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Segmentation of Gabor-Filtered Textures 
Using Deterministic Relaxation 

P. P. Raghu and B. Yegnanarayana, Senior Member, IEEE 

Abstract- A supervised texture segmentation scheme is pro- 
posed in this article. The texture features are extracted by 
filtering the given image using a filter bank consisting of a 
number of Gabor filters with different frequencies, resolutions, 
and orientations. The segmentation model consists of feature 
formation, partition, and competition processes. In the feature 
formation process, the texture features from the Gabor filter 
bank are modeled as a Gaussian distribution. The image partition 
is represented as a noncausal Markov random field (MRF) 
by means of the partition process. The competition process 
constrains the overall system to have a single label for each pixel. 
Using these three random processes, the a posteriori probability 
of each pixel label is expressed as a Gibbs distribution. The 
corresponding Gibbs energy function is implemented as a set 
of constraints on each pixel by using a neural network model 
based on Hopfield network. A deterministic relaxation strategy 
is used to evolve the minimum energy state of the network, 
corresponding to a maximum a posteriori (MAP) probability. 
This results in an optimal segmentation of the textured image. 
The performance of the scheme is demonstrated on a variety of 
images including images from remote sensing. 

I. INTRODUCTION 
EXTURE analysis is one of the most important tech- T niques used in the analysis and interpretation of images 

consisting of repetition or quasirepetition of some fundamental 
image elements. Texture-based image segmentation techniques 
have been found useful in the analysis and interpretation of 
radiographic images in medicine, seismic trace images, and 
earth cover images obtained using remote sensing techniques 
P I ,  W l .  

In spite of the importance of textures in many real and syn- 
thetic images, it is very difficult to give a universal definition 
of texture due to the diversity of patterns in several natural 
and artificial textures. We prefer to adopt the definition sug- 
gested by Sklansky [28] because of its generality. Sklansky’s 
definition of texture is given as follows: 

A region in an image has a constant texture i f a  set of 
local statistics or other local properties of the picture are 
constant, slowly varying, or approximately periodic. 

This definition explains many of the textures found in natural 
images. The local statistics or property that is repeated over 
the textured region is called a texture element or texel. It must 
be noted that texture has both local and global meaning-it is 
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characterized by invariance of certain local attributes that are 
distributed over a region of an image. 

Analysis of textures requires the identification of proper 
attributes or features that differentiate the textures in the image 
for segmentation, classification, and recognition. The features 
are assumed to be uniform within the regions containing the 
same texture. Various feature extraction and classification tech- 
niques have been suggested in the past for the purpose of tex- 
ture analysis [15], [16] and some efficient methods have been 
suggested recently, for example, in [20]. More recently, the 
resurgence of interest in neural networks has brought into focus 
the neural network-based approaches to the problem of texture 
analysis and texture-based image segmentation [ 111, [32]. 

A significant advancement in the field of texture analysis is 
the introduction of Markov random field (MRF) [34] as a tool 
for stochastic modeling of images. MRF allows us to model 
the joint probability distribution of the image pixels in terms of 
the local spatial interactions, which can be expressed as Gibbs 
distribution. Geman and Geman [14] proved the equivalence 
of MRF and Gibbs distribution, and used the results for the 
problem of image reconstruction. Several studies have been 
made using the MRF for modeling [8] and segmentation [21] 
of textures. A major advantage of the stochastic modeling is 
that the probability distributions applicable to the image pixel 
intensity as well as the image partition can be implemented us- 
ing highly parallel neural networks. Also, several deterministic 
and stochastic relaxation algorithms can be applied to these 
networks to perform optimal segmentation of the textured 
images [6]. 

The models based on MRF combined with the relaxation 
methods have been applied at the image pixel level using the 
pixel gray level probability and the pixel partition probability. 
Since texture is a contextual property described over a spatial 
region of appropriate resolution, methods based on the image 
pixel gray level alone may not work satisfactorily. Moreover, 
it is difficult to know a priori the resolution of the neighbor- 
hood of MRF when the image contains textures having large 
variations in texel sizes. Also, MRF assumes stationarity of the 
textures in the image, which cannot be assured in many real 
images. Thus, textures need to be characterized in a feature 
space which can take into account the issues of resolution and 
nonstationarity . 

Analysis techniques have been suggested in the past to 
characterize the textures based on the spatial frequency dis- 
tributions and the orientations of texture elements [7], [22]. 
A Fourier filtering method for texture analysis was proposed, 
which makes use of the spatial frequency distributions of the 
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subimages by windowing the original textured image [ 11. This 
method characterizes the spatial frequency distribution, but 
does not consider the information in the spatial domain. The 
information on the spatial frequency distribution alone may not 
be adequate in many situations, especially for nonstationary 
textures as in the case of remotely sensed images. One to has 
take into consideration the spatial as well as spatial frequency 
distribution of a textured image [18]. 

In 1946, Gabor proposed a set of narrowband filters that 
can optimally concentrate in time and frequency domains for 
discrete joint time-frequency signal representation [ 131. This 
idea was extended to two dimensions for representing an 
image into a number of localized frequency channels measured 
at different spatial resolutions. The importance of the two- 
dimensional (2-D) Gabor filters is well recognized in the 
recent past as a joint spatiayspatial-frequency representation 
of textures [3], [30]. Analysis using Gabor filters enables 
us to capture the local as well as global information in 
a texture. The properties of Gabor filters are exploited for 
unsupervised texture segmentation in [ 191. However, the use of 
image-specific knowledge together with Gabor features should 
produce significantly better results for texture classification. 

In this paper, we explore the combination of image-specific 
knowledge and Gabor feature characteristics for supervised 
classification of textures in natural images. In particular, we 
describe a supervised texture segmentation and classification 
scheme based on the stochastic modeling of the Gabor feature 
space of textures and an image partition model described by a 
Markov random field. The texture features are extracted using 
a set of Gabor filters, which basically constitute a multires- 
olution feature extraction mechanism. The joint probability 
of the texture feature vector at a given pixel is represented 
as a Gaussian distribution. The parameters of the Gaussian 
model for each class are estimated using the feature vectors of 
the pixels in the training sites for that class. A competition 
process is defined, which constrains the system to have a 
single label for each pixel. The a posteriori probability of 
the segmentation model is derived from the feature formation, 
partition, and competition processes, and is expressed as the 
Gibbs distribution. The MAP estimation of the segmentation 
is obtained by using a neural network model based on the 
Hopfield network with a deterministic relaxation method. 

The organization of the rest of the paper is as follows. 
Next section gives a description of the feature extraction 
scheme based on the multichannel Gabor filters. It includes 
the properties of the filters suitable for texture analysis. Section 
I11 deals with the theoretical formulation of the segmentation 
model by describing the stochastic processes that characterize 
the image features and the image pixel labeling. A neural 
network model to segment the textured image is described in 
Section IV. In Section V, experimental results on segmenting 
different types of textured images are described. 

11. TEXTURE! FEATURE EXTRACTION USING 
GABOR &PRESENTATION OF IMAGES 

The analysis of textures from natural images is difficult for 
several reasons. Generally, image textures will have texels of 

Fig. 1. Neighborhood system used for MRF model in the partition process. 
“x” is the pixel of interest. The numbers in the boxes show the order of 
neighborhood. 

different sizes. So the optimal resolution for feature extraction 
cannot be specified a priori. One efficient way to represent 
the image details is by using a multiresolution representation 
[23], [24]. This scheme analyzes the coarse image details first 
and gradually increases the resolution to analyze the finer 
details. Further, most of the natural images contain textures 
having space-varying local properties such as the orientation 
and frequency of the texture elements. Thus, selection of an 
appropriate feature extraction mechanism is essential in such 
situations. 

The feature extraction method adapted in this paper is based 
on the mechanism of multichannel representation of the retinal 
images in the biological vision system. Studies on the biologi- 
cal vision system have shown that several visual cortical areas 
of mammals contain a large number of linear and nonlinear 
neurons having receptive field profiles with selectivity for 
a variety of stimulus attributes such as location in the 2- 
D visual space, orientation, motion, stereoscopic depth, and 
spatial frequency [12]. The receptive fields of the simple cells 
in the early vision system possess some interesting properties 
that make the visual representation possible to have space- 
domain local feature extraction confined to narrow, spatially 
oriented frequency channels that are quasiindependent [5].  
Daugman [9] has shown that these receptive fields can be 
closely approximated by 2-D Gabor filters. When appropriately 
tuned, these filters are found extremely useful for performing 
texture feature extraction and texture edge detection. Details 
on the biological vision system and the Gabor filter models of 
cortical cells can be found in [251 and [31]. 

A 2-D Gabor filter is an oriented complex sinusoidal grating 
modulated by 2-D Gaussian function, thus forming complex 
valued function in R2. The function is given by 

* (1) 

The spatial extent of the Gabor function in the spatial domain 
is defined by a. The orientation of the span-limited sinusoidal 
grating is given by Q and its radial frequency is specified as k .  

Gabor-filtered output of the image is obtained by the con- 
volution of the image with the Gabor function. If T is the 
textured image, then the feature value at position (z, y) of the 
image is given by 

- ( 1 / 2 c ~ ~ ) ( z ~ + y ~ ) + j k ( z  cos 6+y sin 6 )  f ( z ,  Y, k ,  Q, a )  = e 

for a filter f ~ ( z ,  y) with a given parameter set X = ( k ,  8, a) .  
Here, * denotes the convolution. 
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Gabor filters have desirable properties that are suited for 
nonstationary texture analysis [41. For instance, Gabor filters 
achieve the lowest limit of the uncertainty inequality [lo], and 
it is possible for them to represent the image both in spatial and 
spatial frequency domain optimally depending on the chosen 
metric [29]. Also, the Gabor filters encode the textured images 
into multiple narrow frequency and orientation channels. This 
is important since each texture in the image is characterized 
by a given localized spatial frequency or a narrow range of 
dominant localized spatial frequencies that differ significantly 

filter, we assume a Gaussian distribution for the feature 
formation process, and the energy function El(.) takes the 
following form: 

119s - 8k1I2 (4) E1(G, = g,lL, = I C )  = 
2 4  

Also, the normalization factor z l (L ,  = k) for this Gaussian 
process is 

from dominant frequencies of other textures. 
Let us assume M number of Gabor filters one for each set 

of values of the parameter set X = ( k ,  8, U ) .  For a given 
Pixel Point (z, Y) in the image, the M-dimensional vector 
g(z, y) = [gx(z, y)] for all M values of X constitutes the 
feature vector to characterize the pixel (z, y). In the next 

is modeled for the purpose of segmentation. 

Z1(L, = k )  = 4 s .  ( 5 )  

The model parameters .!?I, and U k  are defined for each class 
ck as 

section, we describe how the feature vector for each pixel 1 
8 k  = - gs 

sk SEOk 

1 
111. SEGMENTATION MODEL d = - 11gs - .!?kllZ 

SERI, Let R = { ( i ,  j ) ,  0 5 i < I T ,  0 5 j < J }  be the domain 
designating the pixel positions of a given image To. Let 
Y,, s E R be the random variable corresponding to the gray 
level value of the pixel s and can take any integer value in 
the range (0 .  . .255}. The image To is characterized by a set 
of M-dimensional feature vectors G = {g, E R", V s  E R}, 

where SI, is the cardinality of the set CLk. 

Equation (3) can also be written as 

P(G, = g,lL, = I C )  = e - ( ~ ~ g ~ - ~ k ~ ~ z / 2 u ~ ) - ( 1 / 2 ) l ~ [ ( 2 ~ ) ~ ~ ~ 1  

which is generated by Gabor filtering the image. Assume each 
g, to be the realization of an M-dimensional random process 
G, (called the feature process), the a priori probability of B. Partition Process 
which is given as P(G,). 

Since our segmentation scheme is a supervised one, let us 
assume that the image To consists of K different number of 
textures, so that each pixel s can take any texture label 0 
to K - 1. The corresponding texture classes are denoted by 
CO . . . C K - ~ .  Also, let CLk, a subset of CL, be the training site 
for the class Ck. The Gabor features of the training site of a 
given class are used to estimate the model parameters for that 
class. We use the notation L, to denote the random variable de- 
scribing the texture label of the pixel s and the corresponding 
random process is named as the label process. L, is described 
by the a priori probability P(L,). The segmentation strategy 
is based on a hierarchical model consisting of three different 
random processes. We describe below each one in detail. 

A. Feature Formation Process 

The feature formation process describes the probability of 
assigning a value g, E R" to the feature process G, using 
the model parameters of each texture class for the pixel s. 
The pixel s can have a label L, = IC corresponding to a class 
c k ,  which is an instantiation of the label process defined by 
P(L,). Let us define the conditional probability of G, given 
the label of the pixel L, as 

(G,=g, I -L=k)  
P(G, = g,lL, = I C )  = . (3) 21 

Since the feature at each pixel is contributed by large 

The partition process defines the probability of the label 
of a pixel given the labels of the pixels in a predefined 
neighborhood of that pixel. Let N i  be a set of displacement 
vectors corresponding to a pth order noncausal symmetric 
neighborhood of the image pixels. The neighborhood of any 
pixel s is defined as the set of pixels s + T for V T E N I .  The 
operator + is defined as follows: for any pixel s = ( i ,  j )  E CL 
and any displacement T = ( I C ,  I) E N i ,  s + T = ( i  + k ,  j + I). 

Since NI is symmetric, T E NI implies that -T E Nz .  
Also, the set has a property that N:-' c N I .  It should 
be noted that a neighborhood for s does not include the 
pixel of interest s. An example of displacement vectors for 
a second-order neighborhood is 

Fig. 1 shows the structure of a typical neighborhood system. 
Consider the partition process P(L,  = klL,+,, V r  E N:), 

which describes probability of the label of each pixel s given 
the labels of the pixels in a uniform pth order neighborhood. 
The process can be modeled as a pth order MRF model defined 
by 

number of pixels within the window function of the Gabor (9) 
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Fig. 2. 
(c) Final segmentation result. 

Segmentation of textures, textured image-1. (a) Original image containing four textures. (b) Segmentation corresponding to initial network state. 

The energy function E2 can be defined as follows: It is defined by the conditional probability of assigning a new 
label to an already labeled pixel. 

Assuming that 1 is the label assigned to the pixel s ,  let us 
define the probability of assigning a new label k to that pixel as 

E~(L,IL,+~, vr  E N;) = - P(~)S(L,-L,,,). (10) 
V T E N I  

In this study, we assume that fi’ is independent of r.  So 
throughout this paper p ( r )  = fi’, where p is a positive constant. 
S( .) is the Kronecker delta function. 

given as 
The normalization constant z2 for the pait ion process is where Q is a positive constant and 2, is a nlormdization factor. 

The function is the inverse of Kronecker delta function given 
by 

0, if 1 = 0 
1, otherwise. 

- 
S(1) = 

C. Competition Process 

The competition process is based on the fact that any given 
pixel in an image can belong to only one class, and its purpose 
is to prevent multiple labels for any given pixel in the image. 

If L s  denotes the set of labels that may be assigned to the 
pixel s ,  then the net conditional probability for all labels in the 
set is given by nl~t, p ( L s  = klLs = which we denote 
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(C) 

Fig. 3. Segmentation of textures, textured image-2. (a) Original image containing five textures. (b) Segmentation corresponding to initial network state. 
(0 Final segmentation result. 

by P(Ls = kl,!,s). Therefore 

P(L,  = IClL,) = n P(Ls = klL, = 2) 
&La 

( L , = k l L , )  

2 3  

where the energy function E3( .) is 

(14) - - 

E3(Ls = k & )  = Q T ( k  - 1 )  (15) 
l € L s  

and 2 3  = n,,~,  Zl, independent of s and IC. The energy 
function E3 is such that it reduces the probability of having 
another label when the pixel is already labeled. 

D. A Posteriori Probability Formulation 
We define the a pos_teriori probability as P(Ls  = 

LIG,, L,+,, V r  E NE, L,), which describes the labeling 

L, of the pixel s given the feature measurement at the pixel s 
as G,, the labels of the neighborhood pixels and the possible 
labels previously assigned to the pixel s.Using Bayes' theorem, 
it can be written as (see Appendix A) 

P(L,  = klG,,L,+,,Vr E NE,,!,,) 
- P(G,IL ,  = IC)P(L,  = IC~L,+,, V r  E N;)P(L, = @,) - 

P(Gs)P(L,  = k )  
(16) 

Since the feature point for any pixel is fixed in the R" space 
and is known a priori, P(G,) is considered as a constant. 
There are two ways to handle P(Ls  = IC). One method is to 
assume that each pixel has equal probability of having any 
label. So, for any pixel s and any label k ,  P (L ,  = k )  = p 
where p is a constant such that C f c , l P ( L s  = k )  = 1. In 
another method, the probability P(L ,  = k )  is taken as 1 if 
s E RI, and as 0 if s E 01 where 1 # k .  For all other s and k ,  
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(c) 

Fig. 4. 
(c) Final segmentation result. 

Segmentation of textures, Magellan image. (a) Original image containing two textures. (b) Segmentation corresponding to initial network state. 

the probability is assumed known as in the first method. We 
have used the first method to characterize P(Ls  = k ) ;  hence, 
for all s and k ,  P(Ls  = k )  is considered as a constant. This 
makes the denominator of the expression in (16) a constant 
value for all s and k .  

distribution 

and Z = Z2Z3P(Gs)P(L, = k )  is a normalization constant 
independent of s and k.  

Total energy of the system is obtained as 

Etotaz = x E ( L ,  = IcJG,, L,+,, 'dr E NE, E , ) .  (19) 
The a posteriori probability can be expressed as a Gibbs s, k 

Substituting (4), (10) and (15) in (18) and (19), the total 
Gibbs energy in (19) can be written as P(Ls  = klG,, L+,, 'fr E NE, is) 

- PS(k -L,+,) + E a q k  - I )  . (20) 
V r E N I  l E L ,  1 

E3(Ls  = klis) 

(18) 
The segmentation of the textured image is carried out by 

estimating a state configuration L, for all pixels s ,  which 
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maximizes the a posteriori probability given in (16). This is 
equivalent to finding a state such that the total Gibbs energy 
in (20) is minimum. To evolve such an optimal state, we have 
used a neural network architecture that has an energy function 

is equivalent to the product Oi, j ,  k o i l , j l ,  k ,  and is active only 
- if (il, jl) is in the pth order neighborhood of (i, j ) .  The term 
S(L, - I )  is 1 only if L, # 1. If L, has an instantiation k ,  
this term is equal to -. 

defined in (20) and with a deterministic relaxation mechanism. 

IV. NEURAL NETWORK REPRESENTATION 
OF THE ENERGY FUNCTION 

An interesting interpretation of the energy function in (20) 
is that it can be expressed in terms of a set of constraints 
defined on each pixel and can be represented on a constraint 
satisfaction neural network with a suitable relaxation method. 
Consider a neural network consisting of a three-dimensional 
(3-D) lattice of neurons. For an image To of size I x J with 
K possible labels (texture classes) for each pixel, the size 
of the network is I x J x K .  Each neuron in the network 
is designated as ( i ,  j, k ) ,  0 < i ,  j ,  k 5 I ,  J ,  K ,  where 
( i ,  j )  = s corresponds to the pixel position and k denotes 
the label index for that pixel. The network can also be viewed 
as having K layers of 2-D I x J arrangement of neurons. 
Each layer is called a label layer. For a given pixel ( i ,  j ) ,  the 
corresponding neurons in the different label layers constitute 
a column of neurons, which we call the label column. 

Any neuron ( i ,  j ,  k )  in the network represents a hypothesis 
h(i, j ,  k )  indicating the label status of the pixel ( i ,  j ) .  Each 
hypothesis is provided with an a priori knowledge about its 
truth value by means of a bias denoted by Bi, j, applied to the 
corresponding neuron. Also, each hypothesis is influenced by 
other hypotheses in the lattice by means of a set of constraints. 
Let us denote the constraint from the hypothesis h(i, j ,  k )  to 
the hypothesis h(i1, j,, k l )  by means of a connection weight 
W i , j ,  k ; i l , j l ,  k l  from the neuron ( i ,  j ,  k )  to ( i l ,  j 1 ,  k l ) .  The 
weights considered are symmetric, i.e., 

W i , j , k ; i l , j l , k l  = w i l , j l , k l ; i , j , k .  

Let o i , j , k  E (0 ,  1) be the output of neuron ( i ,  j ,  k ) ,  and 
we call the set {Oi, j ,  k ,  V i ,  j, k }  as the state of the network. 
Oi, j ,  k = 1 at any instant indicates that the pixel ( i ,  j )  has 
taken a label k at that instant. We use the notation Oi, j, k (n) 
to denote the output of the neuron at nth iteration of the 
relaxation algorithm. The neural network described above has 
the energy function E H o p f i e l d  [17] as follows: 

i , j , k  i i , j i , k i  

. oi,j, k o i l ,  j 1 ,  - ~ i , j ,  koi, j ,  k. (21) 
i ,  j ,  k 

Now, we describe how to determine the bias and weights of 
this neural network in order to represent the energy function in 
(20) of the segmentation model. The first term in that energy 
function, which is the contribution of the feature formation 
process, is active only if L, = k ,  that is, if Oi, j ,  = 1 where 
s = ( i ,  j). The instantiation k for the label random variable L, 
of the pixel s = (2, j )  denotes the truth value Oi,j, = 1 of 
the hypothesis h(i, j ,  k ) .  Similarly, the instantiation L,+, = 
k ,  s + T = ( i l ,  jl) indicates that O i , , j l , k  = 1 for the 
hypothesis h(i1, jl, k ) .  So the term S(L, - L,+,) in (20) 

So the energy function in (20) is rewritten as 

E t o t a l  
L 

Comparing (21) and (23), the bias Bi, j ,  k and the weight 
Wi, j, k ;  i,, j,, k ,  can be written as 

B(i,  j ,  k )  = -Ei(G,  = g,lL, = 5) 

where s = (i, j )  and 

w i , j ,  k ;  i l ,  j , ,  k1 

2 P ,  
-201, if (i l ,  jl) = (i, j )  and k # k1 

0, otherwise. 

if ( i  - i l ,  j - jl) E N i  and k = kl 
(25) 

The expression for the weight shows the topology of con- 
nections in the network. Any neuron ( i ,  j ,  k )  at a pixel 
position ( i ,  j )  is having excitatory connections with strength 
2,8 from all neurons in a neighborhood defined by the dis- 
placement vector set N: in the same label layer k .  The -2a 
term denotes the inhibitory connections from all the neurons 
in the label column for the pixel ( 2 ,  j )  in the lattice. 

The state corresponding to a MAP probability is arrived 
using the deterministic relaxation method where the state of the 
network is updated iteratively by changing the output of each 
neuron in a deterministic manner. The state of the network is 
initialized using the condition 

(26) 
where P[G(;,,) = g(z, ,)[L(z, ,)  = I ]  is the feature formation 
process described in (8). This is equivalent to performing an 
initial segmentation using the following pixel labeling strategy 
without considering the partition and competition processes: 

Label of the pixel 

( i ,  j )  = max 1 P[G(i, j)  = g ( i , j ) l L ( i , j )  = 11. (27) 
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(c) 

Fig. 5. Segmentation of textures, band-2 IRS image. a) Original band-2 imag 
state. (c) Final segmentation result using the proposed neural network model. 

The net input lJi,j, k ( n )  of a neuron ( 2 ,  j ,  , k )  at nth iteration 
is the weighted sum of all the inputs to that neuron and is 
given by 

U i , j , k ( n )  = ~ i , j , k ; i l , j l , k ~ ~ i ~ , j ~ , k ~ ( ~ )  + B i , j , k .  
ii ,  ji, ki 

(28) 

Assuming a threshold function in the output of each neuron, 
the output of the neuron at n + lth iteration is given by 

if Ui,j,k(n) > 0 
Oi, j , k (n  + 1) = 0 ,  if Ui, j, k ( n )  < 0 (29) 

It can be shown that for a change in the output of any neuron 
{ OZ,j&), l’ if l J i , j&)  = 0. 

using (29), the change in energy is given as 

A E H o p f i e E d  < - 0. (30) 

This means that any change in the state of the network makes 
the energy decrease or remain same, but it never increases. 

(d) 
;e containing four textures. (b) Segmentation corresponding to initial network 
(d) Classification using the multilayer perceptron. 

This property is utilized by the deterministic relaxation strat- 
egy to evolve a network state corresponding to the MAP in 
an iterative manner. 

The iteration is continued until the energy changes no 
more. The state of the network at this position gives the 
optimal state at which the a posteriori probability in (16) is 
locally maximum. The segmentation result corresponding to 
this network state is found out for all pixels (i, j )  by using 
the following labeling schedule: 

Label of the pixel ( 2 ,  j )  = max Ui, j ,  k (3 1) 

where Ui, j, k is the net input of the neuron ( i ,  j ,  k )  when the 
network attains the minimum energy. 

Now, we discuss briefly the significance of the parameters 
a, /3, and the order of neighborhood p .  The values of a and /3 
define the relative importance of the constraints represented 
by the competition and partition processes with respect to 
that of feature formation process. Thus, a rough estimate of 
these parameters can be obtained by comparing the average 

k 
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(a) (b) 
Fig. 6.  Segmentation of band-3 image of the IRS data. (a) Segmentation result using the proposed neural network model. (b) Classification using the 
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multilayer perceptron. 

contributions of these random processes. After finding the 
rough estimates of these parameters, small changes in them 
do not affect the performance of the segmentation result. 
The order of neighborhood p defines the extent of receptive 
field of each neuron in a label layer. The higher the p ,  the 
higher the smoothing of the regions with same texture. But 
at texture boundaries, high p smears the boundary. A small 
p leaves misclassified regions in the output. Also, very high 
p is meaningless because neighborhood dependency of labels 
decreases as p increases. 

v .  RESULTS AND DISCUSSION 
A number of textured images were considered to study 

the performance of the proposed segmentation scheme. The 
images are categorized in increasing order of difficulty. The 
first set of images (Figs. 2(a) and 3(a)) consists of texture tiles 
made up of simple textures and are characterized by known 
texture boundaries and unknown texture models. The second 
category of images (Figs. 4(a) and 5(a)) contains images from 
remote sensing. In these images, undefined texture boundaries 
and unknown texture models make segmentation process dif- 
ficult. The results in each case show the original image, the 
initial state of the network, and the final segmentation result. 
The initial network state is also equivalent to the result of 
Bayesian classification (using (27)) applied in the feature level 
without partition and competition processes. It should be noted 
that the objective in all these cases is to segment the image 
regions into different classes specified in advance. 

Fig. 2(a) is an image of size 256 x 256 pixels consisting 
of tiles of four different textures, two of them are nearly 
deterministic (dots and diamonds), and the other two stochastic 
in nature (sand and pebbles). We have used 16 Gabor filters 
having two different bandwidths (a  = 12.5 and 6-25), two 
frequencies ( I C  = 0.2 and 0.4) and four orientations (19 = 0, 
45, 90, and 135") to characterize the image, constituting a 16- 
dimensional feature vector for each pixel in the image. Here, 
a training site consisting of 1000 pixels are used for parameter 
estimation for each class. The initial segmentation is shown in 

TABLE I 
PARAMETERS OF THE GABOR FILTERS USED FOR SEGMENTATION OF THE 

IMAGE IN FIG. 3(A). TOTAL NUMBER OF FILTERS USED HERE IS 17 
, 

No. of 
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boundaries. Fig. 4(a) shows the image of a particular region on 
the Venus surface, photographed by the Magellan spacecraft. 
The image is of size 256 x 256 and contains two textures. 
The features are extracted by using four Gabor filters, and 
a training site of 200 pixels is used for the estimation of 
model parameters for each class. The Gabor filter parameters 
are 0 = 0.125, k = 3.2, and 19 = 0, 45, 90, and 135’. A 
fourth-order neighborhood was used to characterize the image 
partition. The initial and final segmentation results are shown 
in Fig. 4(b) and (c). We have used the values 1.0 and 0.1 for 
the parameters QI and ,B, respectively. 

Fig. 5(a) shows a band-2 IRS remote-sensed image of size 
256 x 256 pixels. For supervised segmentation, we have 
identified four textures in the image. In this case, we have 
used 36 Gabor filters (with parameters 0 = 6.25, 12.5, and 
25, k = 0.2, 0.4, and 0.8, and 0 = 0, 45, 90, and 135”) to 
extract the textural features. A training site of 500 pixels is 
used for parameter estimation. A neighborhood of order 6 
is used for the partition process. Fig. 5(b) shows the initial 
segmentation. The final segmentation result using the proposed 
scheme is given in Fig. 5(c). For comparison, we provide the 
result when a multilayer perceptron (MLP) network trained 
with a backpropagation algorithm [27] is used to classify the 
features extracted from the same Gabor filter bank. This is 
shown in Fig. 5(d) (this result has also been reported in [26]). 
The training sites used to train MLP are same as those used 
for estimating the parameters of the proposed method. Visual 
comparison of the segmentation results with the original image 
shows that the result from MLP breaks the image into too 
many smaller regions, as it is not able to capture the texture 
regions as well as the proposed method. The values of a and 
,B used in the proposed network are 1.0 and 0.5, respectively. 

To study the consistency of the proposed method, we have 
obtained the segmentation results for the same image using 
band-3 data also, which are shown in Fig. 6(a) and (b) using 
the proposed and MLP methods, respectively. The result from 
the proposed method (Fig. 6(a)) has similar textured regions 
as for the band-2 data (Fig. 5(c)), since the image is same. 
The differences are due to inadequacy of single band data for 
classification of the complex texture patterns. 

VI. CONCLUSION 
In this paper, we have presented a Bayesian approach for 

the supervised segmentation of textured images that is based 
on the Gaussian random process and MRF models. The texture 
features are extracted using a set of Gabor filters with different 
frequencies, orientations, and bandwidths, and are modeled 
as Gaussian distribution by means of the feature formation 
process. The use of Gabor filters, being a multiresolution 
approach, takes care of the difference in size and distribution of 
the texture elements. The partition process not only acts as an 
image partition mechanism at the texture boundaries, but also 
smooths the segmented image at every step of iteration. The 
competition process acts as a winner-take-all network along 
the label column for each pixel, suppressing the other labels of 
the pixel. The neural network model, which is an extension of 
a Hopfield network to three dimensions, finds the segmentation 

state using the MAP criteria. It must be noted that the final state 
corresponding to a minimum energy is only locally optimal, 
but as seen from the segmentation results, the local optimal 
states themselves would give a good segmentation result. 

APPENDIX A 
DERIVATION OF A POSTERIORI PROBABILITY 

Even though the a posteriori probability given in (16) is 
straightforward, we derive the expression for the sake of 
completeness. The a posteriori probability can be written as 

Throughout this discussion, L,+, stands for Ls+r, ‘dr E N: 
and LL for Ls = 1. Also, we temporarily use the notation L,  
for the event Ls = k.  

By Bayes’ theorem 

P(Gs, L s + r ,  LLILs)P(Ls) (33) P(LsIGs, Ls+r, LL) = 
P(Gs, Ls+r, 

Assuming independence of the processes G,, Ls+r, and Li,  
we get 

Also 

s o  

We assume Gs to be independent of Ls+r and L$, 
and L’, to be independent of L,+. So the expression for 
P(L,/Gs, Ls+r, L i )  becomes 

Expressing the P(L’,ILs) and P(L,+,IL,) as 
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and 

and substituting in (37), we get the expression for 
P(LsIGs, Ls+r, L:) as 

P(LsIGs, Ls+r, 

This is equivalent to 

P(Ls = kJGs, Ls+r, La = 1 )  
- P(GslLs = k)P(Ls  = klLs+,)P(Ls = klLs = I )  - 

P(G,)P(L,  = k )  
(41) 

Substituting (41) in (32), we get (42)-(44), shown at the top of 
the page. Equation (44) gives the expression for a posteriori 
probability as in (16). 
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