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Abstract

The design of linear image filters based on properties of human visual perception has been
shown to require the minimization of criterion functions in both the spatial and frequency do-
mains. In this correspondence, we extend this approach to continuous filters of infinite support.
For low pass filters, this leads to the concept of an ideal low pass image filter which provides a

response that 1s superior perceptually to that of the classical ideal low pass filter.

1 Introduction

The use of hard cutoff (ideal) low pass filters in the suppression of additive image noise is known to
produce ripples in the response to sharp edges. For high contrast edges, human visual perception
fairly simply determines acceptable filter behavior. Ripples in the filter response are visually masked
by the edge, so that the contrast sensitivity of the visual system decreases at sharp transitions in
image intensity and increases somewhat exponentially as a function of the spatial distance from
the transition.

Algorithmic procedures using properties of human vision have been described for over 20 years

[1]. The development of adaptive methods of image enhancement and restoration, based on the use
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of a masking function, measure spatial detail to determine visual masking [2,3]. In active regions
of the image, visual masking is high, relative noise visibility is low, and the filter applied is allowed
to pass more noise until the subjective visibility is equal to that in flat areas.

Whether the filter is adaptive or not, the design of the linear filter to be applied is a critical
issue. Hentea and Algazi [4] have demonstrated that the first perceptible image distortions due to
linear filtering occur at the major edges and thus, worst case design for visual appearance should
be based on edge response. They developed a filter design approach based on the minimization of
a weighted sum of squared-error criterion functions in both the spatial and frequency domains. In
the spatial domain, the weighting is by a visibility function, representing the relative visibility of
spatial details as a monotonically increasing function of the distance from an edge. This visibility
function, determined experimentally from the visibility of a short line positioned parallel to an
edge, was also found experimentally to predict satisfactorily the visibility of ripples due to linear
filters [4].

In the following, we extend the work of Hentea and Algazi by considering the design and proper-
ties of one-dimensional continuous filters of infinite support (two-dimensional filters are generated
by 1D to 2D transformations). We obtain a new formal result on the low pass filter of infinite
support which is optimal for images. It establishes the limiting performance that digital filters of

finite complexity can only approximate.

2 Design of One-Dimensional Filters for Images

The basic trade off in the design approach of Algazi and Hentea [4] is maintaining image quality
while reducing unwanted artifacts or noise. The image quality is measured by spatial domain
criterion function for the visibility of ripples in the vicinity of edges

= [ k)i - ue)Pda (1)
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where u(2) is a unit step input producing the filter response @(z) = u(z) * h(x), where h(z) is the
point spread function of the filter, * denotes convolution and wq(2) is a spatial weighting function,
chosen to be the visibility function

wy(z) =1 — al”! (2)



The frequency domain criterion function for the reduction of unwanted artifacts and noise is

L= [ WA = i PP, 3)

where Hy(f) is the desired filter frequency response and W( f) is the frequency-domain weighting
function. Hentea and Algazi minimized [; under a constraint on I3, but we now minimize the
equivalent criterion J(a) = aly + (1 —a)l; where a controls the relative weights of the two criteria,
with 0 < a < 1.

To develop the optimality condition, (1) is expressed in the frequency domain using Parseval’s
relation, the transform of a zero-mean step is used, and calculus of variations is applied to the

criterion J, resulting in the condition

H(f) -1
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Substituting the spatial weighting function of (2), with Fourier transform

Wa(f) = 8(f) - % 5)
with b = —Ina, (4) becomes
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where 5 = (1—a)/a. This is a linear Fredholm integral equation of the second kind and a discussion
of the solution of this equation in terms of eigenfunctions of an equation of similar form arising
from a related approach to filter design is given in [5]. That approach is practically useful only
if the solution to the homogeneous equation related to (6) is known in closed form or tabulated,
which is not the case for our problem. Thus, in the design examples discussed below, we apply a

series solution.



3 Low Pass Image Filter Design

For a low pass image filter, the desired frequency response is

1 < f.
Ho(f) = IfI < f. @)
0 [f]>fe

where f. is the filter cutoff frequency. We choose Wy( f) to weight the stopband response only

0 [fl</fe
Wa(f) = (8)
Lofl> fe
The conditions of (7) and (8) are applied to the integral equation (6). The resulting equation
is solved with the Neumann series solution, an iterative approach in which an approximation to

H(f) used in the convolution integral on the right-hand side of (6) generates the next approximate

solution. Let the kth approximation to H(f) be f{k(f), then the (k + 1)th approximation is

) b2 . 2b f{ f
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The initial condition for the iterative solution is Ho(f) = Hy(f). In the examples considered, we
observed that the solutions converged to an accuracy of three decimal places in only eight iterations,
convergence was not strongly affected by the initial condition, and there was no indication that
the solution was not unique. A discussion of convergence for a series solution to a similar integral
equation is given in [5].

As an example, consider the design of a low pass filter with cutoff frequency f. = 0.15 (normal-
ized) and o = 0.6. Normalizing the viewing distance to six times the image height, the resulting
angular increment is 1.116 minutes of arc per pixel and the appropriate value for a in wi(z) is
0.72 (b = 0.33) [4]. The ripples in the step response of the resulting figure, shown in Figure 1, are

strongly suppressed. The frequency response of filter is shown in Figure 2.



[Figure 1 about here.]
[Figure 2 about here.]

The plot showing the tradeoff between I7 and I, as a function of a in Figure 3 can be used
to choose a to meet specifications on I; or I5. Note the large decrease in the frequency domain

rejection that is required for a small improvement in spatial domain response.
[Figure 3 about here.]

Of independent interest is the ideally bandlimited low pass image filter, which results from
setting o — 0 or 3 — oo. The filter design in this case is equivalent to minimizing spatial domain
criterion Iy under the constraint that the stopband energy of I5 be zero.

The form of (9) remains the same, but H,(f) (and the initial condition Hy(f)) becomes the

frequency response of the classical ideal low pass filter

0 [f]>fe

The step response of an example filter with cutoff frequency f. = 0.15 (normalized) and @ = 0.72,
shown in Figure 1, has a ripple response that is better than that of the classical ideal low pass filter.
The spatial error integral I; for the ideal image low pass filter is 45% less than that for the classical

ideal low pass filter. The filter frequency response for this example is shown in Figure 4.

[Figure 4 about here.]

4 Low Pass Filter Examples

To illustrate the properties of the low pass image filters discussed in the section above, we consider
two-dimensional FIR approximations of the design examples and compare performance with that
of an equiripple filter on a noisy image. To ensure ease of comparison of the halftone reproductions
in a journal publication, a test image with substantial distortion was chosen. The results clearly
extend to images of lower contrast and smaller distortions. High frequency noise was added to the
original image of Figure 5a by high pass filtering noise with a uniform distribution, producing the

noisy image shown in Figure 5b, having peak signal-to-noise ratio (PSNR) of 8.22dB.



The noisy image was filtered by an equiripple low pass filter which approximates an ideal low
pass filter, and a low pass image filter design with our approach, each having the same maximum
deviation in the stopband and cutoff frequency f. = 0.15 (normalized frequency). The low pass
image filter is based on the one-dimensional design with a = 0.6, having frequency response shown
in Figure 2. The applied filters are two-dimensional circularly symmetric, obtained from one-
dimensional filters by McClellan’s transformation [6]. The equiripple filter response in in Figure
5¢ shows strong ripple responses at major transitions and it produces a PSNR of 25.5dB. The
low pass image filter response in Figure 5d has suppressed the ripples and produced an improved
PSNR of 32.3dB. Thus, the low pass image filter is superior perceptually and it provides better

noise reduction.

[Figure 5 about here.]

The ripple responses of the low pass filters are compared in the checkerboard images of Figure 6.
Figures 6b through 6d show the responses of filters having a cutoff frequency f. = 0.15 (normalized
frequency). The response of a classical ideal low pass filter is shown in Figure 6b, showing very
strong ripple response. The response of the ideal low pass image filter of Section 3, with @ = 0 and
having the frequency response of Figure 4 is shown in Figure 6c¢, where the ripples have decreased
substantially. Finally, in the response to the low pass image filter from Section 3, with frequency

response shown in Figure 2 for a = 0.6, the ripples are difficult to perceive.

[Figure 6 about here.]

5 Discussion and Conclusions

We have reconsidered a method for the design of linear filters for image processing based on proper-
ties of the human visual system, which involves the minimization of criterion functions in both the
spatial and frequency domains. We have extended this work by obtaining new theoretical results
by considering continuous filters of infinite support.

An important limiting result for an ideal low pass image filter having infinite support has been
obtained. This ideal low pass image filter is greatly superior perceptually to the classical low pass

filter and provides a design target for the important problems of image sampling and interpolation.



We have found that interpolation filters designed with this approach provide better results than

bicubic filters that approximate classical ideal low pass filters [7].
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Figure 1: Comparison of filter step responses.
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Figure 2: Low pass image filter frequency response for a = 0.60.
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Figure 3: Design criteria [; and I, as a function of «.
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Figure 4: Frequency response for ideal low pass image filter, o = 0.
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Figure 5: Low-pass filtering: (a) Original image; (b) Noisy image; (c) Noisy image processed with
an equiripple low-pass filter; (d) Noisy image processed with a low pass image filter, a = 0.6.
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Figure 6: Image filtering by low pass filters. (a) Original image; (b) Filtered with classical ideal
low pass filter; (c) Filtered with ideal low pass image filter, a = 0; (d) Filtered with low pass image

filter, o = 0.6.
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