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Globally Convergent Algorithms for Maximum a 
Posteriori Transmission Tomography 

Kenneth Lange and Jeffrey A. Fessler, Member, IEEE 

Absh-uct- This paper reviews and compares three maximum 
likelihood algorithms for transmission tomography. One of these 
algorithms is the EM algorithm, one is based on a convexity 
argument devised by De Pierro in the context of emission tomog- 
raphy, and one is an ad hoc gradient algorithm. The algorithms 
enjoy desirable local and global convergence properties and 
combine gracefully with Bayesian smoothing priors. Preliminary 
numerical testing of the algorithms on simulated data suggest 
that the convex algorithm and the ad hoc gradient algorithm are 
computationally superior to the EM algorithm. This superiority 
stems from the larger number of exponentiations required by 
the EM algorithm. The convex and gradient algorithms are well 
adapted to parallel computing. 

I. INTRODUCTION 

HE value of the EM algorithm in emission tomography is T now well established [22], [17], [24]. Not as widely ap- 
preciated is the potential of the EM algorithm in transmission 
tomography [17]. This paper reviews the EM algorithm for 
transmission tomography and compares it to two algorithms 
recently introduced by Lange et al. 1161 and Lange 1121. 

The traditional method of image reconstruction in trans- 
mission tomography relies on Fourier analysis and the Radon 
transform [lo]. An alternative to this deterministic recon- 
struction method is to pose an explicitly stochastic model 
that permits parameter estimation by maximum likelihood 
[17]. In this context the EM algorithm provides an easily 
implemented method for searching the likelihood surface. 
This does not mean that the EM or competing stochastic 
algorithms can match Fourier methods in computational speed. 
But the increased realism possible with a stochastic model 
does promise better image reconstruction with lower patient 
radiation dose. 

The object of transmission tomography is to reconstruct 
the local attenuation properties of the object being imaged. 
Attenuation is roughly to be equated with density. In an 
imaging experiment, X-rays or y-rays are beamed from an 
external source through the imaged object. These high energy 
photons can be stopped or deflected by the object, or they can 
be detected by a device on the opposite side of the object. Only 
a fraction of the photons successfully travel from source to 
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detector along a given flight path (projection). The probability 
of a photon escaping attenuation along a projection is given 
by exponentiating the negative of the line integral of the 
attenuation density along the projection. In deterministic re- 
construction, these line integrals are mathematically massaged 
to given the final image. No account is taken of the fact that 
the observed data actually consist of photon counts. 

The stochastic model depends on dividing the object of 
interest into small nonoverlapping regions of constant attenu- 
ation called pixels. Typically the pixels are squares. To each 
pixel is assigned an attenuation parameter. In the absence 
of the intervening object, the number of photons generated 
and ultimately detected along a projection follows a Poisson 
distribution. Attenuation randomly thins these photons. Since 
thinning a Poisson process yields a Poisson process, the 
number of photons detected also follows a Poisson distribution. 
The detected photon counts constitute the observed data for 
stochastic reconstruction. 

The remainder of this paper builds on the above verbal 
model of transmission tomography. Section I1 motivates three 
competing algorithms for maximum likelihood estimation of 
the attenuation parameters. Local convergence of the algo- 
rithms is examined under the simplifying assumption that the 
maximum point is interior to the feasible region. Section 111 
outlines how the algorithms can be amended to incorporate 
Bayesian smoothing parameters. Section IV proves that two 
of the algorithms are globally convergent. Section V compares 
the numerical performance of the algorithms on simulated 
data. The concluding discussion in Section VI draws some 
preliminary conclusions about the numerical efficiency of the 
algorithms and suggests topics for further research. 

11. ALGORITHMS FOR TRANSMISSION TOMOGRAPHY 

The parameters of interest in transmission tomography are 
the linear attenuation coefficients pj defined for each pixel j. 
Since p ,  is the probability of photon capture per unit length of 
pixel j ,  we have the obvious physical constraint p j  2 0. The 
Poisson nature of X-ray generation implies that the various 
projections are independent and that the log-likelihood of the 
observed photon counts Y, can be written as 

a 

In ( I ) ,  d, is the expected number of photon counts leaving 
the source along the ith projection; c is an irrelevant constant; 
IL is the vector of attenuation parameters ,uJ; I ,  is the vector 
of intersection lengths I,, for the ith projection; and ( I t !  p)  
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denotes the inner product Cj l i j p j .  This inner product can be 
interpreted as the line integral of the discretized attenuation 
from source to detector along projection i .  

A. EM Algorithm 
One can deduce an EM algorithm for this model by defining 

the complete data as the number of photons entering and 
leaving each pixel along each projection. Let Uij and Kj  
be the numbers of photons entering and leaving, respectively, 
pixel j along projection i. The E step of the EM algorithm 
requires the conditional expectations Mij = E( Uij (Y,, p") 
and Nij = E(KjlY,, p"); Lange and Carson [17] prove that 

M . ,  - Y,  + die-Ek€st31tkPL - , j . e - ( l i+n)  2 '  

N . .  - Y,  + d i e - C k € s . J U 1 3 > ' x k P ;  - die- ( l%>Pn)  
23 - 

23 - 

where Sij is the set of pixels between the source and pixel j 
along projection i .  The Q(pIpn)  function of the EM algorithm 
[ l ]  then tums out to be 

& ( P I P " )  = C [ - N i j l i j p j  + ( M j  - N i l )  
i j  

. In (I - ~ ~ J P J ) ] .  

The M step of the EM algorithm consists in maximizing 
Q(p1p") with respect to p. Setting the partial derivative of 
& ( P I P " )  with respect to pj equal to 0 yields the transcendental 
equation 

Lange and Carson [17] are quick to point out that the solution 
of this transcendental equation can be approximated by 

C ( M i j  - Nij) 

(3) 

i 

assuming the product lijp?" is small. Ollinger [19] argues 
that it is safer to solve (2) iteratively by Newton's method or 
like algorithms. 

B. Gradient Algorithm 
The EM algorithm is cumbersome because of the large 

number of exponentiations it entails. An alternative algorithm 
suggested in Lange et al. [ 161 updates the attenuation param- 
eter vector p by 

i 

i 

This is a scaled gradient algorithm with a nonconstant diagonal 
scaling matrix. For brevity we will refer to (4) simply as 
a gradient algorithm. It can be heuristically motivated by 
noting that die-('zij'"") is the expected number of photons 

detected along projection i. Y ,  is the observed number of 
photons detected. Each of these is weighted by the intersection 
length l i j  for pixel j, and the results are summed over all 
projections i intersecting pixel j. If p; is too large, the 
numerator tends to be smaller than the denominator in (4) 
and p?+l < py. If py is too small, the reverse p)" > py 
tends to occur. Unfortunately, there are no obvious guarantees 
that. the algorithm will either increase the log-likelihood L ( p )  
or preserve parameter nonnegativity constraints. These defects 
can be remedied by taking only a fractional step in the 
direction implied by the increment p"+' - /in defined in (4). 

C. Convex Algorithm 

Lange [12] discusses yet a third algorithm for transmission 
tomography. This algorithm bears a striking resemblance to 
the EM algorithm although it does not invoke any notions 
of missing data. To motivate the algorithm, rewrite the log- 
likelihood as 

i 

using the strictly convex functions fi(t) = + Y,t. We 
can construct the algorithm by imitating certain arguments of 
De Pierro for emission tomography [2], [3]. The crux of the 
matter is that at iteration n 

= & ( P I P " )  ( 5 )  

with strict inequality unless (p j  / p y )  ( l i  , pn) = 
(pk /p ; ) ( I ; ,p" )  for all i and all j # k. If pj = py for 
all j ,  then the inequality (5) is an equality. The function 
& ( P I P " )  defined on the right of (5) is the analog of the 
function by the same name in classical EM theory [l]. It is 
specifically designed so that the difference L ( p )  - Q(p1p") 
attains its minimum of 0 at p = p". 

Just as in the usual EM theory, we choose p"+' to maximize 
Q(plpn). If ,U"+] is so selected, then 

L(p"+l ) =L(P"+') - Q(P"+'ICL") + Q(P"+'~P")  

2 L(P") - Qb"l~"> + Q(P"~P")  

= L(P" )  

with strict inequality when pn+' # pn. We will refer to this 
method of selecting pnfl as the convex algorithm. 

To maximize &(pip") set 
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The transcendental equation (6) cannot be solved exactly. 
It does have a unique solution, however. Ordinarily, this 
solution is positive. Indeed, the right hand side of (6) is strictly 
decreasing in p g .  For pg = 0, its value is -E, l,,[-d, + Y,],  
which is usually positive because Y,  z d, for a projection that 
does not sample the object and Y, << d, for a projection that 
does substantially sample the object. For ,uJ = CO, the right 
hand side of (6) is -E, l,,Y,. which is negative. Thus typically 
the solution falls somewhere on the open interval (0. CO). 

We can solve (6) by Newton's method. Since 

and 

for ,U: > 0; one step of Newton's method gives the approxi- 
mate solution 

7 

This approximate solution of the M step coincides with the 
algorithm proposed in (9) of [12]. The idea of solving the 
M step approximately by one step of Newton's method is 
motivated in [14]. One of the results in [14] says that even 
this approximate solution of the M step leads to an increase 
in L ( p )  in a neighborhood of the optimal point. (This theory 
does not quite fit the current problem because of the presence 
of the boundaries pj 2 0.) 

The algorithm (7) also has the potential disadvantage of 
giving p:+l < 0 when py > 0. This drawback is apt to be 
more theoretical than practical, however. As argued above, 
the exact solution of (6) is usually positive. If the Newton 
iterate (7) approximates this solution well, then the Newton 
iterate will usually be positive as well. 

D. Local Convergence 
To analyze the behavior of the algorithm (7) in a neigh- 

borhood of the maximum point f i ,  we make the simplifying 
assumptions that f i  exists, is unique, and occurs in the interior 

~ 

of the feasible region. We can then view the iterates given by 
(7) as moving toward a fixed point of the map 

G(P) = P + W )  W P )  

where D ( p )  is the diagonal matrix with j th diagonal entry 

i 

and d L ( p )  is the score vector with jth entry 

According to a theorem of Ostrowski [20], the fixed point 
C is locally attractive provided the spectral radius of the 
differential dG(ji) is strictly less than 1. This spectral radius 
determines the linear convergence rate of the algorithm. Since 
dL(fi)  = 0, it follows that 

dG(f i )  = I  + D(fi)  d2L(fi) 
= D(b)[D( f i ) - l  + d2L( f i ) ]  

where d2L(fi)  is the second differential or Hessian matrix of 
L(,u). To estimate the spectral radius of dG(fi)  requires a 
lemma. 

Lemma I :  Suppose A and B are symmetric matrices with 
A and B positive definite and A - B positive semidefinite. 
Then the eigenvalues of A - l ( A  - B )  lie on [0, 1). 

Proof: This well-known result is proved with minor 

In the usual EM theory [l], the matrix difference A - B is 
identified with the expected information of the complete data 
given the observed data. In the current algorithm, we identify 
A with D(f i ) - l  and B with -d2L(fi). Assuming that all 
f i j  > 0, the matrix A is positive definite. Positive definiteness 
of B is a consequence of strict concavity of L ( p ) .  Strict 
concavity is hard to verify in practice; a necessary condition is 
that the number of projections exceeds the number of pixels. 

In any case to apply the lemma, we need to verify that A -  B 
is positive semidefinite. Direct computation with an arbitrary 
vector 'U gives 

notational differences by Green [9]. H 

a 

Now Cauchy's inequality implies 
r 

(9) 

When (9) is multiplied by die- ( lLlP) ,  and the result summed 
on i ,  the required inequality 

Ut(A - B ) u  2 0 

follows. Local attractiveness is now established by appealing 
to Ostrowski's theorem and the lemma. 
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In the event that ( l i ,  b) 5 1 for all i ,  the algorithm (4) is also 
locally attractive. Indeed, the nonnegativity of (9) then yields 

Now substitute the identity E, d,e-(1z~~)123 = C, y Z l Z j ,  which 
follows from ( d L / a p j ) ( f i )  = 0, in (10). This substitution 
proves the positive semidefiniteness of A - B ,  where B = 
- d 2 L ( b ) , A  = F(fi)-' .  and F ( b )  is diagonal with j th 
diagonal entry 

1 

Thus, if attenuation is sufficiently weak for ( I z ,  b) 5 1 to 
hold uniformly in i ,  then the gradient algorithm (4) is locally 
attracted to b. 

In practice, the assumption that ( lE1 b) 5 1 holds uniformly 
in i is suspect. If we replace this condition by ( a ,  f i )  5 c 
uniformly in i for c 2 1, then the above argument can be 
amended to show that the gradient algorithm 

converges locally. 

1x1. INCORPORATION OF SMOOTHING PRIORS 

How can the above algorithms be modified to take into 
account a smoothing prior [6], [7]? The log-likelihood is 
changed to the log posterior A(p) = L ( p )  - U ( p ) ,  where 
U ( p )  is some energy function penalizing large deviations 
between neighboring pixels. For the EM algorithm and the 
convex algorithm, the Q(pL(pn) function is then changed 
to Q ( p / p R )  - U ( p ) .  The maximum pa+' of this amended 
function satisfies 

Choice of the potential function $(r )  is the most crucial 
feature of the Gibbs prior. It is convenient to assume that 
$(r )  is even, twice continuously differentiable, and strictly 
convex with $"(T) > 0 for all r. Strict convexity leads to 
strict concavity of the log posterior A(p) = L ( p )  - U ( p )  
and permits simple modification of the EM algorithm and 
the convex algorithm. There are many potential functions 
satisfying these conditions. One obvious example is $ ( r )  = 
r 2 .  This choice tends to deter the formation of boundaries, and 
Green [8], [9] has suggested the gentler alternative $ ( r )  = 
In [cosh ( r ) ] ,  which grows for large Irl linearly rather than 
quadraticly. Lange [13] lists a number of other potential 
functions exhibiting linear growth at Irl = 02. 

De Pierro [ 2 ] ,  [3] has proposed an elegant alternative to 
Green's method of handling the energy function U ( p )  when 
maximizing &(pipn) - U ( p ) .  Paralleling his treatment of 
the log-likelihood, De Pierro exploits convexity so as to 
reduce maximization of Q(plpn) - U ( p )  to a sequence of 
one-dimensional maximization problems. Now convexity and 
evenness of the potential function $ ( r )  together imply 

$ ( P j  - Fk) =+($p, - 11: - dl 

I ; W P j  - P," - P;)  

+ $[-a/& + P: + P?I) 

f $'?b(2@k - /.; - p;)  (12) 

with strict inequality unless p3 + pk = ,U," + pz. Inequality 
(12) in turn yields 

= -7 T f l j k $ ( p j  - /ik) 
{ J , k l E N  

a a 
0 = -Q(plpLn) - -U(P) 

In both the EM and the convex algorithms, we now substi- 
tute the comparison function 

Green [8], [9] decouples and approximately solves the r(pLJpLn) = Q(pLIpn) - V(pIpLn) 
set of equations (1 1) by pretending that the argument of 
( d / d p 3 ) U ( p )  is the constant p R  instead of the unknown p .  

introduced by G~~~~ and McClure [6], 
[7] take the form 

for the comparison function Q(p lpLn)  - U ( p ) .  By construction 
this amended strictly concave comparison function provides 
the bound 

me Gibbs 

U ( @ )  = Y W,k+(lL,  - P k )  - Y ( P l P R )  2 A(PL") - T(PnlPn) (13) 
{ j ,  k l E AT 

where y and the weights W j k  are positive constants, N is a set 
of unordered pairs { j ,  I C }  defining a neighborhood system, and 
+(r) ,  T real, is a potential function. For instance, if the pixels 
are squares, we might define the weights by W j k  = 1 for 
orthogonal nearest neighbors and W j k  = 1/& for diagonal 
nearest neighbors. Defining the pixels as regular hexagons 
eliminates diagonal nearest neighbors and permits all weights 
to be equal. The constant y scales the overall strength assigned 
to the prior. 

on the log posterior A(p). If the maximum of T ( p l p L " )  occurs 
at bn, then some components f i y  may satisfy f i y  = 0. We can 
avoid these boundary problems by defining the next iterate 
pnfl to have components p;+' = max (by, ~ p ; )  for some 
constant E in the open interval (0, 1). To prove the crucial 
inequality A(pn+') 2 A(pLn) ,  we now argue as follows. The 
choice of f iy entails 
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because Y(p1p") separates the parameters pj and 
(a/apj)T(plpn) has the same sign as the difference 
f iy  - py. The inequality (14) remains valid when p;" is 
substituted for f i y  and the partial derivative is evaluated at 
any point between py and p;". Inequality (13) and the 
mean value theorem then imply 

with strict inequality when pnf' # pn. 

for one step of Newton's method and use the algorithm 
In practice, instead of maximizing Y (pip"), one could settle 

A 

How to accommodate a smoothing prior in algorithm (4) is 
not altogether obvious. The problem is that algorithm (4) is 
not motivated by optimization of a simple function Q(pIpn) 
designed to force an increase in L(p) .  It is interesting that the 
quadratic function 

c i 
I /.n 

is maximized by (4), but this choice of Q(pLJpn) may not 
guarantee the increase L(p"+') > L ( p n ) .  For this reason there 
is little point in applying De Pierro's transformation of U ( p )  
to V(p1p"). Our limited numerical experience suggests that 
the alternative algorithm 

a I ,  n \  
- / \ I  / I . "  

performs better, where Q(plpn) is defined by formula (17). 
This is just one step of Newton's method applied to the 
function Q(p1p") - U ( p ) ,  but omitting the off-diagonal entries 
of the Hessian d2U(p") .  

Iv. GLOBAL CONVERGENCE OF THE ALGORITHMS 
Both the EM algorithm and the convex algorithm converge 

to the global maximum of the log posterior. Our proof of this 
fact incorporates features from previous proofs of Lange and 
Carson [17] and De Pierro [2]. As noted above, the next iterate 
fin+' of either of these algorithms is defined componentwise 
by p;+l = max (by, ~ p y ) ,  where f i y  either equals 0 or 
provides the unique root of (a /ap j )Y (p Ip" )  = 0, and where 
E is some constant in the interval (0, 1). Observe that our 
definition of pn+' dffers slightly from De Pierro's [2], who 
takes pyfl = f i y  whenever f iy > 0. It is convenient to assume 
that py > 0 for all j since then p;+' > 0 for all n and j .  It 
is also natural to assume that for each pixel j there is some 
projection i with xlij > 0. 

Convergence of the iterates pn hinges on strict concavity 
of the log posterior. To establish this fact, we assume that the 
neighborhood system N of the Gibbs prior U ( p )  is connected. 
If the pixels are considered as nodes of a graph, with two 
neighboring pixels connected by an edge, then this assumption 
means that it is possible to find some sequence of edges 
leading from any pixel to any other pixel. Strict concavity 
and related properties of the log posterior are summarized in 
the next lemma. Recall that $ ( T )  is even, twice continuously 
differentiable, and satisfies $I/(.) > 0 for all 'r. 
Lemma 2: Let A ( p )  = L ( p )  - U ( p )  be the log posterior. 

Then 
a) A(p) is strictly concave. 
b) lim~lPl~-,m A ( p )  = -m. Consequently, A(p) has a 

unique maximum. 
c) The set {p :  p j ( a / a p j ) A ( p )  = 0 for all j }  of stationary 

points of A(p) is finite. 
Proof: Strict concavity is verified by examining the 

quadratic form 

which reduces to 

Because of the assumption that $" (T )  > 0 and the connected- 
ness of the pixels, the second sum in (19) is negative unless 
I:, = & for all j and I C .  If is constant, substitution of this 
constant into the first sum of (19) shows that the first sum is 
negative. 

For b) it suffices to prove that 

lim L ( p )  = -cc 

since U ( p )  is bounded below. Indeed, the bound 
inf, U ( p )  > -m follows directly from the bound 
inf, $ ( T )  > -00. The limiting behavior of L ( p )  holds 
because if any component ,uj tends to 00, then the assumption 
Yalij > 0 for some projection i forces the conclusion 

11P11+~ 

K ( l i , p n )  = 00. 
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Part c) follows from the fact that an unconstrained, strictly 
concave function can have at most one stationary point. 
Corresponding to each set of possible boundary restrictions 
p j  = 0. there is consequently at most one stationary point. 

The next lemma states some properties of the iteration 
scheme p n .  

Lemma 3: Suppose that the iterations begin with /LO having 
all components positive. Then 

a) All components of each iterate p" are positive. 
b) A(p"+') 2 A(p7*). with strict inequality when pn+' # 

c) The iterates /L" all belong to the same compact, convex 

d) linin+m A(p") exists and is finite. 
e) The Euclidean distance I Ipn+' - p n  I I between successive 

iterates /in+' and /in tends to 0. 
f) If some subsequence pnn converges to pm, then the 

subsequence /ink+' also converges to p x .  
Proofi Part a) follows directly from the definition of 

p'"' and the positivity of the components of p". Part b) 
restates inequality (15). Part c) is true since all iterates belong 
to the set 

/in. 

set. 

{ P :  2 4 P , " ) ) .  

This set is compact because of the coerciveness of A ( p )  
established in b) of Lemma 2. It is convex because A(p)  
is concave. Part d) follows from b) and the boundedness of 
A(p)  on the compact set { p :  A(p)  2 A(pO)}. 

To prove e) we expand Y ( p I p n )  - Y(pnI/Ln) in a sec- 
ond order Taylor's expansion around p T L + l .  If d T ( p l p n )  
and d 2 Y ( p / p r ' )  denote the first and second differentials of 
Y(/blpf') with respect to its left argument, then 

Y(pr'+1 IPn) - T(PrlIPn) 
= dT(pLjpf') IpL=LLn+ 1 (/P+l - pfL)  
- ; ( p 7 1 + 1  - d2Y(CI , / /Ln)~~,=~( /Ln+'  - PLn)  (20) 

where /I is some point on the line segment between /in and 
p"+'. The linear term in (20) is nonnegative. This follows 
because the direction p n  - pn+' from /A"+' is a descent 
direction. The quadratic form in (20) is positive definite and 
bounded below by the contribution of the Gibbs prior 

7 wwjk'$"!''(21j - / L a  - p;)(/Ly+l - , L y ) 2  

J [ k : { j , k } € . x ' }  

2 cIIpTL+I - p'xl/*. 

The constant c appearing in this last inequality is positive 
owing to part c) and the assumption that $ ( T )  is twice 
continuously differentiable and satisfies .JI"(T) > 0 for all i-. 

Combining these developments with inequality (13) yields 1 
i 

A([L"+1) - A(p") 2 r ( p " + l I p n )  - T ( j P I p n )  
2 c(Ipn+l - p y 2 .  

e). Part f) is an immediate consequence of e). 
Appeal to d) of the current lemma now finishes the proof of 

The preceding two lemmas set the stage for our proof of 
global convergence. 

Fig. 1. 
backprojection (bottom). 

Digital thorax phantom (top), and image reconstructed using filtered 

Theorem 1: If the initial iterate po has all components pos- 
itive, then the sequence p n  converges to the global maximum 
of the log posterior A ( p ) .  

Prooj Because the sequence p n  is confined to a compact 
set, it suffices to show that limit set of the sequence reduces 
to a single point and that this point is the maximum point. 
Suppose that pm = limk,, pnk is the limit of some 
subsequence p n h .  Let us first show that pm is a station- 
ary point of A(p) .  As noted in c) of Lemma 2, we must 
demonstrate that all components of pM satisfy either 113" = 0 
or (3/dp,)A(p")  = 0. In the nontrivial case p? >0 ,  the 
condition p;"' = epTk cannot hold for infinitely many IC 
since this would contradict f) of Lemma 3.  Thus pyh+' = 
is true for all large IC. It is then clear that the two equations 

yield in the limit the desired condition ( d / d p j ) A ( p m )  = 0. 
Next observe that the limit set of p" is connected because of 

assertion e) of Lemma 3 [21]. Since the limit set is contained in 
the set of stationary points of A ( p ) ,  and the stationary points 
are finite in number, connectedness demands that the limit set 
consist of a single stationary point. 

Thus we may assume that limn+, f i n  = pm exists. To 
prove that pLoc is the maximum point, it suffices to verify 
that each component p y  satisfying p? = 0 also satisfies 
the Kuhn-Tucker condition (d/dpj)A(p,) 5 0 [ l l ] .  If 
the contrary condition (a/apj)A(pm) > 0 holds for such a 
boundary component, then 

holds for all large n. However, this situation entails 

which clearly is in conflict with limn+oo py = 0. This 
contradiction establishes that pm is the maximum point. 
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with the FBP image. 

Increase in log-posterior A(/[") - A(po)  versus iteration starting 
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Fig. 3. 
starting with the FBP image. 

Increase in log-posterior A(j1") - A(p0)  versus CPU seconds 

v. PERFORMANCE ON SMULATIONS 

In this section we describe some representative simulations 
demonstrating the relative convergence rates of the three 
algorithms. For these examples, we used the penalized versions 
(16) and (18) of the algorithms with a simple quadratic 
smoothing prior of the form 

U(,U) = 7 1  1 WJk(,ULJ - ,Ud2 
J kE.k\ 

where N3 denotes the usual eight pixel neighborhood of the 
j th square pixel. Conventionally one sets the weights WJk 
to one for horizontal and vertical neighbors and to l / f i  
for diagonal neighbors. This choice leads to spatially-variant 
image resolution, so we used the modified weights described in 
[4] to make the resolution approximately uniform. We selected 
the regularization parameter y as suggested by Fessler [4] to 
achieve a resolution of 2.5 pixels or 1.125 cm full-width at 
half maximum (FWHM). 

For testing the algorithms, we used the synthetic attenuation 
map shown in Fig. 1, representing a human thorax with 

.- 
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+ Gradient Algorithm 
X EM Algorithm 

1 1 I 2.4 
initialized with Uniform image 
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Fig. 4. 
with the uniform image. 

Increase in log-posterior A(@") - A(@') versus iteration starting 

+ Gradient Algorithm 

2.6 

2.4 
Initialized with Uniform Image 

0 20 40 60 80 100 
CPU Seconds 

Increase in log-posterior A(pn)  - A ( p " )  versus CPU seconds Fig. 5. 
starting with the uniform image. 

linear attenuation coefficients O.O165/mm, O.O096/mm, and 
O.O025/mm for bone, soft tissue, and lungs, respectively. The 
image was decomposed into a 128 by 64 array of 4.5 mm 
pixels. We simulated a PET transmission scan with 192 radial 
bins and 256 angles uniformly spaced over 180'. The l ; j  

factors correspond to 6 mm wide strip integrals on 3 mm 
center-to-center spacing. (This is an approximation to the ideal 
line integral that accounts for finite detector width.) The d; 
factors were generated using pseudorandom log-normal vari- 
ates with a standard deviation of 0.3, to zccount for detector 
efficiency variations, and scaled so that Ci d; exp (- ( 1 2 ,  p)) 
was one million counts. Pseudorandom Poisson transmission 
projections Y,  were generated with means di exp (- ( l ; ,  ,U)). 

We initialized the iterative algorithms with two different 
starting conditions bo. In the first case we started from the 
filtered backprojection (FBP) image shown in Fig. 1, except 
that we first reset all attenuation values to no less than 0.01 
of the maximum estimated value. We reconstructed the FBP 
image with a second order Butterworth filter at a resolution of 
2.5 pixels or 1.125 cm FWHM. In the second case we started 
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Fig. 6.  Images reconstructed after approximately 15, 30.60, and 110 CPU seconds (left to right) when initialized with the uniform image. Top: iterations 1 ,  
3, 6, and 1 1  of the EM algorithm. Middle: iterations 4, 12, 24, and 44 of the gradient algorithm. Bottom: iterations 4, 12, 22, and 40 of the convex algorithm. 

from a uniform image with attenuation coefficient 0.008/mm. 
For the M step of the EM algorithm we employed Newton's 
method for each parameter [19]. For the gradient algorithm, 
we enforced monotonicity by repeatedly halving the step size 
until the objective function increased. 

Fig. 2 shows a plot of the increase in the log-posterior 
A ( p n )  - A ( p o )  function versus iteration n for the algorithms 
initialized with the FBP image. The computation time per 
iteration varies among the algorithms, so a more objective 
comparison is total computation time, which is shown in Fig. 3 
as cumulative CPU time as measured on a DEC 3000/800 
workstation. The EM algorithm requires NO exponentiations 
per iteration, where NO is the number of nonzero l i j  fac- 
tors (NO x 5.6 x lo6 in this case). The convex algorithm 
and gradient algorithm only require N p  exponentiations per 
iteration, where Np is the number of projections ( N ,  = 
256 x 192 = 5 x lo4 in this case). Thus, when measured against 
CPU time, the gradient algorithm and the convex algorithm 
approach the asymptote of the log-posterior much faster than 
the EM algorithm (although not 100 times faster since the 
inner products use much of the time per iteration). 

Figs. 4 and 5 are analogous to Figs. 2 and 3 except that here 
the algorithms are initialized with the uniform image. In this 
case, the convex algorithm converges faster than the gradient 
algorithm and the EM algorithm in terms of both CPU time 
and number of iterations. 

It is obvious from these figures that conclusions drawn about 
convergence rates depend strongly on the starting conditions 
of the algorithms. In the above cases, the initial FBP image 
has much higher log-posterior than the initial uniform image, 
and subsequent iterations make smaller changes in the log- 
posterior. Thus the plots for starting with the FBP image 
are more related to asymptotic convergence rate, whereas 
the plots for starting with the uniform image measure initial 
performance of the algorithms far from the optimal point. 

Maximizing the log-posterior is a surrogate for the real 
goal of producing better images. Fig. 6 compares the images 
produced by the three algorithms after 15, 30, 60, and 110 
seconds of CPU time. The images from the EM algorithm 

are blurry, reflecting slow convergence starting from an initial 
uniform image. The gradient and convex algorithms produce 
very similar images and obviously converge much faster than 
the EM algorithm. As can seen from a comparison of Figs. 1 
and 6, the maximum a posteriori images have fewer streak 
artifacts than the FBP image. 

VI. DISCUSSION 
Because the EM algorithm for transmission tomography 

is beginning to see practical application [lS], [19], [23], 
it is timely to review and compare its performance with 
competing algorithms. Our limited experience confirms the 
widespread impression that incorporating a smoothing prior 
enhances overall image quality. This practical improvement is 
consistent with the better theoretical behavior of the smoothed 
algorithms. For instance, sufficient smoothing automatically 
turns an ill-conditioned maximum likelihood problem into an 
well-conditioned maximum a posteriori problem. 

The smoothed versions of the gradient algorithm (4) and 
the convex algorithm (7) appear to be considerably more 
efficient than the EM algorithm. This is not surprising in view 
of the larger number of exponentiations entailed by the EM 
algorithm. We anticipate that this superiority will continue 
to hold in other simulation trials. Because we understand its 
convergence behavior better, we tend to prefer the convex 
algorithm to the gradient algorithm. 

The convex and gradient algorithms should adapt well to 
array and parallel processing. A substantial proportion of the 
computation load for both algorithms involves calculation of 
the discrete line integrals ( l i ,  p ) .  These and subsequent oper- 
ations are perfect candidates for array and parallel processing. 
The EM algorithm, in contrast, is more awkward to implement 
since it involves sequential calculation of many partial line 
integrals. Of course, the algorithm of choice depends on the 
intended computer. It is noteworthy that on conventional serial 
workstations a nonparallelizable coordinate ascent algorithm 
converges faster from a FBP starting image than any the three 
algorithms examined here [5].  
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The EM and convex algorithms, and possibly the gradi- 
ent algorithm as well, could benefit from the quasi-Newton 
acceleration techniques recently suggested by Lange [ 151. 
These techniques attempt to build better approximations to the 
Hessian d2A of the log posterior using the diagonal Hessian 
d2Y of the comparison function T as a base. The presence 
of boundary constraints on the parameters complicates quasi- 
Newton methods, but perhaps the addition of small barrier 
terms to the log-likelihood will make acceleration techniques 
practical without detracting much from the final image. 

Although the algorithms discussed here show definite 
promise, further theoretical improvements are to be expected. 
At the same time computing costs continue to drop, 
and processor speeds to increase. These trends imply an 
accelerating transition away from Fourier methods and toward 
statistical methods of image reconstruction. 
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