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Abstruct- In this paper, we analyze the behavior of the 
anisotropic diffusion model of Perona and Malik. The main idea 
is to express the anisotropic diffusion equation as coming from 
a certain optimization problem, so its behavior can be analyzed 
based on the shape of the corresponding energy surface. We 
show that anisotropic diffusion is the steepest descent method 
for solving an energy minimization problem. It is demonstrated 
that an anisotropic diffusion is well posed when there exists 
a unique global minimum for the energy functional and that 
the ill posedness of a certain anisotropic diffusion is caused by 
the fact that its energy functional has an infinite number of 
global minima that are dense in the image space. We give a 
sufficient condition for an anisotropic diffusion to be well posed 
and a sufficient and necessary condition for it to be ill posed 
due to the dense global minima. The mechanism of smoothing 
and edge enhancement of anisotropic diffusion is illustrated 
through a particular orthogonal decomposition of the diffusion 
operator into two parts: one that diffuses tangentially to the 
edges and therefore acts as an anisotropic smoothing operator, 
and the other that flows normally to the edges and thus acts 
as an enhancement operator. 

I .  INTRODUCTION 

HERE has been a great deal of interest in anisotropic T diffusion since it was first proposed by Perona and Malik 
[27] as a useful tool for multiscale description of images, 
image segmentation, edge detection, and image enhancement. 
The basic idea behind anisotropic diffusion is to evolve from 
an original image uo(x, y), defined in a convex domain 
R c R x  R, a family of increasingly smooth images U ( Z ,  y, t )  
derived from the solution of the following partial differential 
equation [27]: 

d U  
- = div [c( IVul)Vu] at 

with initial condition u(x, y, 0) = uo(z,  y). The diffusion 
coefficient c(.) is a nonnegative function of the magnitude 
of local image gradient lVul = Jy. U ;  + u2 The desirable 
diffusion coefficient should be such that (1) diffuses more 
in smooth areas and less around large intensity transitions, 
so that small variations in image intensity such as noise 
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and unwanted texture are smoothed and edges are preserved. 
Another objective for the selection of c(.) is to incur backward 
diffusion around large intensity transitions so that edges are 
sharpened, and to assure forward diffusion in smooth areas 
for noise removal. Two such diffusion coefficients suggested 
by Perona and Malik [28] are 

and 
1 

C(.) = 
1 + (g (3) 

where IC is a constant to be tuned for a particular application. 
Unfortunately, it has been widely noted that anisotropic dif- 

fusions with diffusion coefficients given by (2) and (3) are ill 
posed in the sense that images close to each other are likely to 
diverge during the diffusion process. For example, the presence 
of noise, especially when the gradient generated by noise is 
comparable to that by image features, can drive the diffusion 
process to undesirable results [27], [36]. Even without noise, 
“staircasing” effects can arise around smooth edges [36]. In 
practical implementation on computer, the diffusion process 
may diverge depending on difference schemes and grid sizes 

Several arguments about the ill posedness of the anisotropic 
diffusion are based on the work by Hollig et al. [18], which 
states that one-dimensional (1-D) anisotropic diffusion is well 
posed if and only if 

1251. 

d’(4 2 0 (4) 

d(S) = sc(s). (5) 

where the 4 ( s )  is a flux function defined as 

Since the behavior of two-dimensional (2-D) diffusion is 
obviously more complex than its 1-D counterpart, a thor- 
ough behavioral analysis of 2-D anisotropic diffusion would 
benefit further development of powerful anisotropic diffusion 
schemes. 

The ill-posedness of anisotropic diffusion may be alleviated 
through the introduction of a smoothing operation to the 
variable of diffusion coefficient c(s). One such example [XI  is 

dU 
- = div {c[lVG(s) * ul]Vu} 
d t  

where G ( s )  * 71, denotes a convolution of the image at time t 
with a Gaussian kernel of scale s, which is to be given a priori. 
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A properly selected s is critical to the success of the proposed 
anisotropic diffusion in the sense that the diffusion process 
would be ill posed for too small an s ,  while image features 
would be smeared for too large an s. One possible solution is 
to use a large s initially to suppress noise and then to reduce 
the s so that image features are not further smeared [36]. 
Nevertheless, optimum selection of such an s is still an open 
problem. The computational load involved in the convolution 
G(s)*u is a serious problem because it is required at each time 
instant, whether it is implemented directly or by a separate 
isotropic diffusion. We also note that this peculiar scheme 
of linear isotropic diffusion within anisotropic diffusion is 
obviously against the spirit of anisotropic diffusion. Time- 
delay regularizations have also been proposed; see [19]. 

An alternative is to use curve evolution, which is based on 
geometric heat flow of the level sets of the image. Diffusion 
schemes proposed include curvature motion [ 11-[3], [211, [26], 
[32], reaction-diffusion [20], and affine invariant scale-space 

This paper will express anisotropic diffusion as resulting 
from an optimization problem. This is in the spirit of the 
total variational methods of [29]. We show that anisotropic 
diffusion is an energy-dissipating process, so its behavior can 
be analyzed by the shape of the energy surface. Specifically, 
we show in Section I1 that anisotropic diffusion is a process 
that dissipates energy with time, and its behavior depends on 
the shape of the energy surface. Section I11 gives conditions for 
the well-posedness and ill-posedness of anisotropic diffusions. 
Section IV proposes an orthogonal decomposition of the 
anisotropic diffusion operation and its geometric interpretation, 
which gives some insights into how anisotropic diffusion 
smooths small variations in image intensity and sharpens 
edges. Section V analyzes some known anisotropic diffusion 
schemes as well as proposes new ones. Section VI outlines 
our plans of extending to vector case (in particular, the color 
space). Numerical simulations are shown in Section VII. We 
conclude this paper in Section VIII. 

121, ~301. 

11. DIFFUSION AS AN ENERGY-DISSIPATING PROCESS 

In this section, we demonstrate that anisotropic diffusion 
results from an optimization problem and relate its behavior 
to the shape of the corresponding cost (or energy) functional. 

A . ,  Smooth Images 
Let us first consider the following energy functional defined 

on the space of smooth images, that is, images for which Vu 
is finite in 0, as in the following: 

E(u)  = f(lV4)dn (7) 

where f(lVu1) 2 0 is an increasing function of /Vul, as 
follows: 

f ’ (P4)  > 0. (8) 

We also require that f’(lVu1) = 0 when lVul = 0. Due to the 
nonnegativity of f (  IVul), the energy functional is bounded 

below: 

E(u)  2 0. (9) 

Since lVul 2 0 and f (  IVul) is an increasing function of IVul, 
the global minimum of E(u)  occurs when 

u ( z ,  y) z constant, for all (x, y) E R. (10) 

This global minimum includes an infinite number of constant 
images, all of which have the same value of E(u) .  This 
energy functional is a measure of image smoothness and its 
minimization is equivalent to smoothing. Note that if f ( 2 )  = 
2, (7) is the seminorm of the space of functions of bounded 
variation and is used as the basis for the total variation-based 
noise removal algorithm in [29]. 

We now seek to minimize E(u)  by considering the first 
G2teaux variation of E(u)  at U in the direction h 1341, as 
follows: 

We need to identify conditions under which 

dE(u;  k )  = 0 for small k .  (12) 

Let Ro = {(z, y): IVu(z, y)I = 0, ( 2 ,  y) E Q}, the G2teaux 
variation can be obtained through some elementary calculus as 

dE(u; h)  = f ’ ( 0 )  lVhl dR 6, 
Let us choose an h such that 

IVhl f 0 ,  ( 2 ,  Y) E Qo; (14) 
( V h  = 0 ,  otherwise. (15) 

Then the second term of (13) is zero, but the first term is not. 
In order for dE(u; h) = 0, we must have 

f ’ ( 0 )  = 0. (16) 

We can write the first term of (13) as 

if we denote 6 = [0, 0IT and define 

Then the two terms in (1 3) can be packed together to give 

By Green’s theorem, we have 
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where i3R is the boundary of image domain R and 6 is the 
outward normal to do.  If we assume symmetric boundary 
condition for the image 

Vu(x, y) .6 = 0 for (z, y) E i3R (21) 

the second term of (20) vanishes and the G2teaux variation 
can then be expressed as 

(22) dE(u; h)  = (VE(u) ,  h,) 

where (., .) is the inner product defined by 

(23) 

and 

is the gradient of E(u)  at U .  

Similar to steepest descent, we may minimize the functional 
E ( u )  by moving in the negative direction of the gradient 
through the following parabolic partial differential equation: 

Obviously, (25) is the same as the anisotropic diffusion (1) if 
the diffusion coefficient is set to 

As required of a diffusion coefficient, it is nonnegative due 
to (8). It is also obvious that the flux function used for 1-D 
diffusion [see (5)] is 

(27) 

Since the energy functional is bounded below [see (9)], 
the stability of the system given by (25) can be proved by 
showing that the system dissipates energy with time. The time 
derivalive of the energy functional E[u(t)]  of the system is 

$qS) = S C ( 9 )  = . f ’ (s ) .  

which is the Ggteaux variation (11) of E(u)  at u(t)  in the 
direction of h = -VE(u) .  Consequently, we have by (22) 

dE[u(t)l  = (VE(u) ,  -VE(u) )  
d t  

= - (VE(u) ,  V E ( u ) )  
5 0  (29) 

which indicates that the anisotropic diffusion is indeed 
an energy-dissipating process with time. Therefore, the 
anisotropic diffusion is a motion that seeks out minima of 
E ( u )  and comes to a stop at stationary points where 

V E ( u )  = 0. (30) 

Since the energy functional is a measure of image smooth- 
ness, the energy-dissipating process of anisotropic diffusion 

Fig. 1. 
edges in the image. 

Interpretation of integral by impulse function when there are step 

There is a step image (global minimum) 
between any two continuous images 

\ Continuous I 
I 

Image Space 
Fig. 2. 
ill posed. 

Illustration of the reason that some anisotropic diffusion models are 

(25) gives a continuum of images with increasing degrees of 
smoothness. The behavior of anisotropic diffusion is obviously 
dependent on the shape of the energy surface. If the global 
minimum given by (10) is the unique minimum of the energy 
surface, the diffusion process will converge to it starting 
from any initial image. The anisotropic diffusion may then be 
interpreted as “well posed.” On the other hand, we will show 
that, under a certain condition, the energy functional will have 
an infinite number of global minima, which are dense in the 
image space, so the anisotropic diffusion is ill posed because 
the diffusion process, starting from images close to each other, 
will be caught in different local minima, and we will observe 
that images close to each other diverge during the diffusion 
process. 

The well posedness, or the argument that the global min- 
imum given by (10) is the unique minimum of the energy 
surface, is critical to the use of anisotropic diffusion as a tool 
for scale space filtering. If there exist local minima on the 
energy surface, the diffusion process may be trapped in one 
of them and the smoothness of the image will stay at a level 
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where the sz, i = I, 2, . . . , n are constants and are required 
in this paper not to be equal for adjacent Ri’s. As an example, 
we give the following step image: 

s1, 20 L 2 < 2 1  

s(z, y) = 5 2 ,  21 L 2 < 5 2  (34) i s3,  5 2  I 5 5 x 3  Diffusion orthogonal 
to@adientdirection where SI  # s2 and s2 # sg. 

following two integrals: 
The integral in (7) can then be written as the sum of the 

E(u)  = E ( w )  + E ( s )  (35)  

Fig. 3. Orthogonal decomposition of anisotropic diffusion 

higher than that of the global minima. Correspondingly, the 
resolution of the image will stay at a level higher than that of 
the global minimum and the integration time t is no longer a 
valid scale-space parameter. 

B. Piecewise Smooth Images 

The above derivation has been based on an energy func- 
tional E(u)  defined on the space of smooth images. Since 
an interesting image containing edges is better modeled by 
piecewise smoothness, it is the task of this section to extend 
the definition of the energy functional E(u)  and the general 
results of last subsection to piecewise smooth images. Let 
I(R) denote the image space that is defined to be the set of 
piecewise smooth functions on R with discontinuities being 
only step edges. The primary difficulty in extending the 
definition of E(u)  to this image space is that the magnitude 
of gradient (Vu1 is infinite at step edges. If the integral in 
(7) is understood in the usual sense, the step edges will 
not contribute to the value of the energy functional. This is 
obviously not reasonable in the present context because step 
edges are rough images in our image space. A strict treatment 
would involve Lebesgue-Stieltjes integral. But here we forego 
strict mathematical rigor and resort to the use of the Dirac 
delta function. 

An image u(x ,  y) E I(0)  may be written as 

45, Y) = 745, Y) + 45, Y) (31) 

where the w(z,  y) is the smooth part of u(z ,  y) and s(5, y) 
represents its step edges, which we call a “step image” and 
define as follows. 

Dejinition I-Step Image: Let S be a subset of R. The 
function defined by 

is known as the characteristic function of S. A step image 
is a linear combination of a finite number of characteristic 
functions. Specifically, let O,, i = 1, 2, . . . , TL be a partition 
of R; then the step image is 

n 

i=l  
(33)  

where the E ( w )  involves the usual integral with a smooth 
integrand and the E ( s )  is the integral with a step image as 
its integrand. We discuss the latter integral using impulse 
functions as follows. Let us suppose that s(x, y) consists 
of a step edge along a curve 1 (not necessarily connected 
nor closed) with a jump of J ( x ,  y) (shown in Fig. 1). We 
approximate this step edge by a slope edge ~ ( x ,  y;  a) (Fig. 1) 
with a width of A, so the magnitude of the gradient at the 
slope is 

This is an impulse function as A + 0, because it tends to cc 
and its area tends to A [ I J ( z ,  y)l]/A = lJ(x ,  y)l. We now 
integrate E ( v )  in the direction orthogonal to that of  1 and then 
integrate along 1. This gives us 

Since 7 J ( 2 ,  y; A) 4 s(5,  y) as A + 0, we have 

a 

(37) 

Since it is obvious that f’(oc) = 0 whenever f (m) < CO, the 
above equation can be simplified to give 

E ( s )  = S’(m) 1 I J ( -?  !/)I d1 (39) 

which is actually a line integral of the jump of the step edge. 
This is a generalization of the results in [l].  

With the previous extended definition of the energy func- 
tional E ( u ) ,  we can show that the expressions of &(U,; h )  
(19) and V E ( u )  (24) are still valid, except that all the 
derivatives involved are generalized derivatives. Therefore, 
the relation between anisotropic diffusion and the energy 
functional discussed in last section can be used to give an 
analysis about the behavior of anisotropic diffusion. 
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111. SHAPE OF THE ENERGY SURFACE AND we have 
BEHAVIOR OF ANISOTROPIC DIFFUSION 

Having the relation between anisotropic diffusion and the 
energy functional E(u) ,  we can now proceed to analyze the 
behavior of anisotropic diffusion based on an analysis of the 
shape of the energy functional. We do this by identifying 
conditions for the existence of stationary points of E(u)  and 
analyzing the nature of the stationary points. 

Dejinition 2: An image U E I(R) is a stationary point of 
E ( u )  if 

dE(u; h)  = 0, for all small h E I(n) (40) 

or equivalently, if 

V E ( u )  = 0. (41) 

Due to (16) and (18), we have 

VU 
f’(lVu1) - = 0, for (2, y) E R - fi. (48) 

I V’ZLI 
Combining (47) and (48) we have 

(49) 
VU 

f’(lVu1) __ = 0, for (2 ,  y) E R 
lVUl 

which indicates V E ( u )  z 0 by (24). 
Let us now prove the “only if’ part. Consider the Ggteaux 

variation (19) of E(u)  at the step image s in the direction 
h = s, as follows: 

A. Ill-Posed Anisotropic Diffusion dE(s;  s )  = f’(lVs()lVsl dR. (50) 

We will show in this subsection that, under a certain 
condition, the energy functional E ( u )  has an infinite number of 
global minima (step images) that are dense in the image space. 
So the diffusion process, starting from images no matter how 
close to each other, will be caught in different local minima. 
Consequently, we observe that images close to each other 
diverge as the diffusion process evolves, so the anisotropic 
diffusion is ill posed. 

Let us consider the step image (33) and denote fl = 
U,=l, 2 ,  , 11 80,  where dR, is the boundary of R,, respec- 
tively. Then the gradient of the image (33) can easily be 
obtained as 

. .. 

Since f’(lVsl)lVsl = 0 = f/(co)IVsl when lVsl = 0, the 
last equation can be written as 

dE(s;  s) = f’(00)lVsl dR (51) 

which, when interpreted by (39), is 

dE(s ;  s) = f ’ ( C 0 )  IJ(., y)I d l .  (52) 1 
For the step image (33), the integral in the last equation is not 
zero, so dE(s; s) = 0 only if f ’ (oo) # 0. This completes the 
proof. 

00, ( 2 ,  y) E fl The following theorem illustrates the nature of the stationary 

Theorem 2: If the f ( . )  of an anisotropic diffusion satisfies 
(44), then each of the dense step images (33) is a global 

(42) points. 

For the example image (34), this is 
minimum of E(u)  and the E ( u )  is discontinuous for all 
smooth images except for the constant image (10). JVu(z,  y)I = (sa - Sl)S(Z - X I )  + (Sj - s2)6(5 - 2 2 )  (43) 

where 6(z) is the Dirac impulse function. 
Theorem 1: Each of the step images (33), which are dense 

in the image space I(R), is a stationary point of E ( u )  if and 

Proof: For a step image s, the w in (31) is a constant 
image, and we find from (39) that E ( s )  = (I due to (33), so 
(35) gives 

only if E ( s )  = E(constant image) (53) 

f’(w) = 0. (44) 

Proof Let us first note that step images are dense in 
the image space I(0) because each continuous signal can be 
infinitely approximated by a sequence of step signals; that is, 
for each continuous signal U there exists a sequence of step 
signals {sn}, n = 1, 2 ,  . . .  such that 

lim s, = U.  
n-oo 

Let us now prove the “if’ part. Since 

(45) 

which is the same value as that of the global minimum (10) 
of E(u) .  So each of the step images (33) is a global minimum 
of E(IL) .  

Let us consider (45), which states that a continuous signal 
I L  can always be infinitely approximated by a sequence of 
step signals s,, n, = 1, 2 ,  .... For a continuous image U ,  it 
is obvious that E(u)  # 0 except that U is the constant image 
(10). On the other hand, the conditions (39) and (44) give 
E(s,) = 0, n = 1, 2, ..., so that 

lim E(s,) = O  # E(u) .  (54) 
n-cx 

VU 

VU 

0 L lim IS” Therefore, E(u)  is not continuous at U except for the constant 

We now give a simplified illustration of how anisotropic 
diffusion is ill posed (see Fig. 2). We compare our image 
space to the real line, continuous images to rational numbers, 

image (10). IVul-00 

= IVul-00 lim f’(lVul) lml 
= f ’ ( 0 0 )  = 0 (46) 
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a=5, b=0.01 

6 8 10 
.I 

n 

a=5, b=0.01 

0.2 

X 

.I 

A 

Example of modified f ’ ( . )  Fig. 4. 

Then the integrand is positive in this area due to (8); hence, 
it is not possible that the integral is zero for a smooth image, 
except for the constant image (10). Therefore, all images in 
I(n), except for the constant image (lo), are not the stationary 

This theorem basically establishes that, if (55 )  holds, the 
constant image (IO)  is the unique global minimum of E(u) .  
But this does not exclude the possibility that the surface of 
E(u)  is still irregular in the sense that the diffusion process 
may still exhibit some strange behavior even though it will 
finally converge to the constant image (10). For example, the 
diffusion given by (92) has f ’ (m)  = 1 # 0, so the constant 
image is the unique global minimum by the last theorem. But a 
step-image-like effect still appears during the diffusion process 
(see the right of Fig. 5 and the bottom of Fig. 6) though it 
finally disappears, as required by the last theorem. Therefore, 
we need conditions stronger than (55)  to make the surface of 
E(u)  regular enough to prevent the step-image-like effect to 
appear during the diffusion process. One way to achieve this 
is to require that E ( u )  be convex. 

Theorem 4: If the f ( . )  of an anisotropic diffusion is convex, 
then its energy functional E(u)  is convex and the constant 
image (IO) is its unique global minimum. 

point of E(u) .  

Prooj? Let 7 L 1 ,  u2 E I(n) with 2 ~ 1  # u2; then, for each 
X E (0 ,  1), we have the following by the Minkowski inequality 
[241: 

(57) 

and step images to irrational numbers. Then, according to 
Theorems 1 and 2, the energy functional has nonzero values 
for all “rational numbers” and zero values for all “irrational 
numbers.” Since irrational numbers are dense on the real 
line (there is an irrational number between any two rational 
numbers), the energy functional is very “rough” and it is not 
possible to know which one of the dense “irrational numbers” 
the anisotropic diffusion will settle down to. 

IV[XUl + (1 - X)?LZ]I I XIVUll + (1 - X)/VuzI. 

Since f ( . )  is strictly increasing (refer to (8)), (57) gives 

f{lv[xu, + (1 - ~ ) ? ~ ~ ] l }  5 f[X/vulI + (1 - X)1Vu21]. (58 )  

The convexity of f ( . )  gives 

B. Well-Posed Anisotropic Diffusion 
It is obvious that an anisotropic diffusion is well posed if the 

constant image given by (10) is the unique global minimum 
of the energy functional E(u) ,  because the diffusion process, 
starting from different images, will get closer and closer as 
the diffusion descends toward the global minimum. It is the 
task of this section to identify conditions for the existence of 
a unique global minimum. 

By Theorem 1 we know that the step image (33) are not 
a stationary point of E(u)  if f ’ (00)  # 0. This result is now 
extended to give the following theorem. 

Theorem 3: Only the constant image (10) is the stationary 
point of E ( u )  if 

which is 

E [ X U ~  + (1 - X)U~] 5 XE(u1) + (1 - X ) E ( U ~ ) .  (62)  

as follows: 
f ( x )  2 f ( m )  + f ’ (xo) (z  - 50) for all Z O , ~  2 0. (63) 

(56) 

Let us assume that the smooth image U is not a constant image, 

If we let xo = 00 and assume that f’(z0) = ~ ’ ( c o )  = 0, the 
above inequality gives 

dE(u; U )  = .I, f’(lVul)lVul do. 

then there exists at least some area 0‘ c S2 in which /Vu\ # 0. f(z) 2 f (w)  for all z 2 0 (64) 
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Fig. 5 .  18. 
Left column: Perona and Malik’s diffusion. Middle column: extended version of the diffusion scheme previously developed by the authors. Right column: 
diffusion scheme that does not have step images as its stationary points, though step images appeared anyway. 

Smooth sigmoid image is changed into step images by anisotropic diffusion. From top to bottom, the diffusion time t = 2 ” ,  n = 0, 1, . .  . 

which contradicts with the fact that f ( . )  is increasing. There- 
fore, we must have ~’ (co)  # 0, and by Theorem 3 we 

and Jz be the jumps of s1 and sa, respectively. Then by (39) 
and the Minkowski inequality [24], we have 

complete the proof. 
Step edges are accounted for in the above proof because the 

problem of the integral. Actually, we can verify in the follow- 

E[XSl+ (1 - X)sz] 

= f’(cm) J’ I X J l  + (1 - X)Jzl dl 

5 Xf’(00) 1 Ib711 dl  + (1 - X)f’(m) / IJzl dl 

= XE(s,) + (1 - X)E(sz) 

proof does not use any properties related to the interpretation 

ing that the above theorem does hold for step images. Suppose 
$1, s2 E I(n) with s1 # s2 are two step images with their 
step edges along the curves I1 and 12. Let 1 = 11 U Z2 and J ,  

1 

(65) 
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which is the same as what (62) would give for step edges 
when its integral is interpreted by (39). 

Corollary I :  If f ” ( z )  2 0 for all x 2 0, then the constant 
image (10) is the unique global minimum of E(u)  and the 
anisotropic diffusion is well posed. 

Proof This is obvious by a theorem in [6], which states 
that f ( . )  is convex if and only if f ” ( x )  2 0 for all z 2 0. B 

Remark I :  Another proof is given in [37]. 

IV. AN ORTHOGONAL DECOMPOSITION 
AND ITS GEOMETRIC INTERPRETATION 

After having discussed the global behavior of anisotropic 
diffusion, we would like to give some insights into how 
anisotropic diffusion works locally to enhance or smear edges, 
or t~ smooth or magnify noise. 

A. An Orthogonal Decomposition 

At a specific location ( 2 ,  y) E R, the behavior of anisotropic 
diffusion (25) is obviously dependent on f’[lVu(x, y)l] which, 
in turn, depends on the characteristics of f [ l V u ( x ,  y)j]. 
For optimization purposes, which is the case at hand, 
f [ / V u ( z ,  y)l] is best characterized by the eigenstructure of 
its Hessian matrix 

a 2 f ( l w  a”(lVul) 
ax2 all: a y  

dydx dy2  

N ( Z ,  y) = a2f(iVui) a2f(iVul) 

The eigenvalues of the H ( z ,  y)  can be shown to be 

and 

X2(/V4) = f”(IVul). (67) 

By (26), it is obvious that A1(IVul) = c( /Vu/ ) .  The 
anisotropic diffusion (25) can then be expanded into 

dU 
at - AID, + AsD, - -  

where 

and 
u;u,, + 2u,uyuzy + u;uyv 

U; + U ;  
D,  = (70) 

are the second-order directional derivatives of u in directions 
orthogonal and parallel to the local gradient, respectively. 
Since the two second-order directional derivatives are in 
orthogonal directions, (68) represents an orthogonal decompo- 
sition of anisotropic diffusion (see Fig. 3).  We note here that 
the idea of degenerate diffusion was previously mentioned in 
[11. 

Since the diffusion coefficient is nonnegative due to (8), the 
first term of (68) represents a degenerate forward diffusion in 
the direction orthogonal to the gradient. Thus, this directional 
smoothing should be encouraged since it represents a well 
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Fig. 6. Evolution with time of a slice along the z axis of the smooth 
sigmoid image when it is processed by anisotropic diffusion. Note that 
the indexes in the “Diffusion time” axis are the powers of 2. Top: Perona 
and Malik‘s diffusion. Middle: extended version of the diffusion scheme 
previously developed by the authors. Bottom: diffusion scheme that does not 
have step images as its stationary points, though step images appeared anyway. 

posed smoothing operator that tends to preserve edges, since 
an edge is also orthogonal to the gradient. 

The second term of (68) represents a degenerate diffusion 
in the direction of the local gradient. It is forward (smoothing) 
if As(lVul) > 0, and backward (sharpening) if A2(IVuI) < 
0. Since backward diffusion may be ill posed, there exist 
possibilities that the whole system of (68) is ill posed if 
X,(lVul) < 0 for some \Vu\ 2 0. This depends on the balance 
between the forces represented by the first term of (68) and the 
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Fig. 7. 
noise. 

Top: Original Lena image. Bottom: Degraded by IO-dB Gaussian 

second term (where Xa(lVuI) < 0). If the force represented by 
the first term dominates for all lVU 2 0, the system is well 
posed. Otherwise, the system is ill posed and images close to 
each other may diverge during the diffusion process. 

B. Geometric Interpretation 

Let us now give several geometric insights into the decom- 
position (68). We will only outline the mathematical details 
here referring the reader to [ 1 I] for a complete treatment. 

First of all, we write (68) in the following form: 

d t  

where 

Fig. 8. 
t = 16. Middle: t = 128. Bottom: t = 4096. 

Images processed by Perona and Malik‘s anisotropic diffusion. Top: 

and 

Note that n is precisely the mean curvature of the level sets of 
n =  up.,, - 2u,1f~yu,y + %L;U,, div (g) (72) the function u(x, y) [l], [12]. In fact, the evolution equation 

(74) 

is the level set evolution version of Euclidean curve shortening 
in the plane that has been the object of much study recently 

( U ;  + u 3 3 / 2  dU 
- = n1Vul at 

u;u,, + 2u,uyu,y + ,lL;u,, 
I 5 1  = (73) 

(U,; + u 3 3 / 2  
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also has a very natural interpretation, and in fact in a very 
precise sense may be considered to be the dual to (74). In 
order to make this point precise, we now recall the discussion 
in the elegant paper of Evans [l 11. 

Accordingly, we consider the following boundary-value 
problem for the p-Laplacian: 

div(IVu,Ip-2Vu,) = O  in R, (76) 

up = g  on dR (77) 

when 2 < p < CO. This is the Euler-Lagrange equation for 
the variational problem of minimizing the energy 

L ( u 2  + U:)” dx dy 

over all sufficiently smooth functions obeying the given 
boundary condition. (For the exact class of functions, see 
1111.) Now assuming up is smooth and IVupl # 0, we may 
rewrite (76) to read 

1 
Aup + D, = 0. 

(P - 2) 

Suppose we knew also that as p .--f CO, the functions up 
converge in some sufficiently strong sense to a limit U .  Then, 
formally passing to limits in (78), we would expect u to solve 
the partial differential equation 

D, = n l / V u )  = 0. (79) 

Accordingly, we define the m-Laplacian to be 

becomes a Euler-Lagrange type equation for an Lm-norm type 
“energy” minimization problem in the above sense. Given the 
dual of L1 is Loo (under certain technical conditions) [28], the 
dual operator of A, should be derived from the L1 version 
of (76), which is precisely 

Note that (80) and (81) are the steady-state versions of (74) 
and (75). Thus, these arise from dual optimization problems. 

Evans [ 111 notes that in general the equation A,u = 0 does 

A, is degenerate, but only in the one direction normal to each 
level set. On the other hand, the operator Am is nondegenerate 
only in this direction. As we have seen, Alu = 0 is a 

Fig. 9. Performance comparison of Rudin’s total variation-based diffusion not admit smooth Moreover, note that the operator 
(top, 2 = 25), its modified version (middle, t = 25), and a new scheme 
(bottom, t = 50). 

“geometric” equation, since it says that the level sets of U have 

A,u = 0 is strongly “nongeometric” or, rather, that all its 
geometric information concerns not the level sets of U but 

in mathematics and computer vision [l], [141-[161, l2O1, l2l1, pro-mean curvature. Thus, the partial differential equation 
[261, 1321, [331. 

The equation 
rather the curves normal to level sets. All of this is made 
precise in the elegant paper of Evans [I 11. (75) 
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Fig. 10. 
Gaussian noise. 

Top: Original Cameraman image. Bottom: Degraded by 10-dB 

v. EXAMPLES OF ILL-POSED AND 
WELL-POSED ANISOTROPIC DIFFUSION 

It is easy to show that the f ’ ( . ) ’ s  for the two diffusion 
coefficients (2) and (3) are 

and 
S 

f ’(4 = (83) 
1+  (g 

respectively, and both of them satisfy the condition (44), so 
both of them are ill posed. The step images (33) seem to con- 
firm the staircasing effects observed in [36]. The orthogonal 
decomposition of anisotropic diffusion described in Section 
IV provides an insight into the smoothing and edge enhancing 
property of the two anisotropic diffusion schemes as described 
in [27]:  The f ” ( . ) ’ s  of the two diffusion schemes have the 
following thresholding property: 

> O ,  x < T  
<0, x > T  (84) 

Fig. 11. Top and middle: Cameraman image processed by Perona and 
Malik’s anisotropic diffusion (t = 64 and 2048, respectively). Bottom: 
Cameraman image processed by a proposed scheme (t = 64). 

which, according to (68) and Fig. 3, indicates that the two 
diffusion schemes smooth the image where the image gradient 
is small and enhance it where the image gradient is large. 

The line of research on noise removal based on bounded 
variation can also be placed into the category of anisotropic 
diffusion. The original algorithm considers the following con- 
strained minimization problem [29]: 
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subject to 

(86) 2 Iu - U01 = CT 

where U,, is the observed image and 0’ is the power of ob- 
servation noise. If we ignore the constraint, (85) is exactly the 
energy functional E(u)  with a f ( z )  = z. The corresponding 
diffusion coefficient is 

It is easy to check that f ’ ( z )  = 1 and f ” ( z )  = 0, so this 
diffusion is well posed by the corollary to Theorem 4. Since 
f ” ( x )  0, this diffusion scheme smooths an image only in 
the direction orthogonal to the gradient, hence it tends not to 
disturb edges. Note that the fact that f ’ ( z )  = 1 contradicts 
the necessary condition (16) was not considered in [29]. 
However, this problem can be readily bypassed in practical 
implementation by including the condition of “no diffusion 
when lVul = 0,” which, in effect, forces the condition 
f ’ ( 0 )  = 0 on the algorithm. 

The above total variation-based algorithm tends to produce 
“blocky effects” in smooth areas. This may be attributed to the 
discontinuity of f ’ ( z )  at z = 0 and to the oversmoothing in 
smooth areas because the diffusion coefficient ~ ( z )  of (87) is 
very large when x is very small. In order to treat this problem, 
we modify the e( . )  to 

where T is a parameter to be selected for a particular appli- 
cation. Such an f ( . )  incurs uniform diffusion wherever the 
image gradient is small to effectively smooth out noise, while 
keeping the edge-preserving property of the total variation- 
based algorithm. Note that the second-order derivative f”(:c) 
of such a e( . )  is not continuous at x = T .  This problem may 
be dealt with by using the following: 

- J(z - + b2 - b + &TZ? (89) 
f ’ ( X )  = - 

2a 

where a controls the range that f’(z)  = z and b controls 
the smoothness of the transition between f ’ ( x )  = z and 
f ’ ( z )  = 1. An example of such a f ( . )  is shown in Fig. 4. 
Of course, the remedies suggested above do not provide a 
complete solution to the problem of lVul vanishing, and 
further research will be needed to fully resolve the problem. 

An extension of the total variation-based diffusion has been 
proposed in [37], which can be further generalized to give a 

f ( z )  = t > 0 and 0 < p  < 1. (90) 

Since f ” ( ~ )  = p ( p  - 1 ) ( ~  + t )P-‘  < 0 for 0 < p < 1, this 
diffusion scheme has backward diffusion to enhance edges. 
Unfortunately, this diffusion scheme is ill posed because it 
satisfies (U), as follows:f’(m) = limz--tm p ( z  + t)P--l = 0 
for 0 < p < 1. Consequently, it should suffer from problems 
associated with step images. Indeed, our simulation shows that 
all input images are transformed into step images with many 

false step edges. But what is interesting is that all the false 
step edges gradually disappear as the diffusion proceeds, so 
that fairly good performance has been observed in [37]. This 
may be due to the discretization of the problem in digital 
representation and processing. 

This diffusion scheme also tends to produce “blocky effects” 
in smooth areas because limz+o f ’ ( z )  = p F 1  # 0 and we 
have to redefine f ’ ( 0 )  = 0 as required by (16). This can be 
relieved by modifying the diffusion coefficient e( .) into 

which basically incurs uniform diffusion to avoid the “blocky 
effects.” 

Finally, we give an example that has backward diffusion 
and does not satisfy the condition for step images 

t > O  and O < p < l .  (92) 

It can be verified that its j ” ( z )  = p ( p  - 1)(z + t )PP2  < 0 
for 0 < p < 1 and z > T ,  so it has backward diffusion to 
enhance edges. It can also be verified that f ’ (m)  = 1, so step 
images are not its stationary points, according to Theorem 1. 
Our simulation shows that staircasing effects still appear and 
then disappear during the diffusion process, with the eventual 
disappearance satisfying the requirement of Theorem 3. 

VI. VECTOR-VALUED ANISOTROPIC DIFFUSION 
The analysis given above basically can be extended for 

vector-valued anisotropic diffusions, e.g., in color space. This 
we plan to do in a future publication in which we will 
discuss such diffusions in detail. In this paper, following 
Whitaker-Gerig [35], we just want to indicate how anisotropic 
diffusions may be extended in this framework. 

Let uo:R + D be a vector-valued image where R c R” 
and D c R” are open subsets. Then the vector-valued 
anisotropic evolution equation has the form 

dU 
- = div (cVU) at (93) 

where 

V U  = 

and 
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Of course, the key in making this type of diffusion inter- 
esting is the choice of the diffusion coefficient c. We can, 
of course, define independent diffusions in each channel, 
but a much more interesting choice would be some sort of 
coupling (this is called a dissimilarity operator in [35])  in 
order to combine the information from the channels. A natural 
nontrivial choice is 

That is, we take the diffusion coefficient to be of the form 

This operator is a straightforward generalization of the gray- 
level image case (m = 1) and is also rotationally invariant. 
One may, of course, also smooth the u t ' s  via a Gaussian filter 
as in (6). 

We plan to apply our eigenvalue analysis to this multidi- 
mensional case in a forthcoming paper as well as explicitly 
apply the results to diffusions in color space. 

VII. NUMERICAL SIMULATIONS 

We now use numerical simulations to verify the theory just 
developed and to illustrate some good anisotropic diffusion 
schemes. The numerical techniques are based on hyperbolic 
conservation laws and the theory of viscosity solutions [26], 
[29], [33].  We follow [29] and discretize the anisotropic 
diffusion (I) in the following manner: 

at 
U?. + - 

h 

where At and h are the time step size and space grid size, 
respectively, and 

min(a, b ) ,  a > 0 and b > 0, 

otherwise. 
b ) ,  a < 0 and b < 0, (102) 

A. Synthesized Image 

Let us consider the following smooth sigmoid image: 

X, y = 1,2 ,  . . . 256. 
255 

U ( z '  ') = 1 + exp [-0.2(z - 128)] ' 
(803 

We first use Perona and Malik's anisotropic diffusion scheme 
(2) with k z  = 100 to process this image. The left column of 
Fig. 5 are the images generated by the anisotropic diffusion at 
time t = 2", n = 0, 1, ... , 18. For each time t ,  a slice along 
the x axis of the corresponding image is shown at the top of 
Fig. 6. Since this diffusion scheme is ill-posed, step images are 
developed and it does not disappear once it is fully developed. 

Next, we run on the same sigmoid image the extended 
version of the diffusion scheme developed by the authors in 
[37] whose diffusion coefficient is given by (90) with p = 0.5 
and E = 1. The corresponding results are shown in the middle 
column of Fig. 5 and at the middle of Fig. 6. Since this 
diffusion scheme is also ill posed, step images are developed. 
But it is interesting that the step images gradually disappear so 
that the smooth sigmoid edge is transformed into a step edge 
and the step edge remains over many iterations. 

Finally, we run the diffusion scheme given by (92) with 
p = 0.5, E = I, and T = 0, and show the results in the night 
column of Fig. 5 and at the bottom of Fig. 6. It is evident that 
staircasing effects appear during the diffusion process, but they 
disappear because step images are not its stationary points, 
according to Theorem I. The difference of this one from the 
above two diffusion schemes is that the step images appear 
later and disappear faster. This behavior has been observed on 
many images. 

B. Natural Images 

We consider two nkmerical experiments. In the first exper- 
iment, the Lena image shown in Fig. 7 (top) is degraded to 
give the image shown in Fig. 7 (bottom) using Gaussian noise 
at a SNR = 10 dB, where 

Variance of image 
Variance of noise ' 

SNR = (104) 

We first use Perona and Malik's diffusion (2) to process this 
degraded image and show the results in Fig. 8, which clearly 
indicate that this diffusion scheme is incapable of dealing with 
noise. We then compare the performances of Rudin's total 
variation-based diffusion (87), its modified version (88) with 
T = 3, and the new scheme given by (91) with t = 1, p =: 0.5, 
and T = 3. The images shown in Fig. 9 are what we judged 
to be the best that the respective anisotropic diffusion schemes 
can generate with respect to the diffusion time. 

In the second experiment, the Cameraman image shown in 
Fig. 10 (top) is degraded to give the image shown in Fig. 10 
(bottom) using Gaussian noise at SNR = 10 dB. We first 
employ the Perona and Malik diffusion (2 )  to process this 
degraded image and show two of the processed images in the 
top and middle of Fig. 11 (diffusion time t = 64 and 2048, 
respectively) which, as before, indicate that this diffusion 
scheme is incapable of dealing with noise. We then use the 
new scheme given by (91) with E = 1, p = 0.5, and T = 
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3. One of the processed images is shown in the bottom of [23] F. Mokhatarian and A. Mackworth, “A theory of multiscale, curvature- - 
Fig. 11 (diffusion time t = 64). 

VIII. CONCLUSIONS 

In this paper, we have provided a behavioral analysis 
of the anisotropic diffusion model of Perona and Malik. 
The main idea was to express the equation as coming from 
a certain optimization problem and find conditions for the 
existence of a unique global minimum (well-posed diffusion) 
and for the existence of infinitely many dense global minima 
(ill-posed diffusion). In addition, the smoothing and edge 
enhancement mechanism of anisotropic diffusion is illustrated 
through an eigenvalue decomposition of the diffusion equation. 
Moreover, we gave a natural geometric interpretation of this 
decomposition and found that the two terms involved were 
dual in a certain precise sense. As indicated above, we will 
be extending these results to the vector case (in particular, to 
color space) in the near future. 
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