(t) with different spectral-like densities that yield the same 
correlation sequence r(n) = R(tn+m, t m ) .  

In order to have the relation between r(n)  and the spectral- 
like density S, of f(t) ,  we first calculate the expectation (31) 
over f :  

a 

in which f , ( ~ )  is the probability density function for n 
successive sampling intervals. Substituting (33) and (32) into 
(3 l), we have the linear transformation 

.(n) = J @,(iw)S,(w)dw. 
27r -m 

The alias-free property, by Definition 5.2, suggests that no 
two different spectral-like densities yield the same correla- 
tion sequence r(n). This property is satisfied iff the above 
transformation is one to one. 

Lemma 5.3: The sampling ?equence { tn }  is alias-free with 
respect to S, iff with S, E S, 

@,(iw)S,(w)dw = 0 for all n implies S,(w) E 0. 

An example of a sampling sequence that satisfies the condi- 
tions of Lemma 5.3 is [ l l  

where U ,  are painvise independent and identically distributed 
over [- f , f]. Such a jitter may result from an error in the com- 
puted (estimated) distortion function of some distorted-axis 
stochastic process. If, for example, q(t)  is the approximated 
version of y ( t ) ,  and t ,  = +-'(n) is the corresponding 
sampling sequence, then under (34), {t,} is alias-free with 
respect to S,. Another example of alias-free sampling is 
{t, = Y-~(T,)}, where (7,) is Poisson sampling [l]. 

VI. DISCUSSION 

Image representation by nonuniform sampling schemes is 
required in a variety of applications in the areas of vision and 
imaging. In this paper, we have considered a class of images 
that can be sampled according to a nonuniform sampling 
scheme, with special emphasis on the case of sampling density 
that is monotonically decreasing as a function of the radial 
distance from the center of the area of interest. The class 
of images under consideration, which have been obtained 
by a position-varying projection filter, is bandlimited in a 
compatible Fourier-like domain. Refiltering in this domain 
permits decimation of the nonuniform sampling sequence 
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Fig. 7. 
of the visual system (U) and by the distribution of cones of the retina (D). 

Position-varying bandwidth as determined by the optical properties 

as required, for example, in the process of generating a 
nonuniform pyramid of image representation. 

The notion of alias-free sampling was generalized to apply 
to a random process with distorted time/position axis, sampled 
at random points {in}. A sampling sequence is said to be 
alias-free with respect to the class of random processes under 
consideration, if there do not exist two processes with different 
spectral-like densities that yield the same correlation sequence. 
It was shown that uniformly distributed random jitter over 
the ideal unwarped sampling grid is alias-free with respect 
to images that belong to the domain under consideration. 
This jitter may be caused by misevaluation of the distortion 
function. Such irregularities in the location of the sampling 
points are found in the human visual system. This property, 
which may introduce an error in the reconstructed image, 
prevents aliasing effects such as the appearance of phantom 
images andor jaggedness. 

The new approach of the pyramidal representation of the 
nonuniformly sampled image resembles the properties of the 
early stages of the visual processing pathway. This approach 
can be extended through the development of new nonuniform 
image processing techniques, such as the nonuniform Hough 
transform for shape analysis with variable distribution of den- 
sity of features. Development of such nonuniform techniques 
will in turn facilitate the application of nonuniform systems in 
machine vision, robotics, or area-of-interest target acquisition 
systems. 

A variety of studies are concerned with understanding 
how the visual system captures an image. According to the 
proposed approach, we view the visual system's optics as a 
position-varying filter that projects the world on the retina. The 
relation between the optical blur of the visual system 191 and 
the distribution of cones over the retina [9], [8] are summarized 
in Fig. 7 in terms of the associated local bandwidth. It turns out 
that there is a good correspondence in the center and periphery 
of the visual field. Between 5 and 1 5 O ,  however, the local 
bandwidth defined by the optics is much better than the one 
defined by the cone distribution. 

APPENDIX 

Proof of (23): Substituting (22) into (5) ,  we have 
03 W 

a(.,O) = 4 7 - , 1 , & 2 )  
711=-Wn~=-W 

sinc ( Y ( T )  - nl)sinc (WO - n 2 ) .  (35) 

Since a(r,  0) = a(r,  19 + 2 ~ ) ,  according to Stark [13], (35) 
takes the form 

03 2K 

sin[TW(O - O n 2 ) ]  
( 2 K  + 1) sin[(O - 6,,)/2] 

Proof of (24): Substituting (22) into (6), the projection op- 
as asserted. 

erator into R,(,),K is given by 

.sine [y(r) - r(p)]sinc [W(O - P ) ] } .  

Splitting the integration along the ,f3 variable into subintervals 
of 2~ each, we have 

W 

Since q(r, 0) = q(r, O + 27rk) for all I C ,  the above integration 
becomes 

Substituting (37) into (36) and changing the order of integra- 
tion and summation, we have 

a(r ,  0) = W Sm J,'" q ( p ,  0)sinc 
-W 

* [Y(f-) - Y(P)ldO - P)dPdY(P) 

sinc [W(O - a r k ) ] .  

where 

g(e) = 
k 

According to Stark [13] 
sin [T WO] 

= (2K + 1) sin(0/2) 

where W = F, as asserted. 
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