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Abstract

We present an efficient multiscale approach to the segmentation of natural clutter,
specifically grass and forest, and to the enhancement of anomalous SAR image regions.
The methods we propose exploit the coherent nature of SAR sensors. In particular,
they characterize the scale-to-scale statistical differences in imagery of various terrain
categories due to radar speckle. To achieve this, we employ a recently introduced class
of multiscale stochastic processes that provide a powerful framework for describing
random processes and fields that evolve in scale. We build models representative of
each relevant category of terrain (i.e. grass and forest), and use them to direct sub-
sequent decisions on pixel classification, segmentation, and anomaly presence. The
scale-autoregressive nature of our models allows for efficient likelihood calculation over
SAR image windows. We use these likelihoods as the basis for image pixel classifica-
tion as well as grass-forest boundary estimation. In addition, anomaly enhancement
comes with little further computation. Specifically, the residuals produced by our
models in predicting fine-scale imagery from coarser-scale representations are theo-
retically uncorrelated. Thus, anomalous pixel regions are enhanced and pinpointed
by noting regions whose residuals display a high level of correlation throughout scale.
We evaluate the performance of our techniques through testing on 0.3 meter SAR
data gathered with Lincoln Laboratory’s millimeter-wave SAR.
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Chapter 1

Introduction

In recent years there has been a growing interest in Synthetic Aperture Radar (SAR)
imaging, in applications ranging from remote sensing to surface surveillance and au-
tomatic target recognition (ATR). For applications such these, the classification of
various categories of terrain for delineation (i.e., segmentation) and enhancement of
anomalous image regions play critical roles in subsequent analysis for target detection
and recognition. In light of typical coverage rates (capable of exceeding 1km?/s) of an
air-borne SAR, it is crucial to devise efficient (preferably parallelizable) algorithms
capable of performing these tasks while, at the same time, meeting the daunting
computational demands of the resulting data collection.

In this thesis, we apply multiscale approaches to the SAR image segmentation
and anomaly enhancement problems that take full advantage of the coherent nature
of SAR image formation. In particular, we build on the idea initially introduced
in [12, 25] of characterizing and exploiting the scale-to-scale statistical variations
in SAR imagery due to radar speckle. Radar speckle is a phenomenon inherent in
coherent sensors that gets its name from the grainy or “speckly” appearance of the log-
magnitude image. It has historically been thought of as a nuisance and an obstacle to
overcome as it generally corrupts the visual quality of the image. In fact methods, such

as the polarimetric whitening filter (PWF) [20], have been developed that successfully
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16 Chapter 1. Introduction

minimize the effects of radar speckle and improve overall visual quality. Since we
are not interested in visual image quality, but rather the statistical properties of
terrain categories that come about as a consequence of this radar speckle, we do not
attempt in any manner to reduce it, but rather to take advantage of its statistical
character. Since speckle plays a major role in the discussions to follow, we provide a

brief introduction to radar speckle and radar scatterers.

1.1 Radar Speckle

In representing the relationship between the emitted waveform and the received echo
in remote sensing, it is often useful to model the terrain as a discrete set of scatterers.
With each scatterer we associate a radar reflectivity, (i.e., attenuation and complex
phase). The primary goal in radar imaging is to estimate the terrain radar reflectivity
from the received echos. Ignoring noise, multipath, and other propagation losses, the
received echo from each scatterer will be an attenuated, time/phase-shifted version
of the transmitted waveform. As an example, suppose there exists a single scatterer,
B, within a region of interest with gain G and phase e’??. The received echo from

the transmitted waveform s(t) will be:
Gp €% s(t — 27),

where 7 represents the one-way propagation time from the transmitter to the scat-
terer.

Now consider a region of terrain (resolution cell) that is small in size with respect
to its range from the transmitting source. If we model the terrain within this cell as

consisting of several scatterers, f;, the received echo, r(t), may be approximated as,

r(t) ~ (z Gy, em) s(t — 27).
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We see that for each resolution cell we are essentially measuring the complex sum of
the contributions from all scatterers residing within the cell.

To relate this to the concept of radar speckle, we first note that SAR is a coherent
sensing device. Hence, unlike optical sensors that sense the magnitude of the returned
echo, SAR sensors acquire a measure of the complex radar reflectivity function of the
illuminated terrain. As stated above, a SAR image pixel represents a measure of the
coherent sum of the complex radar reflectivity of all radar scatterers within each reso-
lution cell. As a result, both constructive and destructive interference occurs. Smooth
variations in the true reflectivity log-magnitude ' between adjacent resolution cells
may accordingly be visually perceived in the sensed image as sharp gradients due to
random variations in scatterer phase. Moreover, as image resolution is varied (e.g.,
as we consider a sequence of images at a succession of scales), the set of scatterers
contributing to each pixel changes and thus so does the resulting interference. Conse-
quently, in looking at imagery at successive scales, we also expect to see some degree

of statistical variability.

Jm L Im

\

Re Re

Figure 1-1: Example displaying resolution cell magnitude variation due to the effects
of speckle for two distinct cells. The bold vectors in each plot represent the return
due to the sum of the scatterers for each cell.

Tt is standard practice to view the log-detected image. In log-detection, each pixel, p; in the
original image is represented by 20 X log (|p;|) in the log-detected image. This reduces the dynamic
range for easier visualization.
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As a simple example of the effects of radar speckle we display, in Figure 1-1,
a vector plot of hypothetical radar returns from two distinct resolution cells, each
containing four discrete scatterers whose reflectivities display similar magnitude but
random phase. The magnitude of the returns for each resolution cell differ greatly, as
is seen by the bold vectors, even though the scatterers in these two cells have similar

overall magnitude and likely appear similar visually.

1.2 Multiscale Modeling

To capture the resulting variability of SAR imagery across scale, we employ a recently
introduced class of multiresolution stochastic models [1, 8] that provides a powerful
framework for describing random fields that evolve in scale. This framework uses a
pyramidal tree structure in which each tree node corresponds to a pixel at a particular
image location and resolution; the offspring of the node, in turn, correspond to the
pixels, in the same location, at the next finer scale, (i.e., each pixel at a given scale
is subdivided, at the next scale into 4 pixels). The statistical variability of this set of
imagery for any particular terrain type is then captured by a scale-recursive stochastic
model. The exact model and further insight will be provided in Chapter 2.

In [12, 13] this modeling approach was exploited to enhance the performance of the
so-called discrimination stage of the ATR system developed at Lincoln Laboratory {15,
22]. This was accomplished by performing a series of likelihood ratio tests on regions
of interest for the purpose of classification. In this thesis we employ multiresolution
models for classification in a similar manner, yet for a different purpose. Namely,
we perform a series of classifications over image regions for the purpose of image |
segmentation. This segmentation, in turn, provides a means to enhance anomalous

regions by identifying statistical outliers given background classifications.
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1.3 Thesis Contributions

The work in this thesis represents an extension of the work performed by W.W. Irving
in {12, 13]. Our contributions to this area include applying multiscale SAR image
classification to the segmentation of SAR imagery and subsequently, to anomalous
pixel detection. To accomplish this, we employ multiscale models of SAR imagery, as
introduced in [12], and use these models for terrain classification and the identification
of statistical outliers. The utility of each of these contributions lies primarily, yet
not exclusively, in the application to ATR. We will see that each offers a potential
increase in the accuracy of ATR systems such as the baseline system currently under

development at Lincoln Laboratory.

1.3.1 Multiscale Terrain Segmentation in SAR Imagery

By image segmentation one refers to the identification of pixel regions that display
similar characteristics under some metric. To perform this in an automated fashion,
one would provide an image as input and may, for example, receive an N-valued image
out. Each of the values, 1,2, ..., N, would then provide an index to a particular cate-
gory. For example, to segment grass and forest, we wish to obtain a two-valued output
image as in Figure 1-2. In this figure, dark and light grey represent categorization as

forest and grass respectively.

Figure 1-2: Desired output image for a binary segmentation of grass and forest.

Our contribution to this area is a methodology to segment various categories

of natural clutter in SAR imagery. We specifically demonstrate the utility of this
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methodology for the segmentation of regions of trees and forest from open fields and
grass. Such segmentation is of considerable value in assisting an ATR system. For
example, if a densely forested region is identified, then detection of anomalous pixels
in such a region is unnecessary since high-frequency SAR is incapable of providing
imagery of targets under forest canopies. Furthermore, targets of interest often at-
tempt to conceal themselves near tree lines, thus accurate estimation of tree lines can

be of considerable value in focusing further ATR algorithm attention.

Figure 1-3: Successive classification segmentation approach.

Our segmentation approach focuses on multiscale classification of SAR imagery.
By multiscale classification, we refer to classification based on multiscale models. It
is assumed that these models are generated off-line (i.e., before processing begins).
The classifications are accomplished by means of multiscale log-likelihood ratio tests.
As was demonstrated in [12, 13], these multiscale log-likelihood calculations may be
performed in an extremely efficient manner. Accordingly, this yields a highly efficient
means of classification.

As mentioned above, we exploit the efficiency of existing multiscale classification
techniques to achieve a segmentation of our image. The procedure is thus performed

as a series of classifications of disjoint regions making up the image. Each region is
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classified based on a window of pixels centered on the region as is illustrated in Fig-
ure 1-3. If a terrain boundary is detected within the window region, the classification
is deferred, otherwise the resulting classification holds for the block of interest. This
procedure is repeated for each block within the image independently. By deferring
decisions on regions suspected of containing terrain boundaries, we avoid possible
misclassification due to model mismatch and only classify those regions that offer a
high level of confidence (e.g., homogeneous regions of either category) in the assigned
classification.

Each region receiving a classification of “defer” is subject to further scrutiny.
This is accomplished in a hierarchical manner. In particular, we subdivide the window
region surrounding the block of interest into quadrants and independently consider the
classification of each quadrant in a manner analogous to the above procedure. Each
quadrant classified again as “defer” is again éubdivided and the process repeated.
The procedure terminates upon determining a majority-rule classification for the
entire window region or when the sub-quadrants become small enough such that
statistical significance is lost. This classification is assigned to the original block of
interest. A positive aspect of this approach lies in the fact that it requires little further
computation following the original classification. This, and many other points central

to this procedure are discussed in detail in Chapter 3.

1.3.2 Multiscale Anomaly Enhancement

By segmenting regions of natural clutter, as outlined in the previous subsection, we
gain the ability to identify pixels that are anomalous with respect to the statistical
properties of the now-defined background (i.e., segmentation). Such identification
plays a key role in the initial stage of Lincoln Laboratory’s baseline ATR system. This
initial stage, detection, serves to identify those image regions that are statistically
inconsistent with their background. One may imagine that man-made or cultural

clutter would yield statistical properties inconsistent with those of natural clutter.
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Hence, statistical outliers in imagery consisting primarily of natural clutter could
possibly correspond to targets of interest.

Presently, the commonly accepted CFAR [21, 22] detection algorithm is performed
to accomplish the intentions of the detection stage. This routine estimates, for each
pixel, the second-order statistics of the background and creates a statistic that, if con-
sistent with its background, would have zero-mean and unit variance. Thus outliers
may be identified by merely thresholding the CFAR detected image. As mentioned
above, our multiscale segmentation also provides a means of anomalous pixel iden-
tification. This is accomplished by noting the statistical properties of each terrain
model. Those pixels whose statistical properties are inconsistent with those of the
model corresponding to the pixel’s classification are identified as being anomalous.
We will see that not only do we acquire a measure of anomalous behavior throughout
scale, but additionally we acquire this at very low computational cost. We present

the full discussion, several variants on this procedure, and results in Chapter 4.

1.4 Thesis Organization

In Chapter 2, we provide preliminary discussions on several topics central to this
thesis. In particular, we introduce the basics of SAR image formation, an overview
of multiscale stochastic processes with an emphasis on multiscale modeling of SAR
imagery, and describe the efficient calculation of likelihoods for discrimination between
competing models. Chapter 3 describes the central part of this work, namely the
classification of SAR imagery for subsequent segmentation and the identification of
boundaries between different terrain regions. We begin the chapter by describing the
generation of multiscale models for each terrain category, and proceed by detailing
the procedure in a theoretical framework. We finish by addressing several key issues,
including block and window size selection, and offer experimental results using actual

SAR data. Chapter 4 details the application of these multiscale segmentation results
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to the enhancement and subsequent identification of anomalous regions within the
imagery. We begin by providing an overview of the baseline ATR system being
developed at Lincoln Laboratory and of CFAR detection. The efficient multiscale
anomaly enhancement procedure is defined and evaluated. Experimental results are
provided, again using actual SAR data. We finish by providing conclusions regarding
the utility of each contribution as well as possible paths for future extensions to this

research.

[
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Chapter 2

Background

We provide in this chapter some background material on topics central to this thesis.
In Section 2.1 we discuss Synthetic Aperture Radar (SAR) imaging with an emphasis
on stripmap mode processing. In section 2.2 we describe the modeling of multi-
scale stochastic processes, concentrating on multiscale modeling of SAR imagery. We
conclude with an overview of multiscale likelihood calculation and describe efficient

methods for their calculation.

2.1 Synthetic Aperture Radar

Synthetic Aperture Radar is a methodology for producing extremely high resolu-
tion imagery. This is accomplished by merging individual radar returns, collected
at discrete intervals, to simulate a synthetic array. Finer resolutions are achieved by
merging a larger number of contiguous returns. This is analogous to array processing
concepts in which a larger number of array elements provides a finer beamwidth and
consequently, higher resolution. The fundamental objective of SAR is to increase
the azimuthal resolution capabilities of conventional radar by exploiting differences
in range rate along the azimuthal direction.

SAR systems generally operate in one of two modes, stripmap and spotlight.

25
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Figure 2-1: Stripmap mode SAR . The antenna beam is fixed perpendicular to the
flight path and at some elevation angle with respect to the ground. The resulting
footprint traces a swath parallel to the path of the platform.

Each mode serves a particular imaging purpose. Spotlight mode, for example, is
characterized by a refocusing of the antenna beam such that a particular terrain
region is illuminated at each look. Accordingly, this mode is generally used to gather
high resolution imagery of a limited ground region. Stripmap SAR imaging, on the
other hand, provides imagery over ground swaths, spanning several kilometers in
length. In this thesis we will focus on the application of multiscale image processing
techniques to stripmap SAR imagery. Towards that end, we provide an in-depth

discussion of stripmap mode SAR processing.

2.1.1 Stripmap Mode SAR

Stripmap SAR Geometry

Figure 2-1 [19] shows the geometry associated with a side-looking stripmap SAR. In
this figure, the antenna is focused at a squint angle of 0 degrees (i.e., perpendicular

to the flight path), and at a fixed elevation angle with respect to the ground. Clearly,
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operation at various elevation and squint angle combinations is possible, however
for simplicity we will assume throughout this discussion that the antenna remains
focused in this manner. The portion of the ground illuminated by the antenna’s
beam at any given moment is referred to as the footprint and the ground region
illuminated by this footprint over time, the swath. The range to the center of the
footprint is commonly referred to as the slant range. All future references to range
in this section will imply slant range, which via simple trigonometric manipulations

will yield true ground range.

Pulse Compression

The ideal waveform for pulsed radar systems is impulsive in nature. Impulsive wave-
forms provide both the narrow spatial extent required for high range resolution and
the energy required for high signal-to-noise ratio (SNR) in the measured echo. Im-
pulsive waveforms, however, are non-optimal for many realistic applications. Their
limited spatial extent requires extremely high power transmission levels to obtain
SNR reasonable for detection. Moreover, typical transmitters are often incapable of
meeting such high power requirements. This limitation may be circumvented by ap-
plying a technique commonly referred to as pulse compression. Pulse compression is
made possible by transmitting a high bandwidth pulse-like waveform and processed
the echo so as to compress the received energy in time. The use of high bandwidth
waveforms reduces the peak power requirements of the transmitter by redistributing
the energy throughout the spectrum. Furthermore, the compression process allows
for finer range resolution. As with simple pulsed radar systems, the temporal delay
of the compressed pulse may be used to estimate true target range. SAR processing

exploits pulse compression to gain high range and azimuthal resolution.
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Stripmap SAR Processing

Stripmap SAR processing [19] exploits pulse compression to obtain fine range reso-
lution. The high bandwidth waveform typically transmitted is the linear FM chirp.

This waveform is characterized by a constant rate of change in frequency and is given

by,

s(t) = ™ rect (Ti)’ (2.1)

P

where,

1 |t <t
rect(t) £ <2

0 otherwise
The constant a > 0, determines the rate at which the frequency varies and is conse-
quently called the chirp rate, while the temporal extent of the waveform is determined

by T,. This waveform is modulated on a carrier frequency, f., for transmission. The

transmitted waveform is,
Re {s(t)ejz”f°t} : (2.2)

The received echo is a function of pulse transmission time index number, n, integration
time interval, A, and time. In Figure 2-2, we see this scenario where we obtain a return
from the radar reflectivity function ¢(z,y) over the entire radar footprint at discrete
spacings of distance A.

We model the return as,

2R(z,y — nA))

r(t,nA) = /_-:o /_:ow(:c,y—nA) G(z,y) Re {s (t—

ef[%fc(t-iﬂ"i;"“l)”f“’(@y)]} dz dy. (2.3)
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Flight Path (y)

o

Slant Range x)

Figure 2-2: Slant Tange stripmap SAR geometry

In the above, the complex radar reflectivity, ¢(z,v), that we would like to estimate

is,
9(7,y) = G(z,y)ei®a@w) (2.4)

where G(z,y) is the two-dimensional gain function and ®(z,y) the associated phase.
The antenna spatia] gain function is represented in (2.3) by w(z,y — nA). This
function uniformly decreases away from the direction of transmission and accounts
for gain roll off. The contribution of this function vanished outside the radar footprint,
thus allowing us to use infinite regions of integration. The range to a scatterer at
location (z,y) with the nt* pulse transmission is represented in (2.3) by R(z, y—nA).
We see that the return at any time for a distinct pulse transmission corresponds to an
integration over the entire radar footprint of delayed, phase-shifted, and attenuated
versions of the transmitted waveform.

For simplicity, we will assume that the antenna gain function, w(z,y), is separable

and may be approximated by the product, Waz(Y)Wra(z). The quadrature demodu-

e Ll R e L ] = Rl I —

ok

T o
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lated ! return may, as a result, be written as,

c

6nd) = [ [ @ ety = nd) (o) (-

e—jZkR(x,y—nA) d.T dy’ (2.5)

2R(z,y — nA))

where k = 27 f./c is the wave number at carrier frequency f.. Due to the narrow
azimuthal extent of the antenna footprint, the range, as a function of azimuthal posi-
tion, should vary only slightly over the footprint and may be approximated by x. This
slight variation over azimuth will, however, have a drastic effect on the exponential
term in (2.5). Accordingly, we approximate R(z,y — nA) in the exponential term of

(2.5) by the first two terms in its Taylor series expansion:

(y — ’flA)Z
— — 2 — 2 ~ ~~
R(:c,y nA) = \/:c +(?J nA)? =~ z+ 3

We may now, as a result, approximate the quadrature modulated echo as,

+o0 p+oo 2z
F(t,nA) = / / wra(l') waZ(y - ’H,A) Q(I’ y) § (t B ?)
e T g 26)

By incorporating a change of variables and evaluating (2.6) at time t = 2Ry/c, we

obtain the spatial form of (2.6):

Flz,nA) = /_:o /__:o Wra(p) Waz(0 — nd) q(p,0) s (M)

C
e~ I2kp e—jk(a—nA)z/p dp do. (2.7)

Range and azimuth compression may now be obtained by exploiting the range

!Quadrature demodulation is a process in which the received signal is down-converted and sepa-
rated into its in-phase (real) and quadrature (imaginary) components. This enables representation
of the underlying complex nature of a real radar return.




2.2. Multiscale Modeling of SAR Imagery 31

and azimuth dependent chirp terms in (2.7). In particular, cross-correlation with a

matched filter of s(t) evaluated for scatterers at range Ry,
hre = s*(2Ry/c), (2.8)

provides the desired range compression. Similarly, azimuthal compression is possible
due to the chirp-like exponential term in (2.7). Since this term is azimuth-dependent,

cross-correlation (at some range p = Rp) with the matched filter,
Ry, = e I*(A)*/Ro) poct (%?) , (2.9)

provides azimuthal compression for a synthetic aperture of length L.

2.2 Multiscale Modeling of SAR Imagery

We use as a basis for the representation of SAR imagery, the multiscale framework
introduced in [1]. This concept was introduced in [12], where multiscale models of
SAR imagery were used to discriminate between regions of cultural and natural clut-
ter. We provide here the methodology for developing multiscale stochastic models
of SAR imagery. We begin with an overview of the multiscale framework as the
basis for modeling and analysis of multiscale stochastic processes. This is followed
by a discussion of multiscale SAR image modeling. In particular, we note that the
models are constructed starting with some finest-scale SAR training image. Accord-
ingly, we identify a technique for generating a multiresolution sequence of imagery
and subsequently mapping it into the multiscale framework. We then motivate the
research undertaken herein by identifying a restricted class of multiscale models for
SAR imagery. We finish by providing a precise method for multiscale model param-

eter identification.
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2.2.1 Multiscale Framework

The multiscale framework developed in [1, 12] enables one to systematically describe
and analyze processes that evolve in scale. For those processes that lend themselves to
a multiresolution description (i.e., SAR imagery), this framework provides efficient,
highly parallelizable methods for modeling and analysis. Within this framework,
processes are mapped to indexed nodes on trees. The trees are graphs in which
each node, starting with a root node, is connected to a specified number of “child”
nodes. Thus each level of the tree may represent a distinct scale/resolution in the
representation of a random process, with the resolutions proceeding from coarse to
fine as the tree is traversed from top to bottom (root node to terminal nodes). An
example of a ¢™ order tree (¢ children per node) is displayed in Figure 2-3. This
mapping provides a means of visualization as well as a representation of inter-nodal
relationships crucial to the development of dynamical models.

Both an upward shift (coarser scale) operator, ¥, and a downward shift (finer
scale) operator, o, are defined for these trees. Hence, if we let s denote any node on
the tree, s, s72, etc., respectively refer to the parent, grandparent, etc. of node s.
Similarly, sy, sas, ..., sa, refer to the ¢ children of node s. The state values at the
indexed tree nodes (initialized by the random vector x4 at the root node) may thus

be described by the forward model (coarse-to-fine recursion)
z(s) = A(s)z(s¥) + B(s)w(s), (2.10)

where w(s) represents white driving noise and A(s), B(s) are matrices of appropriate
size. A model for the coarse-to-fine evolution of the multiscale stochastic process is
identified by defining A(s) and B(s) for all s.

One of the fundamental characteristics of these multiscale processes is that they
exhibit the Markov property. As a result, conditioned on the state value at node s,

the processes defined on each of the distinct subtrees extending away from node s are
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Sa; Say 50y

Figure 2-3: The first three levels of a ¢** order tree are shown. The parent of node s
is given by s and the children are given by sa; through sa,.

mutually independent. This property is a direct consequence of the additive white
driving noise term, w(s), and results in highly efficient signal processing algorithms

for multiscale stochastic processes defined accordingly.

2.2.2 Multiresolution SAR Image Sequence Generation ‘"*f

The natural starting point for multiscale modeling of SAR imagery is a multiresolution
sequence of SAR images which, in some sense, captures the essence of the terrain being
modeled. To attain a model for regions of forest, for example, the logical choice would
be a sequence of SAR images, at various resolutions, of some particular representative
region of forest. Because the azimuthal resolution of SAR imagery is dependent upon
the number of returns (i.e., synthetic aperture length) employed in post-processing,
the consideration of SAR imagery at multiple resolutions comes naturally. With
direct access to the raw radar echos, one may accordingly construct SAR imagery at
several resolutions simultaneously. In this thesis, however, we merely have access to
the finest-scale SAR imagery formed from the raw returns. Hence, we provide the

system by which we emulate SAR imagery at several coarser resolutions from some
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finest-scale image for the purpose of multiscale modeling and analysis.

The “coarsening” process is accomplished with the following succession of steps:
e Coherent averaging

o Log-detection

e Mean subtraction

The coherent averaging is accomplished by summing blocks of pixels in the finest-
scale complex valued image, Zy. For example, to obtain the complex valued image
at resolution m, Z,,, 2™ x 2™ pixel blocks in Z, are summed. This procedure is
attractive in that it may be recursively applied. Specifically, the complex valued
image at resolution m is acquired from the complex valued image at resolution m — 1

as,

Im(k’l) = Zm—l(l_k/2-|’|-l/2.|)’ (2'11)

where [z] is the smallest integer greater than or equal to z. The impetus behind this
approach lies in the treatment of each pixel as a resolution cell. Each complex pixel
value in this representation depicts the coherent sum of the returns from the individual
scatterers within the resolution cell. Consequently, in reducing the resolution by a
factor of two (i.e., doubling the resolution cell size), the individual scatterers in four
adjacent cells in the finer resolution image will contribute to one cell in the coarser
image. Although this is an oversimplification, it does provide for a reasonable and
efficient approximation to true coarser resolution imagery. Moreover, this is essentially
a low-pass filtering and decimation operation, and may thus be viewed as reducing
SAR pulse bandwidth and synthetic aperture length simultaneously. We note that
this operation is best suited for finest-scale imagery, Zy, consisting of M x N pixels

for M = 2P and N = 27 for some p and gq.
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Although the first step provides a multiresolution sequence of SAR imagery, fur-
ther processing is performed to ensure that the data is well behaved. Log-detection of
each complex valued image, Z,,, achieves, among other factors, a reduction in image

dynamic range. The log-detected image, Z,, is calculated as,

Note that the imagery is converted to log-magnitude because the multiscale recursive
models that we consider have empirically proven most effective using this representa-
tion. Use of the complex imagery directly is impractical because of the variability of
the phase. In addition, the log-magnitude of the imagery provides statistically more
well-behaved residuals than the magnitude imagery.

As a final step, we subtract out the sample mean of each image. The resulting

image, I, is computed as,
L.k 1) = T (k1) — fim, (2.13)

where,

M—1 -1

in = (Fog) & 5 Znlisd), 2:14)

i=0 j=0

and the finest-scale image contains M x N pixels. This process offsets any spurious

DC gain variations between successive stripmap SAR passes.

2.2.3 Multiresolution SAR Image Sequence Mapping

We now consider a multiscale sequence, Iy, I3, ..., Ir, of SAR images, produced via
the method described above in Section 2.2.2, where I; and I, correspond to the

coarsest and finest resolution images respectively. We would like to create a mapping
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for each pixel in this sequence of images to nodes on a multiscale tree. In doing
so, we produce a multiscale process that may be used as a starting point for model
development. |

As previously mentioned, we assume a dyadic variation in resolution between
images at successive scales. Hence, for a finest-scale image Iy with resolution § x §
consisting of an M x NN array of pixels (with M, N = 2P 27 for some p,q), each
coarser resolution image [, has 2=™M x 2~™N pixels and resolution 2™§ x 2™§. In
this arrangement, each pixel in image I,, will correspond to four “child” pixels in
image I,,_;. This indicates that a 4t" order tree, or quadtree, provides a natural order
for the mapping. Furthermore, each node s on the quadtree can be thought of as
having associated with it a 3-tuple (m, k,1), where m denotes scale and (k,!) denotes
two-dimensional image pixel location. That is, each node s on the tree is associated
with one of the pixels I;,(k,[) corresponding to pixel (k,l) of SAR image I,,. As an
example, Figure 2-4 illustrates a multiscale sequence of three SAR images, together
with the quadtree mapping. Here the finest-scale SAR imagery is mapped to the
finest level of the tree, and each coarse scale representation is mapped to successively
higher levels. Furthermore, we use the notation /(s) to indicate the pixel mapped to

node s.

1,00,0)

/ ’l . ’/I
TALLD
v/_ AL
1,00

To.0y L1402}, ~103)
1,00 101 108 ~1413)
1420} 2. F122] ~1423)

1430 1431, 1,602, 103

Figure 2-4: Sequence of three multiscale SAR images mapped onto a quadtree. The
pixel value at scale m and position (k,!) is denoted by I,,(k,1).
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2.2.4 Scale-Autoregressive Model Class

In this thesis, as in [12, 13], we focus on a specific class of multiscale models, namely

scale-autoregressive models of the form
I(s) = ay(s)I(s7) + ax(s)I(s7%) + ...+ ar(s)I(s7%) + w(s), ai(s) € R, (2.15)

where w(s) represents white driving noise, and R the order of the regression. Restric-
tion to such a class of models has several motivating factors, most significantly, the
underlying physical process. As previously mentioned in Chapter 1 and illustrated
in Figure 1-1, SAR imagery will inherently exhibit the phenomenon of radar speckle.
Specifically, SAR imagery will display this phenomenon throughout scale due to the
inclusion of different sets of scatterers in a given resolution cell for imagery at various
resolutions. As a result, although one would expect to be able to predict, to some
extent, a pixel value from its ancestors, the degree of success in doing so will be lim-
ited by speckle. The coefficients in (2.15) capture the prediction of the pixel at node
s from its ancestors, while the white noise term w(s) depicts the unpredictability in
this prediction due to speckle.

For homogeneous regions of texture, we have experimentally found that the pre-
diction coefficients (the a;(s) in (2.15)) tend to be spatially constant at any given
scale. That is, the coefficients, a;(s),...,agr(s), in (2.15) depend only on the scale of
node s, denoted by m(s), and may thus be represented as @1,ms), - - - , @rm(s)- Further-
more, the probability distribution for w(s) depends only on m(s). Thus, identifying
both the regression coefficients as well as the probability distribution for w(s) at each
scale completely specifies the model. This provides further motivation for the scale-
autoregressive model restriction. Namely, the model may be identified with a small

number of coefficients per scale. Multiscale models of homogeneous regions of SAR
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imagery are accordingly distinguished by models of the form

I(s) = a1,ms)I(57) + @om(s) L(s72) + ... + aRm(s) L (STR) + w(s), @im(s) € R. (2.16)

2.2.5 State Augmentation

By implementing the scale-autoregressive model class introduced in the previous sec-
tion, we clearly violate the Markov property that is so crucial to efficient processing
qf multiscale processes. We circumvent this dilemma by following the procedure of
state augmentation used in converting autoregressive time series models to state space
models. Namely, we associate to each node s an R-dimensional vector of pixel values,
where R is the order of the regression in (2.16). The components of this vector cor-
respond to the SAR image pixel associated with node s and its first R — 1 ancestors.

Specifically, we define

T
x() = [ 1) I(s7) - 170 | (2.17)
Accordingly, the recursion in (2.10) takes on the form
Q1,m(s) a2 m(s) AR—1,m(s) QARm(s) 1
1 0 0 0 0
x(s) = 0 1 0 0 |x(s7)+ |0 |w(s) (2.18)
0 0 1 0 0

It is clear from (2.18) that by associating the vector z(s) in (2.17) with each node
s, the vector values at each node depend solely on the values at its parent. This

confirms that the Markov property is preserved.

&
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2.2.6 Multiscale Model Identification

As previously mentioned, identification of multiscale models for homogeneous regions
of SAR imagery may be accomplished by specifying the model coefficients a; m(s), - - -,
@Rm(s) 0 (2.16) and the probability distribution for w(s) at each scale. This is initi-
ated by selecting a finest-scale homogeneous region of SAR imagery that sufficiently
reflects the nature of the terrain being modeled (i.e., training region). Ideally, the
pixel size of this training image will be a factor of 2 in both range and cross-range,
allowing for multiresolution image sequence generation following the procedure in
Section 2.2.2. Accordingly, a multiresolution sequence of SAR images, Iy, I, ..., Iy,

is generated from this image. The regression coefficients for each scale k are obtained

by the standard least-squares minimization,

a, = arg min { > [I(s) —a l(s¥)—...— aR,kI(sﬁR)]"’} , (2.19)

AERE | (5| m(s)=k}

where

a = [a1,k A2k - aR,k]T,

and R represents the regression order. By varying R, we can achieve a tradeoff
between computational complexity and model accuracy. We have found R = 3 to be
more than adequate for the modeling of SAR imagery of grass and forest.

Providing a statistical characterization for the prediction error residuals at each
scale k, completes the model description. To accomplish this, we first evaluate the
error residuals in the prediction of each scale of Iy, I;,..., I (generated from the
training image) using the coefficients calculated in (2.19). In other words, we use the
a; found in (2.19) to evaluate all {w(s) | m(s) = k} in (2.16). Theoretical distribu-
tions which provide good fits to the normalized histograms of these residuals at each

scale are subsequently chosen.
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2.3 Multiscale Likelihood Calculation

Multiscale stochastic models offer insight into a broad array of problems. In addition,
as mentioned in Subsection 2.2.1, they are quite attractive in that they afford for
extremely efficient signal processing algorithms. Central to this thesis is the efficient
manner in which likelihood ratios may be computed for competing multiscale models.
Specifically, the Markov property associated with the multiscale modeling framework
allows for likelihood calculations that are indeed extremely efficient and parallelizable.
We offer here the methodology for multiscale likelihood calculation both for general

multiscale stochastic models as well as our restricted scale-autoregressive model class.

2.3.1 General Multiscale Likelihood Calculation

Consider a set of multiscale measurements, Y, on a ¢** order tree. The likelihood of
‘attaining this set of measurements is defined by some multiscale stochastic model,
or equivalently, some joint probability distribution, py(Y). Out aim is to outline a
tractable method to calculate such likelihoods given a set of multiscale measurements.

We begin by defining some notation. For any node, s, we let Y, represent the set
of finer-scale multiscale measurements extending from and including s. Using this
notation, the measurement subsets extending from the g children of s are referred
to as Ysa,, Ysay, '+ *, Yia,. This syntax may be extended to the g children of saj,
for example, where these g subsets are referred to as Yiarars Yearan, "+ * ) Ysara,- This
set notation is displayed in Figure 2-5 for a third-order tree. Furthermore, for this
discussion we will refer to the individual measurement at node s as y,.

If we define the root node as sg, the likelihood of obtaining the full set of mea-
surements associated with sy and all finer-scale representations, Y;,, is given by the

joint distribution py(Y;,) or, by Bayes’ law,

pya (yso) py (Ysocxl; }/;oag, R Ysoaq I yso) . (220)
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Yo, Y,

sa, sa, S0y

Y,

so,e oo, se,ay

Figure 2-5: Multiscale measurement set notation

The g sets are, due to the Markov property, independent and (2.20) may accordingly

be rewritten as,

Py, (Uso) [Py (Yaoas | Uso) By (Veoas | Us0) Py (Yeoay | ¥s0)] - (2.21)

Within the square brackets in (2.21), there are ¢ terms of the form py(Ysoa, | ¥so)-

Reapplication of Bayes’ law allows each of these terms to be rewritten as,

Dy, (ysoai l yso) Py (},5001'01 » Ysoasans ™" " Y;oa.'aq I Yso» ysoa;) ) (2-22)

or equivalently,

Dy, (ysoae l ySo) Py (YSOaial ) Y;oa.-aga T YS()aiaq | ySt)a.') . (2'23)

As before, in the progression from (2.20) to (2.21), independence of the individual
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sets allows each of the terms in (2.23) to be rewritten as,

pys (ysoai | ysa) [py (Ysoa.-al | ysoa;)py (Y;oa,-ag I ysoa;) o 'py (Ysoa,:aq l ysoai)] . (224)

By recursively following this scheme down each branch of the multiscale tree to the

terminal nodes, the final representation for the likelihood is,

py (Yso) = Py, (Uso) l'!qpys s | ys7) (2.25)

where S is the set of all tree nodes, excluding the root node sq, for which there exist
measurements. If, as is commonly the case, we are interested in log-likelihoods, further
simplification is achieved. The log-likelihood for the multiscale set of measurements

is merely the sum of the conditional log-likelihoods at each node,

log {py (Ys)} = log{py, (so)} +D_log {py, (s | ys7)} - (2.26)

2.3.2 Multiscale SAR Likelihood Calculation

Likelihood calculations are central to the classification of and discrimination between
various categories of SAR imagery. For example, in [12] the calculation of likelihoods
provided the basis for discrimination between SAR imagery of natural and man-made
clutter. Given a region of SAR imagery, I, we can calculate the individual likelihoods
of obtaining the sequence of images, Iy, I, . .., I, resulting from successive coarsening
of I. These likelihoods may subsequently be used to obtain a sufficient statistic for
SAR image terrain classification.

Consider a complex-valued region of SAR imagery, I, and a multiscale model, M;,
for SAR imagery representing a particular terrain category. We begin by creating a
multiresolution sequence of SAR images, Iy, I3, ..., I, from I following the procedure

described in Subsection 2.2.2. This sequence of images is subsequently mapped to
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vector valued nodes on a quadtree as outlined in Subsection 2.2.5. As previously
mentioned, this mapping preserves the Markov nature of the multiscale models and
enables us to follow the efficient likelihood calculation techniques described by (2.25)
and (2.26) in the preceding subsection. As an example, in Figure 2-6 we illustrate
this mapping for a third order regression (R = 3) and a multiscale model spanning
4 scales (P = 4). In this figure, S; represents the set of all nodes at scale ¢, and
X; the imagery mapped to these nodes. We illustrate, with the bold images to the
right of each scale, the fact that data at each scale after the mapping corresponds
to prior data at several scales (i.e., SAR images at several resolutions). Note that
the dyadic tree representation of the multiscale process is used solely for simplicity

in presentation and implies nothing about the process itself.

Ss( A

S, <

VAN

So\/\/\g

Figure 2-6: Illustration of the mapping involved via state-augmentation. The S;
represents the set of all nodes at resolution 7, and X; the SAR imagery mapped to
these respective node sets.

We may now evaluate the likelihood of obtaining Iy, I1, . . ., I, given the multiscale
model, M,;. We first note, using the notation in Figure 2-6, that this likelihood is
statistically equivalent to the likelihood of obtaining the data Xg, Xy, - -+, Xp. Hence,
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we may directly apply (2.25) to evaluate this likelihood,

Plo,n,.... I M (lo, I, ..., Iy | M) = px (Xp) H pz (z(s)lz (s7), M1), (2.27)
se{S}

where S denotes the set of nodes {Sg, S1,---,Sp_1}. From (2.18) it is clear that the
individual densities, p, (z(s)|z (s7), M1), are statistically equivalent to the prediction

error residual distributions,
w(s) = I(s) - [alvm(S)I(sﬁ) + a2m(syI(sV?) + ... + aR,m(s)I(sﬁR)] , (2.28)

given the particular multiscale SAR terrain model M,. Consequently, we may refor-

mulate (2.27) as,

Prony,... .oy (o, I,y - I | My) = px (Xp) [[ pw (w(s) | My). (2.29)
s€{S}

In Chapter 3 of this thesis, we compute a statistic to determine which of two
competing multiscale models provides the best match for a SAR image region. This
statistic, £, is defined as the log-likelihood ratio of obtaining a multiscale image se-
quence for each of the two models. This statistic, for models M; and M, is given

by:

t = log {pfo,h ..... IL|M1(I0)I1a .. -,IL | Ml)} -
log {p[o,[l,...,ILle(IO7 I17 v 7IL l Mz)} . (2'30)

Using the results in (2.29), it is clear that this is equivalent to,

t = log {Px (Xp) I puw(w(s)| Ml)} — log {Px (Xp) II pu(w(s)] Mz)}

se{S} s€{S}
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= ]I log{pu (w(s) | M)} —log {pw (w(s) | M2)}. (2.31)
se{S}

This statistic may be calculated by merely summing the individual residual log-
likelihood differences given the two models. Hence, classification may be achieved

in an extremely efficient manner.
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Chapter 3

Natural Clutter Segmentation

In this chapter we describe a, procedure for the classification and ultimate segmen-

g

tation of SAR imagery containing natural clutter. The starting point for the de-
velopment of this procedure is the construction of multiscale stochastic models for
homogeneous regions of SAR imagery of various terrain categories, as described in
the preceding section. As an illustration of the utility of this approach we focus
on segmenting and distinguishing between two broad terrain categories; namely, for-
est and grass. In addition to providing a two class example of this approach, such
segmentation provides information that may be exploited for ATR. As discussed in
Chapter 1, a forest-grass segmentation may identify vast regions of forest. Hence,
one may envision an algorithm that utilizes this information to increase efficiency by
subsequently ignoring these regions since high-frequency SAR is incapable of pene-
trating forest canopies. Moreover, targets of interest often attempt concealment by
hiding near grass/forest boundaries. By identifying such regions, we may efficiently

focus future processing.

47
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3.1 Model Selection

Upon choosing the terrain categories of interest for the particular application (i.e.
grass and forest as we have chosen here), we must first construct multiscale models
representative of each class. This is performed by following the procedure outlined
in Chapter 2 using homogeneous image regions of each terrain category. In doing
so, we obtain models that capture the scale-to-scale evolution for imagery of homo-
geneous regions of each terrain. We intentionally stress that the models represent
homogeneous regions of SAR imagery. We make this explicit since we will inevitably
encounter SAR imagery containing both terrain categories, thus fitting neither model
well, and we will have to devise a method to effectively deal with such situations.
We note that the segmentation approach we describe here is readily extended to
additional terrain categories and finer level discrimination of each terrain category.
This may be accomplished by simply creating additional terrain models and classifying

via an M-ary hypothesis test.

3.2 Regional Pre-Classification

Our initial approach to the segmentation problem may be viewed as a series of in-
dependent classifications of disjoint blocks, B, of pixels. Each block of pixels in the
image is classified using a likelihood ratio test (LRT) whereby we exploit the efficient
calculation of multiscale likelihoods as described in the previous chapter. Specifically,
each block of pixels is classified based on a window of pixels, W, centered on that
partlcular block. We then slide this window from block to block, and repeat the
| clasmﬁcatlon as illustrated in Figure 3-1.

We choose to base each classification on a window of pixels exceeding the size of the
block being classified due to the fact that the block will often, if not always, be quite

small (on the order of 1 to 8 pixels-square). Such small block sizes provide little or no
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statistical information in a multiresolution sense. One of our primary assertions then,
is that if the imagery within the larger window, W, belongs exclusively to a single
homogeneous terrain class, we may classify a block of pixels central to this window
with a very small probability of error. In Section 3.4.3 we provide experimental
results backing this claim. Moreover, we later devise a procedure to cope with those
situations in which imagery of two (or more) terrain classes are present within W.
The size of the window surrounding B thus represents a tradeoff between the local
accuracy and statistical significance in the subsequent classification. In choosing a
larger window size one gains a level of statistical significance and would thus expect
more accurate classifications in distinguishing homogeneous regions of either terrain
type. However, larger window sizes increase the probability that the window region is
inhomogeneous. In Section 3.4 we examine this tradeoff by considering window sizes
given by 2V, where N € I, and choose a size that yields excellent classification of
homogeneous regions of terrain. An important point to note here is that, by using a
window of pixels around each block for subsequent classification, we run into potential
problems near the edges of each image being segmented. Rather than implement some
sort of extrapolation routine to emulate the statistics of the data outside the actual
image, we merely segment the portion of the image such that the window is always
fully contained within the image. This procedure does neglect a small ring around
the border of each image, yet poses no practical concern. One may readily envision
a system to segment stripmap SAR imagery that overcomes this inconvenience. For
example, as the imagery is acquired, it is separated into overlapping sub-images.
Each sub-image overlaps its neighbor in such a manner that the concatenation of the
segmentations of each sub-image results in the segmentation of the full set of imagery
gathered (with the exception of the very outermost edges).

The size of the block of pixels, B, being classified in each step is more of an
algorithmic issue. This size determines a tradeoff between efficiency and resolution

in the segmented image. For example, using each window to classify a single pixel
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Figure 3-1: Illustration displaying two pixel blocks being classified as well as the two
window regions used in the classification.

is much more computationally burdensome than using the same window to classify
a 4 x 4 block of pixels. However, by classifying blocks of pixels simultaneously, the
resolution of the resulting segmentation is reduced.

We should note that in a fully optimal method one would also postulate a spatial
random field model for terrain type, thus capturing, for example, the fact that the
classification of a given pixel is very likely to be the same as its neighbors [9]. The use
of such models, however, increases the computational complexity of the classification

algorithm considerably and will not be considered in this work.

3.2.1 Problem Formulation

To perform the LRT, we must first define our hypotheses and measurements. The hy-
potheses of interest to us are: 1) the window region is homogeneous grass-like terrain,
and 2) the window region is homogeneous forest-like terrain. Correspondingly, we
define H, and Hy as hypotheses corresponding to situations (1) and (2) respectively.

The measurements available in each case are the sequence of images that result from
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repeated dyadic reductions in resolution of the region W. We define this multiresolu-
tion sequence of images as Iy, I1,. .., Iy, where Iy and I correspond to the finest and

coarsest scale representations of W, respectively. Accordingly, the likelihood ratio is

defined as,

A = pIo,Il,...,ILIHS(IOaIIa---»IL|Hg).
pfo,h,...,ILlﬂf(IO’Il:" 'vIL | Hf)

(3.1)

We may use this likelihood ratio to perform the LRT by comparing it to a threshold,
1. Specifically, the LRT becomes,

¢Z In(n) £, (3.3)

which is much more efficient since multiplications in A become additions in ¢. The

statistic £ is given by,

£ = In [pIo,Il,...,IL|H5(IOaI1,- "7IL I Hg)] -
In [pIo,Il,...,ILlﬂf(IOalla . 'aIL | Hf)] . (34)

3.2.2 Single versus Double Thresholding

Given our two hypotheses and the statistic, £, our goal now is to perform a likelihood
ratio test and classify each pixel in the block, B accordingly. As stated in (3.3), the
likelihood ratio test involves comparing the value of £ to a threshold and classifying
depending upon which side of the threshold ¢ falls. As an initial approach to the

problem, we set the threshold ¥ in (3.3) to zero. This corresponds to having no
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prior knowledge as to the terrain makeup of region W. This LRT performs quite
well, as confirmed in Section 3.4, given that W consists of homogeneous terrain from
either of our modeled terrain classes. This, however, is not always the case. When
the window crosses a boundary between the two terrain categories, both are present
within the window simultaneously. Thus, the region is inhomogeneous and fits neither
terrain model well, and the validity of the subsequent classification is questionable.
Indeed, if we do nothing to counter this phenomenon, the resulting classification will
be dubious in the vicinity of terrain boundaries. In fact, as we illustrate in the next
section, this procedure has a tendency to extend classification as forest into grassy
regions, resulting in an apparent bias in the estimation of the grass-forest boundary.

To overcome this problem we devise both a method to detect proximity to grass-
forest boundaries as well as a procedure to accurately perform the subsequent classi-
fication. The former of these is accomplished through a very simple modification to
the decision rule based on the test statistic £. Specifically, rather than comparing ¢
to the single threshold, ¥ = 0, and making a forest-or-grass classification based on

this comparison, we compare ¢ to two thresholds:

>, Classify as Grass
W, > ¢ > Wy Defer decision, as a terrain boundary may be present within W

¢ < ¥y Classify as Forest

The thresholds in this approach are chosen such that when ¢ exceeds ¥, or is less
than W, we have a high level of confidence that W is a homogeneous region of grass
or forest, respectively. In fact, we may set these thresholds to meet specified proba-
bilities of correct classification, as we address in Section 3.4. When the value of ¢ falls
between the two thresholds, it is expected that a terrain boundary is present within

W. Hence, we defer the classification of B for further refinement.
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The resulting test structure for the initial pixel block classification is illustrated in
Figure 3-2. Here, the box designated “defer” corresponds to the test statistic, £, falling
between the two thresholds, ¥, and ¥y, and thus the window requires additional
scrutiny. As we describe in Section 3.4, examination of empirical distributions of ¢
over windows containing boundaries and with differing percentages of forest and grass

allows us to set ¥, and ¥y.

. log(PrI. I, ,...I; IH; 1} -
Terrain Models I —l

log{Pr{I_.I_, , -1, 1 H; ]}

Selected Regi .
clected Reglon Thresholding

/

C 1N

Grass Defer | | Forest

+— Pixel of
Interest

Figure 3-2: Sequence of steps involved in initial classification of pixels. 1) Creation of
multiscale sequence from square region surrounding pixel block of interest. 2) Evalu-
ation of statistic £. 3) Thresholding to determine if the block should be classified as
grass or forest, or should be flagged as potentially containing a grass-forest boundary.

3.3 Classification Refinement

The procedure as we have described it so far requires a computationally efficient
method to deal with the deferred decisions caused by the potential presence of terrain
boundaries. The structure of the multiscale likelihood calculation allows us to perform
this additional task with very little computational overhead and in fact in a fashion

that can be viewed as a replication of the procedure of Figure 3-2 at a hierarchy of
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scales. Recall that the objective of this classification process is to classify a block
of pixels centered in a window as either forest or grass. Consequently, in a region
suspected of containing a single terrain boundary, we simply wish to determine on

which side of the boundary this block resides. If we assume that the size of the window

the imagery within the window.

' Consequently, we proceed to reclassify each deferred block by considering each of
the four quadrants of W independently. For example, if we denote the four quadrants
of Was W, for s = 1,2,3,4, and the four corresponding multiresolution sequences of
images as I I, . .. , I} again for § = 1,2,3,4, then the log-likelihood ratio for each

quadrant, ¢;, will be given as,

& = In [plg,ff ..... IZ[Hg(Iév [li7 Ty [}, l Hy)] -
In [Pzg,z;‘,...,mﬂf(fé, L. I} | Hy)]. (3.5)

Due to the structure of the multiscale models, the likelihood calculation described in
Chapter 2 may be carried out in a pyramidal fashion. That is, each ¢; may be obtained
by considering the individua] likelihoods used in calculating ¢ over the sub-trees cor-

responding to each quadrant. The classification procedure described in Sectiop 3.2

quadrant. This procedure may be repeated recursively on each smaller sub-window
or sub-quadrant deferred in the previous hierarchical step in an analogous manner. A
final classification is established when either a majority rule decision of the pixels in
the entire windowed region, W, may be determined or statistica] significance is lost

due to decreasing quadrant size. In the latter, the central block of pixels is classified
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according to a majority rule of all pixels classified to that point.

Figure 3-3: Potential boundary refinement of typical SAR window region: (a) Window
region classified as boundary. b) Region divided into quadrants,with classification
results marked for each quadrant. (c) & (d) Regions still classified as boundary
further sub-divided and reclassified. Classifications as G, F, and D refer to grass,
forest, and defer respectively.

The hierarchical succession of classifications in this “progressive refinement” proce-
dure is pictorially summarized in Figure 3-3. In each frame, the block being classified
is represented by the solid square box central to each image. Figure 3-3(a) represents

the original windowed region, W. Based on the test illustrated in Figure 3-2 this win-

s e =t T T e e w e
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dow has been identified as potentially containing a grass-forest boundary. Note that
the correct classification for the block is grass, yet given the window size and boundary
proximity, the classification has been deferred. Figures 3-3(b) through 3-3(d) display
the successive subdivision and reclassification (F, G, and D represent classification
as forest, grass, and defer respectively), where at each stage only the regions deferred
at the preceding stage are subject to further examination. In this example, 9/16
of the region is ultimately classified as grass, and thus the center block is correctly
classified. Central to this procedure is the fact that with proper organization, each of
the log-likelihood ratios needed for every sub-window of potential interest (e.g., the
full window in Figure 3-3(a) and each of the sub-windows shown in the other parts of
Figure 3-3) can be calculated with the same total computational effort as that needed
to calculate the single likelihood for the entire window. This provides an effective and

highly efficient means of classifying those blocks in the vicinity of terrain boundaries.

3.4 Experimental Results

To evaluate the performance of this approach, we have applied it to 0.3 meter resolu-
tion HH polarization SAR data gathered over Stockbridge, New York with Lincoln-
Laboratory’s millimeter-wave SAR [11]. In the following subsections we describe the
construction of the models on which the subsequent experiments are based, discuss
the details of the algorithm design (namely the setting of window sizes and decision
thresholds), and illustrate the performance of our algorithm for classification and

segmentation.

3.4.1 Model Construction

To apply the preceding segmentation approach, we first construct multiscale SAR
models for imagery of grass and forest from homogeneous regions of imagery for

each terrain. We used the two 256 pixel-square regions of grass and forest displayed
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(a) (b)
Figure 3-4: 256 pixel homogeneous regions of grass (a) and forest (b) used in multi-
scale model creation.

in Figure 3-4 as “training” data for this purpose. We chose to use a third-order
regression for each model and to build models for the prediction of each of the three
finest resolution images (§ X 6, 26 x 24, and 46 x 46, with § = 0.3m). As described in
Chapter 2, this implies a third-order model with a four-level tree and for the prediction
of each of the three finest scales there are three coefficients, a,, a,, a3, to be specified.
Using the method described in Section 2.2.6 we determined the coefficient values given
in Table 3.1. Note that the coefficients for the forest model are consistently larger,
indicating higher scale to scale correlation. This inter-scale correlation is consistent

with our expectations due to the scatterer distribution in the image. Grassy regions

Grass model coefficients Forest model coefficients
Resolution | a1 | a3 | a3 Resolution | a1 | a2 | a3
6 x6 0.5263 | 0.0720 | —0.0029 6 x6 || 0.5842 | 0.1257 | 0.0669

26 x 26 0.3135 | 0.0313 | —0.0064 26 x 26 || 0.5005 | 0.1222 | 0.0683

46 x 46 || 0.2278 | 0.0169 | —0.0006 46 x 46 || 0.4584a | 0.1292 | 0.0250

(a) (b)

Table 3.1: Model coefficients for third order regression in scale. (a) Grass model
coefficients. (b) Forest model coefficients.
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tend to have a large number of equi-valued scatterers and, as a result, a great number
of scatterers migrate in or out of each resolution cell as resolution is varied. Hence, one
would expect SAR imagery of grassy regions to display less scale-to-scale correlation.

To complete the models, we must also specify the distributions for the w(s) in
(2.16) for each scale and each terrain type. For imagery of grass, we have found that

a Log-Rayleigh distribution,

Pu(W(s)) = k exp[k W(s) — v — exp (k W(s) — 7)]

P 1n(10)
10
7 = 0.57721566 (Euler’s constant),

provides a good fit for the residuals at each scale. The residuals for imagery of forest,
on the other hand, was best approximated with zero-mean Gaussian distributions.
In particular, the standard deviations chosen for the Gaussian densities representing
w(s) for each of the three scales predicted are given below in Table 3.2.

| Resolution | o ]
O %6 5.3724

26 x 26 | 6.1811
46 x 46 | 6.5056

Table 3.2: Forest Model Residual Standard Deviations

In Figure 3-5, we display, an example of the accuracy of the fits of the chosen
distributions. In particular, in Figure 3-5(a) and (b) we display normalized histograms
for the residuals in the prediction of regions of grass (forest) using the grass (forest)
model coefficients given in Table 3.1 as well as the chosen distributional fits (solid

lines).
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Figure 3-5: Histograms of residuals in prediction of second-finest resolution for (a)
Grass model (b) Forest model. Solid line represents (a) Log-Rayleigh distribution (b)
Gaussian distribution.

3.4.2 Algorithm Specification

To perform the classification and segmentation procedure described in Sections 3.2
and 3.3, we must first specify 1) The size of the block of pixels, B, being classified
in each step; 2) the size of the window, W, around each block used to perform the
classification; and 3) the thresholds, ¥, and ¥y, for each stage in the hierarchical
procedure.

For the examples we display here, we somewhat arbitrarily choose to use a block
size for B of 4 x 4 pixels. This provides an order of magnitude increase in efficiency
over classification of individual pixels (i.e., 1 X 1 blocks) with minimal resolution
loss in the final segmentation. If we had used a block size of a single pixel, we
would have obtained similar results, but at the cost of efficiency. As previously
mentioned, the choice of the size of the window W determines a balance between the
statistical significance of the subsequent likelihood ratio test and the local accuracy of
the results. To determine a reasonable window size, we gathered statistical data about
¢ for several square window pixel sizes and each terrain category. For each size and

terrain category, we evaluated ¢ as in (3.4) in several hundred distinct situations for
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which the particular window size covered homogeneous imagery of the given terrain
class exclusively. This allowed us to form histograms for the statistic ¢ for each
terrain category and window size, thus observing our ability to differentiate between
homogeneous regions of grass and forest as window size is varied.

We display the results for window sizes of 128, 64, and 32 square pixels in Figures 3-
6(A-i) through (A-#). In addition, we have also displayed to the right of each set of
histograms, in Figures 3-6(B-:) through (B-4), the corresponding Gaussian fits for
each histogram. This allows us to approximate the probability of misclassification
for ‘each window size. We see virtually no overlap between the histograms for each
each terrain category in Figure 3-6(A-i) when using the larger 128 pixel window.
Increasing overlap (i.e., probability of misclassification) occurs as the window size
decreases as is illustrated in Figures 3-6(A-1) and (A-ii). For a 32 X 32 window size,
we still observe distinguishing information between the two classes, yet with a much
higher probability of misclassification. For the purposes of the test results here we
have chosen to use an original window size of 128 x 128 pixels since this size provides
minimal probability of misclassification. Again, we could have chosen a larger window
size, but chose not to so as to preserve the local accuracy of the results. The results
above also provided a measure of statistical significance versus window pixel size.
Accordingly, we decided to consider subdivisions, i.e. quadrants, in the classification
refinement procedure, described in Section 3.3, down to a minimal size of 32 x 32
pixels.

If we were only considering classification of homogeneous regions and thus needed
only to set the single threshold, ¥, for each size window, then Figure 3-6 would
provide all of the information needed to do this. However, as we indicated previously,
we also wish to do a better job of classifying pixels near grass-forest boundaries,
and consequently a better job of boundary estimation. To meet this end, we must
identify two thresholds for each window pixel size; the threshold above which we

classify as grass (¥,) and the threshold below which we classify as forest (¥;). These
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Figure 3-6: Statistical results used in determination of threshold values for each
region size . Frame (A-i) displays histograms of values of £ from 128 pixel square
homogeneous regions of forest (dark) and grass (light). Frame (B-7) shows Gaussian
estimates of ¢ for each terrain category (solid line for grass and dashed for forest).
Frames (A-#) & (B-ii) and (A-) & (C-112) display similar results for 64 and 32 pixel
square regions respectively.

two thresholds designate the values of ¢ above and below which we observe strong
evidence that the window covers homogeneous imagery of grass and forest respectively.

To observe the effects of boundary presence within the window upon the distribu-
tion of the resulting test statistic, £, we gathered statistics of £ for the three window

sizes specified above when the window region contained varying percentages of forest
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and grass. In Figure 3-7(a) we display our results for the 128 pixel-square window by
plotting the mean of £ as well as its 20 interval versus varying percentages forest in
the window (the rest of the window in each case corresponds to imagery of grass). It
may be seen that the presence of even a modest amount of “contamination” by forest
pixels within the grass region can alter the behavior of the test statistic significantly.
For instance, in Figure 3-7(a), we see that when the window region contains approx-
imately 50 per-cent imagery of forest, thresholding on zero will almost exclusively
provide a classification as forest. This introduces an effective “bias” in the resulting
decision process if only a forest-grass decision is made using the single threshold that
works best for homogeneous regions of imagery (¥ = 0). As a consequence, it is
essential that forest-grass decisions at the level of the full 128 x 128 pixel region be
made only when overriding evidence for one of these two hypotheses exists, i.e., when
the resulting value of ¢ provides extremely strong evidence. Similarly, the decisions
at the subsequent 64 x 64 and 32 x 32 pixel regions have the same characteristics.
Based on these obsefva.tions we are led to choosing the pairs of thresholds in Ta-
ble 3.3. Here, a value above the “grass” threshold, (¥,) leads to a classification as
grass; a value below the “forest” threshold (¥) to classification as forest; and a value
between the two, to a deferred classification. If the latter decision is made at either
the 128 x 128 or 64 x 64 pixel levels, we continue down hierarchically to the next level
of classification. If a deferred decision is made at the 32 x 32 region, we stop and give

no classification to that region, as described in Section 3.3.

| Region Size || Grass Threshold | Forest Threshold |

128 1000 -1600
64 500 -800
32 50 0

Table 3.3: Threshold values for various window sizes. These values serve as thresh-
olds for the likelihood ratio test for classification as grass, forest, or defer at each
hierarchical level of the algorithm.
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(©)

Figure 3-7: Sample mean value of the test statistic £ versus percentage forest in
window region. Frame (a) displays plots of the test statistic mean (dashed line)
as well as plots of its plus and minus 20 points (solid lines) for a 128 pixel window.
Frames (b) and (c) displays similar data for 64 and 32 pixel window sizes respectively.

3.4.3 Segmentation Performance

Given the block, window, and threshold parameters as determined in the preceding
subsection, our algorithm is now completely specified, and we can apply it to SAR
imagery to investigate its performance in terms of accuracy of classification and seg-

mentation. The former of these, namely the accuracy of classification of forest and
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grass pixels embedded in homogeneous regions of the same terrain type, is completely
characterized by two numbers, namely the probabilities of making each type of classi-
fication error. Note that if we knew a priori that a region is homogeneous, then, based
on Figure 3-6(a) we would already know that the probability of misclassification of ei-
ther type is extremely small. In fact for the Gaussian probability distributions shown
in Figure 3-6(a-ii), with a single threshold set at a value of 910, the probabilities of
misclassifying forest as grass and grass as forest are minute and approximately equal
to 1.5 x 10~°. However, since we wish to use our algorithm in contexts in which there
may be boundaries, a fairer test involves using the complete hierarchical decision
procedure. To calculate the misclassification probabilities for this algorithm we have
performed tests on twenty 512 pixel-square segments of SAR imagery, ten consisting
of homogeneous imagery of forest and ten of grass. The resulting probabilities of mis-
classification were approximately 0.005 (for misclassifying grass as forest) and 0.011
(for misclassifying forest as grass). The 20 confidence intervals for these probabilities
are approximately 0.01 for misclassifying grass as forest and 0.02 for misclassifying
forest as grass.

Next, we evaluate the performance of the algorithm in terms of segmentation,
l.e., in terms of the accuracy in estimating the boundary between forest and grass.
Figures 3-8 through 3-10 display the results of applying our algorithm to three 512
pixel-square images, each containing one or more grass-forest boundaries. The white
line in each frame represents a hand-picked estimate of the boundary, and dark and
light regions represent terrain classification as forest and grass respectively. In each
figure we display the segmentation results for the SAR image pictured in frame (a).
Frames (b) through (d) display in order: the results of classification if we were to
use only a single threshold at the full 128 x 128 window level (i.e., without allowing
the possibility of deferred decisions), classification results using the two thresholds
as listed in Table 3.3 (mid-tone value identifies those pixels for which decision at the

full 128 x 128 window level was deferred and finer subdivisions of the window were
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examined), and the final results using the full hierarchical approach. Comparing parts
(b) and (d) of these figures, we see that, as expected, restriction to using only the
128 x 128 window likelihood test leads to a bias in the estimated boundafy, i.e., the
estimated grass-forest boundary is pushed toward the grassy region. However, when
the full hierarchical system is used, the final classification presents a more accurate
identification of these boundaries.

The results in Figure 3-10(d) are not quite as promising as those in the previous
two figures. This may be partially attributed to the fact that one of the primary as-
Surﬁptions that we make for subsequent classification is violated. Namely, we assume
in Section 3.3 that the terrain boundary within the window region is relatively linear.
We immediately see that the boundaries in this figure are not linear, even over the
smaller 128 pixel-square blocks. This phenomenon is also present in Figure 3-9(d).
Here, we see that the segmentation is degraded in the vicinity of the bend in the
terrain boundary. This effect may be reduced by introducing a weighting scheme in
the reﬁnement- ﬁia.joﬂty rule procedure that assigns higher values to classifications
closer to the central block being classified.

It is also worth noting here that the orientation of the terrain boundary with
respect to the direction of illumination by the SAR sensor has a significant effect on
the resulting imagery. A boundary that is observed more or less broadside frequently
displays a very bright line of returns, while those facing away from the sensor often
display extended shadows. Both of these are evident in the SAR images in Figures 3-
9(a) and 3-10(a), and lead to larger errors in estimating the grass-forest boundaries
than when the boundary has “average” illumination as in Figure 3-10(a). There are
several possible manners in which to enhance performance in these cases, including
the detection of bright tree lines as a line of anomalies. We illustrate this, as a possible

extension to our work, in Chapter 5.

[
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() (d)

Figure 3-8: Segmentation results for a 512 pixel square image of 0.3 meter resolution
stripmap SAR data. The white line in each frame represents the hand-picked estimate
of the grass-forest boundary. (a) Region of original images over which segmentation
was performed. (b) Initial segmentation results without refinement. (c) Preliminary
classifications using two thresholds (dark = forest, light = grass, medium = deferred
decision) (d) Final segmentation after refinement.
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o

Figure 3-9: Segmentation results for a 512 pixel square image of 0.3 meter resolution
stripmap SAR data. The white line in each frame represents the hand-picked estimate
of the grass-forest boundary. (a) Region of original images over which segmentation
was performed. (b) Initial segmentation results without refinement. (c) Preliminary
classifications using two thresholds (dark = forest, light = grass, medium = deferred
decision) (d) Final segmentation after refinement.
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(c) (d)

Figure 3-10: Segmentation results for a 512 pixel square image of 0.3 meter resolution
stripmap SAR data. The white line in each frame represents the hand-picked estimate
of the grass-forest boundary. (a) Region of original images over which segmentation
was performed. (b) Initial segmentation results without refinement. (c) Preliminary
classifications using two thresholds (dark = forest, light = grass, medium = deferred
decision) (d) Final segmentation after refinement.
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Finally, we add a quantitative performance measure that provides a feel for how
accurately we are able to estimate terrain boundaries. Specifically, we define a param-
eter d and compute empirically the probability of misclassification of pixels that are
at least d pixels away from the true boundary. Thus for d = 0 we consider the misclas-
sification probability for all pixels in the image. As d increases we ignore a swath of
the image, of width 2d pixels, with d pixels on either side of the boundary. Thus, we
expect the misclassification probability to decrease with increasing d, and approach
the homogeneous misclassification probability evaluated above. Hence, a faster drop
in misclassification probability with respect to d corresponds to a smaller effective
error in estimating the boundary. In Figure 3-11 we display the results for our algo-
rithm based on regions of Lincoln Laboratory SAR imagery containing grass-forest
boundaries with average tree line illumination (circled points) and regions containing
boundaries with all levels of illumination (starred points). From these tests we see

that for boundaries with average illumination we are able to determine the boundary
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Figure 3-11: Probability of misclassification versus swath width (in pixels) on ei-
ther side of grass/forest boundary for forest/grass boundaries with average tree line
illumination (circled points) and boundaries with all levels of illumination (starred
points).
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within approximately 7 pixels (2m) with a probability of misclassification of 0.02.
While if all illuminations are considered we can isolate the boundary to within ap-
proximately 27 pixels (8m) with the same probability of misclassification. Further
improvement in boundary localization for either bright tree lines or ones casting shad-
ows should be possible using the anomaly enhancement results presented 1n the next

chapter. This concept is touched upon in Chapter 5.




Chapter 4

Anomaly Enhancement

The methods described in the previous chapter address two of the principal objectives
of this thesis, namely, terrain classification and terrain boundary estimation. In this
chapter we discuss a method aimed at the third of our principal objectives described
in Chapter 1: the use of terrain classifications to enhance anomalies, i.e., to cause
anomalies due to cultural clutter and targets to stand out from their background.
Enhancement of cultural clutter image regions provides the potential for improve-
ment in the detection of potential target regions (i.e., man-made objects) through
simple thresholding. That is, higher probabilities of target detection are possible by
thresholding the enhanced imagery.

A commonly accepted method to enhance anomalous pixel regions is the CFAR
procedure [15, 22, 21] described in Section 4.1.1. In this procedure, a local sample
mean and standard deviation are estimated from an annular region around each pixel
to characterize the second-order statistics of the background. Anomalous pixels are
thus identified as those that are outliers with respect to the estimated background
distribution. We may pursue a similar scheme using the segmentation provided by the
procedure outlined in Chapter 3. In particular, we use the prediction error residuals
in conjunction with the segmentation results to identify anomalous pixels.

In this chapter we first present a brief description of the baseline ATR system being

71
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developed at Lincoln Laboratory, and point out the utility of anomalous pixel identi-
fication. We then describe the CFAR detection routine generally used to accomplish
this goal. We finish by describing our multiresolution anomalous pixel enhancement

procedure and illustrate its potential with several qualitative results.

4.1 Lincoln Laboratory Baseline ATR System

The goal of any ATR system is to detect and classify objects of interest from the
received sensor data with no human intervention. The object of interest, or target,
varies amongst applications. For example, in military applications it may be a tactical
target such as a particular tank or military vehicle. Whereas in visual navigation, the
target may be some landmark representing a particular global position. The utility
of an ATR system is to reduce the amount of human interaction required to identify
these objects.

An ATR system [15, 22, 21] is currently under development at Lincoln Laboratory
for the identification of mobile targets within SAR imagery. This system consists of
three fundamental parts. The objective of each section is to reject imagery that does
not contain any targets, while passing imagery that does to the next stage for further
processing. Hence, each stage performs a finer scrutinization of the input imagery. In
an ideal system, all targets are detected and classified and all non-targets are rejected.

A high-level block diagram of this system is displayed below in Figure 4-1.

Detector Discriminator Classifier

Figure 4-1: Block diagram of the Lincoln Laboratory SAR ATR algorithm
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The input to this ATR system is SAR imagery formed from the raw radar returns.
This imagery is sequentially passed through the three fundamental processing steps
displayed above: detection, discrimination, and classification. Each step rejects por-
tions of the input imagery that don’t contain targets of interest according to specific
criteria. The remaining imagery is passed to the next stage for subsequent processing.
This process reduces the computational burden at each remaining stage by decreasing
the overall throughput.

The first stage of this system, detection, identifies all potential targets within the
input imagery. This is accomplished by applying the CFAR detection algorithm. This
algorithm identifies pixels whose second-order statistics are inconsistent with their
background. A chip (i.e., n X m pixel region) is extracted from the input imagery
centered on each of these selected pixels or pixel clusters. The chips are subsequently
passed along to the discrimination stage for further scrutiny. This second stage, as
the name implies, strives to discriminate between chips containing cultural (i.e., man-
made) clutter and those consisting solely of natural clutter. Each chip classified as
natural clutter is rejected in this stage and the rest (i.e., possible targets) are passed
to the final stage, classification. Here, each chip is categorized, using some pattern
matching measure, as one of a pre-specified set of targets or as none-of-the-above.
Each chip not fitting into the pre-specified set (i.e., none-of-the-above) is rejected,
and all others are classified accordingly.

The potential utility of an anomaly enhancement algorithm lies in the detection
stage. Such an algorithm would perform the same function as the CFAR detection
algorithm described above. Specifically, it would enhance those pixels that are statis-
tically inconsistent with their background such that simple thresholding can be used
to identify outliers (i.e. potential objects of interest). As background, we provide a

brief discussion of the CFAR detection algorithm.
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4.1.1 CFAR Detection

The CFAR detector calculates sample first and second order statistics of an annular
region surrounding each finest-scale pixel of interest, and uses them to provide a

statistic that enhances the detection of outliers with simple thresholding.

\'
Boundary stencil

Figure 4-2: Diagram of the structure used in standard CFAR detection.

The geometric pixel-structure of the CFAR detector is displayed in Figure 4-2.
The distinguishing features of the structure are: 1) the test pixel at the center; 2)
the empty guar& region surrounding the test pixel; and 3) the boundary stencil at
the outermost edge of the guard region. The pixels in the stencil region are used
to estimate the statistics of the background for the pixel of interest in the center.
Therefore, the size of the guard region is generally chosen to be twice the largest
target dimension in pixels. This ensures that when the center pixel lies on a target,
the stencil will never overlap any portion of the same target and interfere with the
estimation of background statistics.

The CFAR statistic, x(k, 1), for pixel, I(k,!) in the finest-scale log-detected (deci-
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bel) image, is defined as:

I(k,1) — p(k, 1)

x(k.1) &(k, 1)

(4.1)

where p(k,1) and o(k, 1) represent the background sample mean and standard devi-
ation with the stencil centered on pixel I(k,[) respectively. Each is calculated from

the pixels masked by the boundary stencil as follows:

akl) = = ¥ Ik (4.2
(k,Hes
k1) = Jnil > 17D — Ak, D) 43)
(k,h)es

where S is the set of pixels masked by the stencil region and n is the cardinality of
this set. The statistic is thus calculated by shifting this stencil over all input imagery
and evaluating the statistic as in (4.1).

For pixels that are statistically consistent with their background, the CFAR statis-
tic will have zero-mean and unit-variance. Hence, outliers (i.e., anomalies) may be
detected by noting the pixels, I(k,l), for which the CFAR statistic, x(k,!), exceeds

some threshold.

4.2 Multiscale Anomaly Enhancement

As mentioned in Chapter 1, the identification of terrain boundaries and forested re-
gions permits one to efficiently direct future ATR algorithm processing. The utility
of the segmentation procedure outlined in Chapter 3 is therefore as a pre-filter for
the detection stage of the three stage ATR algorithm illustrated in Figure 4-1. The
segmentation identifies forested regions where targets are undetectable with high fre-
quency SAR as well as grass-forest boundaries where subsequent processing should

focus. In addition, this segmentation provides a computationally attractive method
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to detect potential targets of interest. Specifically, by identifying those pixels whose
prediction error residuals are statistically inconsistent with the model corresponding
to the pixels classification. Furthermore, since man-made objects typically exhibit
very bright pixels, one would expect to observe high scale-to-scale correlation in re-
gions where targets are present. Given the prediction error residuals calculated in the
segmentation procedure of Chapter 3, as well as the concepts above, it is possible to

exploit the scale-to-scale correlation to enhance and detect targets.

4.2.1 Multiscale CFAR Statistic

The ideas above suggest a method for identifying potentially anomalous pixels using
what can be thought of as a multiresolution CFAR statistic. This statistic may be
viewed as a synthesis of our multiscale modeling approach with the method described
in [25]. Specifically, suppose a region has been identified as consisting of grass-like
terrain by either the method described in the preceding chapters or some other means
(such as from prior maps of the region of surveillance). Now consider a particular
pixel in the finest-scale SAR imagery of that region. As described in Chapter 3, we
can associate with that pixel a set of multiscale SAR imagery over a window centered
at that pixel. If we let s. denote the center node at the bottom level of the tree (the
pixel under investigation), then using the parameters associated with the grass model,
the residual w(s.) in (2.16) represents the error in predicting the central pixel at the
finest resolution based on the SAR imagery at R coarser resolutions. Also, from our
multiscale model we have a variance p. and mean p. associated with this residual and

can thus compute a statistic, ((s.), that is analogous to the CFAR statistic,

_ w(SC)—ﬂc
C(se) = \/P_c . (4°4)

As with the CFAR statistic, this statistic may exploit the characteristics of the

background imagery. In particular, when the pixel classification is that obtained using
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the segmentation procedure in Chapter 3, we note that it is based on a window of
imagery surrounding the pixel of interest. As a result, the classification characterizes
the background. Accordingly, we subtract the background mean associated with the
corresponding terrain model from the statistical value (each model assumes zero-mean
residuals), and normalize by the corresponding terrain model standard deviation.
The multiscale segmentation algorithm computes the prediction error residuals
required to determine the multiscale CFAR statistic defined in (4.4). The variance,
pe, may be evaluated from the theoretical distribution specified by the multiscale
terrain models. Furthermore, because the residuals are computed at a set of scales,
the scale-to-scale behavior of the CFAR statistic can be characterized and used to
improve detection performance. Specifically, for a node s at the mth level from the
bottom of the tree, we can also compute w(s) as in (2.16) and compare it to the
corresponding variance p,, from the multiscale model. Specifically, generalizing (4.4),

we can compute

_ v
() = 7= (45)

for s on the mth level from the bottom of the tree. Note that in (4.5) we disregard the
mean since for all scales of each model we assume it to be zero. By considering the
set of values of ((s) as we traverse the path from the central pixel at the finest level
back through its ancestors on the tree, we obtain a set of random variables that can
be used to dete;:t the presence of statistically significant differences between behavior
around the pixel in question and that expected if the pixel were a clutter pixel and

not an anomalous scatterer.

4.2.2 Combined Multiscale CFAR Statistic

By considering the set of random variables acquired by evaluating (4.5) at multiple

scales, {C (5),¢(s¥), - -+, C(s7F ‘2)}, we allow for several methods of obtaining statistics
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to enhance the identification of anomalies. For example, one possible statistic is the

sum of squared values of these random variables,

a(se) = C%(se) + C(seT) + C2(seT2) + ... + (s 777D), (4.6)

where P represents the number of scales in the state-augmented multiscale model.
As with the standard CFAR statistic, ¢;(s.) will enhance any behavior that de-
viates significantly from the beha,viof we expect for non-anomalous pixels. However,
in contrast to the standard CFAR statistic, we can consider alternatives, since we
have a set of statistics rather than only one. In particular, we can also consider look-
ing for specific scale-to-scale signatures in the residuals w(s.). Indeed, as the results
in (12, 25] indicate, the presence of a few dominant scatterers in man-made objects
will in fact result in scale-to-scale variations in SAR imagery that have a more de-
terministic behavior across scale and thus do not obey a simple white noise driven
autoregressive model. If we can predict this scale-to-scale behavior, we can seek the

telltale signatures in the resulting residuals. A simple example of this is the statistic

calse) = [C(s) +C(sm) +C(se?) + -+ C(saP D) (47)

Comparing (4.6) and (4.7) the difference is that in (4.7) we sum before squaring.
This corresponds to looking for a consistent over- or under-prediction of pixels at
successive resolutions, as one might expect for a single strong scatterer. In such
a case the statistic c,(s.) would give a significantly larger value than c¢;(s.). In
addition, c;(s.) would attenuate the effects of other types of scale-to-scale behavior.
For example, if the signs of the successive values of ¢ change throughout scale, then
ca2(sc) will be much smaller than ¢;(s.). Thus the statistic in (4.7) is far more selective
in what it enhances, which will be of value if we have accurate models for what type
of scatterer distributions we expect in objects of interest.

The two statistics, ¢;(s.) and c¢y(s.), both provide means of identifying and en-
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hancing pixels that exhibit anomalous behavior. They both involve a squaring, in
some sense, of the scale-to-scale statistics ({(sc)) though. This will enhance pixels
that are outliers in the positive and negative tails of the model distribution. Due to
the nature of pixels corresponding to man-made imagery, we are only concerned with
the positive tail. In other words, we are only interested in those values of c,(s.), for
example, that display a consistent over-prediction. Hence, we may consider a third

statistic,

ca(se) = [C(se) +C(seT) +C(sT?) + - + (57772 (4.8)

This statistic will enhance only those pixels that display a consistent over-prediction
and not those displaying a consistent under-prediction. As a result, we may simply
threshold this statistic, as with the standard CFAR statistic, to identify potential

targets of interest.

4.2.3 Implementation

The statistic in (4.8) provides a possible method of enhancing target pixels within
SAR imagery. There are a few issues that still remain regarding the implementation of
such a method. For example, do we compare each residual to the model distribution
of the corresponding pixel’s classification (grass or forest), or do we merely seek
anomalous behavior over grass regions alone? It is necessary to answer such questions
and, in turn, detail a feasible procedure to produce anomaly enhanced imagery.

One feasible method for anomaly enhancement may be outlined as follows:
e Multiscale segmentation.
e Morphological closing on the binary segmented image.

e Evaluation of c3(s.) over all grass regions.
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The multiscale segmentation achieves two fundamental goals; identification of
forest regions and production of prediction error residuals. By identifying forest
regions, we note regions over which target detection is futile. We will see that there is
a minor problem in this method; target pixels are often classified as forest. We address
this issue below. By generating and storing the residuals during segmentation, we
improve the attractiveness of our multiscale approach. Little further computation is
necessary to produce the statistic in (4.8).

A catch-22 situation arises in the method we describe above. In particular, we
would like to identify grass-like regions over which to search for potential targets.
Unfortunately, targets, in our two-category classification scheme, tend to be classified
as forest, and would thus not be considered in our search. Moreover, it seems that
in many cases, whenever a target pixel is within the classification window (as in
Figure 3-1), the center pixel tend to receive a classification as forest. This may be
attributed to the fact that a higher degree of scale-to-scale correlation is expected
in forest regions than in grass regions due to the presence of bright scatterers. As a
result, target regions are often central to block-like classifications as forest (with the

block size proportional to the window size).

= : . . , _ (c

Figure 4-3: (a) Original image containing a house surrounded by several trees. (b)
Results of multiscale segmentation (light and dark grey represent classifications as
grass and forest respectively). (c) Classification after morphological closing operation
(all pixels classified as grass).
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One manner in which to counteract this phenomenon is with the use of morpho-
logical operations (see Appendix B). For example, the closing operation will reclassify
all forest regions of the binary (segmented) image that have a width smaller than that
of the structuring element, while preserving the general form of all other boundaries.
For example, the use of a square structuring element with size proportional to the
window size used in the original segmentation, will likely produce a segmentation
useful for our purposes. We illustrate this point with the simple example displayed
in Figure 4-3. Figure 4-3(a) shows a SAR image containing a house surrounded by
several trees. As expected, the multiscale segmentation of this image in Figure 4-3(b)
exhibits a sizeable area in the proximity of the dwelling classified as forest. Ap-
plication of a binary morphological closing operation with a square 151 x 151 pixel
stencil (to account for the segmentation window size as well as the size of the physical
structure) provides the desired classification of all grass, as shown in Figure 4-3.

Small tree clusters may be reclassified as grass in the approach above and thus
require investigation as potential targets. In fact this phenomenon is apparent by
noting the discrepancy between the actual data and final segmentation in Figures 4-
3(a) and (c) above. This, however, is of little concern since the utility of the multiscale
segmentation is in identifying eztensive forest regions for pre-filtering rather than
individual trees or clusters of trees.

The statistic c3(s.) may now be evaluated exclusively over those regions receiving
- a grass classification after the morphological closing of the segmented image. Since
we are only interested in grass-like regions for target detection, we will use only
the variance of a zero-mean Log-Rayleigh random variable (see Appendix A) in our
calculations for p,,. Accordingly, the statistic c3(s.) can be simplified as,

3 [w(s) +w(sy)+ -+ w(sﬁp‘2)]

C3(Sc) = PLR ) (49)

where p.r denotes the variance of a Log-Rayleigh random variable. The enhanced
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image that this method produces can be thresholded to determine potential detec-

tions.

4.3 Performance Comparison

We describe here a set of methods to measure the performance of the anomaly en-
hancement technique. We will focus on performance in the ATR environment, and,
accordingly, compare it to the of the standard CFAR enhancement algorithm used in
practice. As test data, we will use three HH polarized, 1 foot resolution SAR images,
each containing different types of cultural clutter. We will illustrate the potential
of the multiscale anomaly enhancement approach by presenting side-by-side compar-
isons with CFAR enhanced imagery. We further demonstrate the potential of our
technique by providing qualitative measures of pixel enhancement over target regions
alone. While neither of these methods yields the definitive measure of performance
that a Receiver Operating Characteristic (ROC) curve would, they do demonstrate
the promise that a multiscale-based anomaly enhancement technique affords.

The three SAR images used as test data are displayed in Figures 4-4 through 4-
6. Each 512 pixel square image contains at least one man-made object. The highly
reflective portion of each object is outlined by the black boxes in each figure. Since
it is these highly reflective regions that typically set man-made objects apart from
natural clutter, we will focus on the performance of each algorithm exclusively over
these outlined image pixels.

For each image displayed, we evaluated both the CFAR statistic and the multiscale
statistic, c3(sc). The residuals (the w(s), w(s7¥), etc.) in (4.9) were calculated using a
third-order scale-autoregressive grass model spanning four scales (P = 4). The CFAR
statistic was calculated using differing guard region sizes for each figure depending
upon the size of the man-made objects within. Specifically, we calculated the CFAR

statistic with a 121 pixel-square stencil for the imagery in Figures 4-4 and 4-5, and a
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Figure 4-5: SAR imagery displaying two man-made structures.
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Figure 4-6: SAR imagery displaying an L-shaped structure.

201 pixel-square steﬁcil for the imagery in Figure 4-6.

The enhanced images for each technique are displayed in Figures 4-7 through 4-9.
In each figure, frame (a) and (b) show enhanced images using the CFAR enhancement
method and the multiscale enhancement method respectively. In each of the three
figures, it appears that the multiscale enhancement technique increases the visibility
of cultural clutter regions over the CFAR enhancement method. We will see below
that for these examples this is, in fact, the case. Moreover, we see that we may
improve the enhancement by increasing the number of scales that the model spans.
Specifically, in Figure 4-10 we show enhancement of the imagery in Figure 4-4 using
~each technique (multiscalé.enhancement in (a) and CFAR enhancement in (b)), but
with the multiscale grass model increased to span six scales (P = 6). We see a clear
improvement in the visibility of the corner reflectors in this enhanced image over the
CFAR technique.

The blocky appearance in each of the multiscale enhanced images is an artifact of
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(b)
Figure 4-7: Anomaly enhanced images for imagery displayed in Figure 4-4. (a) CFAR

enhancement; (b) Multiscale enhancement.
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(b)
Figure 4-8: Anomaly enhanced images for imagery displayed in Figure 4-5. (a) CFAR
enhancement; (b) Multiscale enhancement.
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Figure 4-9: Anomaly enhanced images for imagery displayed in Figure 4-6. (a) CFAR
enhancement; (b) Multiscale enhancement.
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(b)

Figure 4-10: Anomaly enhanced images for imagery displayed in Figure 4-4 using
a multiscale model spanning 6-resolutions. (a) CFAR enhancement; (b) Multiscale
enhancement.
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the multiscale structure of the statistic c3(s.). This is apparent by considering, for
example, two adjacent pixels at nodes s; and s; in the finest-scale image for which
517 = s7. We see, by evaluating (4.9) at each node, that the enhanced pixels at

these nodes may be written as,

[v(s7) + w(s1)]

c3(s1) = > (4.10)
C3(82) — ['U(Sﬁ) + w(32)] | (411)
PLR
Where, v(s7¥) is given as,
v(s7) = w(sT) +w(sT) + -+ w(sT ). (4.12)

Clearly, c3(s;) and c3(s;) will be highly correlated. Furthermore, similar arguments
may be made for finest-scale pixels, s3 and sy, for which s3¥* = s472, and so forth.
Although the blocky nature of this statiétic does degrade visual quality, we will find
it to be of minimal consequence in the identification of objects of interest.

To perform a qualitative comparison of the two statistics, we must account for
enhancement of natural clutter by each statistic due to differences in variance. For im-
age regions that are statistically consistent with their background, the CFAR statistic
will have zero mean and unit variance. The statistic, c3(s.), on the other hand, will
have zero mean but a variance of P — 1 (provided that the residuals are white). We
could normalize this statistic by P —1 to ensure a fair comparison, yet if the residuals
are not truly white throﬁghout scale we will not accomplish our goal. Hence, we
choose an empirical method. We characterize the performance over grass regions be-
cause most forested regions will be rejected by the segmentation algorithm. Thus, we
estimate the mean and standard deviation of each statistic for SAR imagery of grass.
We then normalize each enhanced image such that each statistic will have zero-mean

and unit variance over regions of natural clutter (grass). As a result, we may directly

B, S ——————
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compare each normalized image to determine which provides better enhancement of
anomalous regions. This procedure is graphically outlined in the block diagram of

Figure 4-11.

Anomaly Mean/Std Dev
Enhancement Estimation:
Algorithm L&s

Normalization:
Anomaly ~ Enhanced
Enhancement = | PD- p Normalized
. P( 4 ) - A
Algorithm c Image

Imagery

\ J

Figure 4-11: Block diagram illustrating our technique for qualitatively comparing the
performance of our multiscale anomaly enhancement procedure with the standard
CFAR detector.

As an initial measure, we compare the peak and average enhanced pixel values
over the areas of interest (outlined in black) for each of the SAR images in Figures 4-
4 through 4-6. The peak value provides a measure of probability of detection (Pp)
since each image will ultimately be thresholded to detect anomalous regions, while
the average value gives a measure of overall target enhancement. We evaluated three
statistics: CFAR, and c;(s.) for multiscale models spanning four and six scales. The
results listed in Table 4.1 indicate the potential of a multiscale enhancement technique
in increasing visibility of anomalous (i.e., man-made) regions. We see that for each
SAR image, the peak value over the target is greater in the multiscale enhanced image
than in the CFAR enhanced image. Furthermore, an increase in the number of model
scales (4 versus 6) provides better anomalous pixel visibility.

We evaluated a second performance measure that further illustrates the ability of
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Normalized Statistic
CFAR c3(sc), (P=4) | cs(se), (P=6)
Image Peak | Average | Peak | Average | Peak | Average
Figure 44 | 7.40 | 091 | 961 | 113 [11.32] 2.13
Figure4-5 | 738 | 065 | 850 | 0.94 | 997 | 1.62
Figure 4.6 || 662 | 103 | 810 | 132 | 982 | 1.97

Table 4.1: Peak and average values of each normalized statistic over target regions
(outlined in black) for imagery in Figures 4-4 through 4-6.

our multiscale anomaly enhancement technique to increase the visibility of cultural
clutter. This measure evaluates the number of target pixels that exceed a given
threshold, for increasing thresholds. Clearly, this measure provides a performance
curve that will begin at a value corresponding to the total number of target pixels
and monotonically decrease to zero. The rate at which the curve decreases provides
a measure of performance (i.e., a “higher” curve is indicative of increased ability for
detection). We evaluated this measure for the three normalized statistics listed in
Table 4.1 over each of our test images. For each of the three images, we again used
the pixels outlined in black to represent target regions. The results for each of the
test images in Figures 4-4 through 4-6 are displayed, respectively, in the three plots
in Figures 4-12 through 4-14.

It is apparent that the multiscale technique provides better enhancement of the
target regions than the CFAR algorithm. For example, for the L-shaped structure
in Figure 4-6 the plotted results in Figure 4-14 show that using the multiscale en-
hancement technique with a four-scale model, we may set a threshold value of 8 and
still detect the target. With the threshold set at this value, the CFAR algorithm
will not detect this target. By allowing for higher threshold values, the multiscale
enhancement technique will subsequently reduce the clutter false alarm rate and im-
prove detection performance. Furthermore, it is clear from Figure 4-14 that the
performance of the multiscale enhancement technique improves when using the larger

model size (six scales).
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Figure 4-12: Anomaly enhancement performance plots for imagery in Figure 4-4. We
display number of pixels exceeding threshold values as threshold varies for normalized
enhancement statistics.
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Figure 4-13: Anomaly enhancement performance plots for imagery in Figure 4-5. We
display number of pixels exceeding threshold values as threshold varies for normalized
enhancement statistics.
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Figure 4-14: Anomaly enhancement performance plots for imagery in Figure 4-6. We
display number of pixels exceeding threshold values as threshold varies for normalized
enhancement statistics.

In this chapter, we have shown the potential of a multiscale technique for anoma-
lous pixel enhancement and target detection. We compared performance with the
CFAR algorithm by measuring the number of target pixels that exceeded a threshold
as the threshold increased. This comparison displays the potential of a multiscale
technique for anomalous pixel enhancement, yet is not entirely definitive of increased
performance in an ATR system. As previously mentioned, a ROC curve is necessary
to achieve such a definitive measure of performance. A ROC curve could be gener-
ated by applying the multiscale enhancement technique to several square kilometers
of SAR data. The SAR data would have to contain many instances (a known quan-
tity) of the target of interest. One could then plot probability of detection versus
false alarm rate (in false alarms per kilometer squared) as a function of threshold.
Such a curve could be directly compared to a ROC curve for the CFAR algorithm for

a direct and definitive performance comparison.
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Chapter 5

Conclusions & Extensions

Here we provide our conclusions regarding the thesis contributions and offer some

natural extensions for further work.

3.1 Conclusions

We have presented here 5 methodology for the segmentation of background clutter
and delineation of terrain boundaries as well as identification of anomalous (i.e., man-
made) imagery. These methods are based on multiscale stochastic modeling of SAR
imagery, and use such models to identify differences in the scale-to-scale variability
and predictability of imagery of different types of terrain. We will take a look back

here at each thesis contribution and offer conclusions and closing remarks.

5.1.1 Natural Clutter Segmentation

We have assembled a methodology for the segmentation of clutter in SAR imagery
using multiscale SAR, image models. This methodology exploits the differences in
scale-to-scale variability and predictability of images of distinct clutter types due to

radar speckle. Within the multiscale framework, log-likelihood test calculations are

95
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quite efficient. Accordingly, we base the image segmentation problem on successive
classifications of disjoint image regions, with the heart of each distinct classification
being the aforementioned log-likelihood ratio test. Further efficiency results from
the hierarchical nature of multiscale likelihood calculations. In particular, the mul-
tiscale structure yields efficient implementation of a hierarchical refinement strategy
for improving the segmentation accuracy near clutter boundaries.

In Chapter 3 we outlined the segmentation procedure in detail and provided ex-
perimental results using imagery gathered with Lincoln Laboratory’s millimeter-wave

SAR. We observed two primary quantitative measures of performance:

e Probability of misclassification in homogeneous regions of grass or forest.

e Probability of misclassification outside swaths centered on all terrain boundaries

for various swath widths.

The first measure provided a means of evaluating classification performance in ho-
mogeneous regions of natural clutter (i.e., away from terrain boundaries). We found
the probabilities of miscldssiﬁcation to be 0.005 and 0.011 for improperly classifying
grass as forest and forest as grass respectively. The second experiment furnished a
performance measure on terrain boundary estimation. We concluded that, for terrain
boundaries with an “average” level of illumination, we could estimate these bound-
aries within 7 pixels (= 2m) with 0.02 probability of misclassification. Furthermore, it
was noted that boundaries displaying a higher level of illumination could likely be es-
timated through other means; namely, the anomaly enhancement technique outlined
in Chapter 4.

We also provided, as a qualitative measure of performance, visual segmentation
results for several 512 x 512 pixel images, each containing regions of grass and forest.
For each example image we provided two primary segmentation results: 1) Simple

thresholding on the statistic, ¢, and 2) Implementation of deferred decisions via the
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hierarchical refinement procedure. We observed promising improvements in boundary
estimation upon implementing the refinement procedure for all images tested.

We believe that these results have demonstrated the promise of multiscale seg-
mentation of SAR imagery. However, we do foresee several areas for improvement.
In particular, in order to develop a fully automatic system, there is a need to develop
a method that adapts to the nature of the SAR imagery. For example, adaptation to
various squint or depression angles, types of vegetation, and presence of bright tree
lines (as suggested above) would be natural extensions. Moreover, a technique that
utilized fully polarimetric data would enable the incorporation of that information
if available, and hence, the possibility of improved performance. This idea will be

expanded upon in Section 5.2.1.

5.1.2 Anomaly Enhancement

A multiscale procedure to enhance the visibility of anomalous pixels was presented
in Chapter 4. The technique is generally thought of as a by-product of the mul-
tiscale segmentation routine outlined in Chapter 3. The segmentation provides a
classification for each image pixel. Correspondingly, each classification has associated
with it a multiscale model. By noting those pixels whose prediction error residu-
als (throughout scale) are consistent outliers with respect to the associated model
residual distributions, we identify anomalous pixels.

Since this technique performs a function similar to that of the standard CFAR
detection technique used in the detection stage of Lincoln Laboratory’s ATR system,
all performance measures used the CFAR routine as a measuring stick. We evaluated
two quantitative performance measures on several SAR images containing anomalous

(e.g., man-made) imagery:
e Peak and average value in enhanced image over the target region.

e Number of enhanced pixels over target regions that exceeds threshold values as
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threshold values vary.

For each image, we observed consistently higher peak and average values over
the target area for the multiscale enhancement technique. This, however, does not
translate directly to improved probability of detection. If the background clutter is
also enhanced, performance may not improve or may even suffer degradation. Hence,
we perform the second measure. Specifically, we measured the number of pixel values
over the target regions that exceeded a threshold value for various thresholds. In
order to ensure a similar probability of false alarm for grass regions, we normalized
each enhanced image such that for grass-like terrain, each statistic would have zero
mean and unit variance. We noted that for each man-made object tested, more pixels
exceeded the threshold over the target region in the multiscale enhancement technique
than in the CFAR technique for all thresholds.

Two key performance issues were also addressed. First, as a result of segmentation,
the prediction error residuals are available. Hence, anomaly enhancement comes with
minimal further computation. The CFAR technique, on the other hand, requires the
calculation of a distinct sample mean and variance for each image pixel considered.
Second, since the CFAR technique utilizes a stencil region around each pixel to gather
the background statistics, a large cluster of targets could pose a potential detection
problem. In contrast, this issue is of no concern for the multiscale enhancement

technique considered in this thesis.

5.2 Extensions

The promise of the results obtained in this research both opens doors for future
work and poses questions on techniques for improvement. As mentioned above, a
natural progression for improvement in the segmentation and anomaly enhancement
techniques lies in the use of fully polarimetric imagery. The use of fully polarimetric

imagery ensures the fusion of all available data in the subsequent decision processes.
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Moreover, our model-based segmentation leads directly to efficient techniques for
SAR image compression by exploiting the scale-autoregressive nature of the terrain
models. Furthermore, the anomaly enhancement techniques introduced in Chapter 4
may be fused with segmentation results in the vicinity of highly illuminated tree-lines

to obtain more accurate results. We will be briefly introduce each concept here.

5.2.1 Extension to Fully Polarimetric Data

In the thesis, we formulate a methodology for the segmentation of natural clutter in
SAR imagery. This formulation has assumed that we use single-polarization SAR im-
agery. There are, however, three polarimetric modes gathered by many SAR systems.

They are listed below:

e Horizontal transmit — horizontal receive (HH).
e Horizontal transmit — vertical receive (HV).

e Vertical transmit — vertical receive (VV).

For example, HH SAR imagery (as is used for experimentation throughout the
thesis) refers to imagery gathered transmitting a horizontally polarized wavefront
and measuring the horizontally polarized return. By gathering these three linear
combinations, one may produce any polarization combination desired. Furthermore,
additional information for classification, segmentation, and target identification may
possibly be extracted by utilizing all three modes. For example, one may imagine
that each mode of SAR data might contain unique information regarding distinct
terrain categories. Moreover, distinguishing target information (vertical and hori-
zontal structural makeup) may be contained in combinations of HH, HV, and VV
data. We provide here the beginnings of a formulation for our image segmentation

procedure that utilizes fully polarimetric SAR imagery.
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Our multiscale models for single polarization SAR imagery were introduced in

Chapter 2 and had the scale-autoregressive form:
I(s) = ail(s7)+ aI(s7?) + - -+ + apl(s7F) + w(s)

where P represented the order of the regression. To extend this to fully polarimetric
imagery we must first define a vector, analogous to I(s) in our earlier formulation, to

represent the values in all images at any multiscale node. Accordingly, we define,
1(s) = [Tun(s) Inv(s) v (s)]",

where Iy (s), Igv(s), and Iyy(s) represent the image values at multiscale node s in
the HH, HV, and VV polarized images respectively. Our scale-recursive model now

takes the form,
I(s) = Avm)I(57) + Agm(e) [(572) + - - - + Ap iy [(57F) + 10(s),

where the A; s are 3 x 3 coefficient matrices (in the prediction of scale m(s))and
W(s) represents the 3 x 1 vector of white driving noise. Therefore, a model is fully de-
scribed by defining the coefficient matrices as well as identifying the joint probability
distribution of the driving noise, w(s).

In a manner analogous to that in Chapter 2, we may translate this into a form
more amenable to multiscale stochastic processes by state augmentation. If we define

the state vector z(s) as,
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the resulting multiscale dynamical equation is,

Aimis)y Azms) 0 Ap—im(s) APm(s) I
I 0 0 0 0

z(s) = 0 I 0 0 z(s7)+ | 0 | W(s).
L 0 e 0 I 0 0

At this point the problem is set up in such a manner that multiscale models may
be constructed following techniques similar to those detailed in Chapter 2. Moreover,
the successive regional classifications that are the heart of the segmentation procedure
outlined in Chapter 3 may be performed in an identical manner. Namely, given
two competing fully polarimetric terrain models, we may evaluate (again via the
prediction error residuals) the log-likelihood difference of obtaining a set of fully
polarimetric multiscale data given each model. This statistic may then be thresholded

for classification purposes. The remainder of the procedure will remain analogous.

5.2.2 SAR Image Compression

Just as with their time series counterparts, the scale-autoregressive models we have
described offer the potential for developing efficient compression algorithms. For
example, given multiscale terrain models together with pixel classifications, we need
only transmit the model descriptions (either by index, if one of a competing set
of fixed models are used or the parameters of the model if the model is estimated
on-line), the initial state (coarsest-scale image representation(s)), and the prediction
error residuals, w(s). Since, as assumed in the model construction, the residuals
have been approximately whitened and have a reduced dynamic range, direct scalar
quantization of them should be feasible using a small number of bits. Furthermore,

the image that must be encoded with a larger number of bits will correspond to the
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coarsest-scale representation of the image and will thus be much smaller than the

original. These two facts promise an efficient method of SAR image compression.

5.2.3 Bright Tree-line Localization

In Figure 3-11 of Subsection 3.4.3 we displayed a measure of boundary localization.
Specifically, we plotted the probability of misclassification as a function of the dis-
tance from the ‘true terrain boundary for which classifications were ignored. In this
figure, we displ:;;red the results for two boundary classes: those with average as well as
high levels of illumination. We observed that boundaries with a high level of illumi-
nation exhibited extremely bright pixels along much of the boundary. As a result, the
estimated boundary tended to display a bias into the grass region and performance
suffered. The presence of such a distinguishable feature (bright region of scatterers),
suggests that other methods, in conjunction with the multiscale segmentation, may
yield improvements in boundary localization for such regions. The anomaly enhance-
ment technique of Chapter 4 may prove useful in such cases by providing an enhanced
image that may be, for example, thresholded to identify these regions. By enhancing
such anomalous regions prior to thresholding, one obtains the ability to better localize
the boundary.

As an example, in Figure 5-1(a) we display a SAR image with a highly distin-
‘guishable tree-line. As a result, the multiscale segmentation results for this image,
given in Figure 5-1(b), exhibit a bias into the grass region. This is indicated by the
hand-picked estimate (black line) in each figure. In Figures 5-1(c) and (d) we display
the anomaly enhanced image and the result of processing this enhanced image with
thresholding and subsequent morphological opening. We see that such processing
provides an improvement in boundary estimation. We note, however, that to bring a
boundary estimation improvement technique such as this to fruition, one must first
possess a means of identifying those boundaries exhibiting a high level of illumination.

This simple example illuminates two significant points: - -
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e Estimation of bright tree-lines may be improved with methods other than our

multiscale segmentation.

e Multiscale anomaly enhancement may provide a feasible means for this improve-

ment.

(a) | "

Figure 5-1: Example illustrating the potential for improvement of boundary estima-
tion. (a) SAR image containing bright tree-line; (b) Multiscale segmentation results;
(c) Multiscale anomaly enhanced image; (d) Results after performing thresholding
and morphological opening on enhanced image. The white line in each frame repre-
sents a hand-picked estimate of the boundary in frame (a).

B T T p———
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Appendix A
Log—Rayleigh Variance

To perform the anomaly enhancement calculations of (4.9) in Chapter 5, we must
obtain the variance for our residual distributions in regions of grass. Our multiscale
model for grass defines the residuals at all scales to be zero mean Log-Rayleigh ran-
dom variables. Thus, we need only evaluate the variance of a Log-Rayleigh random

variable, characterized by the probability density function,

pe(X) = kcexp{kX —cexp{kX}}, (A1)
where,
In(10) \
S T)

¢ = exp{-},
v = 0.57721566 (Euler’s constant).

We begin by evaluating the moment generating function,

E[exp{sX}] = /;wk c exp{sX}exp{kX —c exp{kX}}dX

105
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= /+°° kcexp{(s+k)X —c exp{kX}}dX. (A.2)

—00

By choosing the change of variables,

u = exp{kX}
du = kudX,

(A.2) becomes,
+00 s |
Elexp{sX}] = / ¢ u(®) exp {—uc}du
0
- 7 (% + 1) : (A.3)
where I'(z) represents the Gamma function and is defined as,

[(z) = /()Jrooexp{—t}tz—ldt. (A.4)

As a check, we ensure that the mean of this Log-Rayleigh random variable is zero.

() [¥(1) —In(c)] (A.6)

i
2

|

|
2

BX] =+ (Blexp{sX))], _
= % (%) [F' (% + 1) —In(c)l (% + 1)] L ~0
= e ®r(Zen) e (2 +1) )| _ (4.5)
-4
1
k

I
(=)
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where ¥(z) is the Psi function defined as,
o) = (@)
T dz
s
T Tz’
and
+o00
IM(z) = / exp{—t} In(¢)t*'dt. (A.7)
0

In (A.5) we apply the basic identities,

¥(1) = -7
r(1l) = 1.

The second moment (i.e., variance since X has zero mean) is calculated as the second

derivative, with respect to s, of (A.3) evaluated at s = 0. To evaluate this, we exploit

the results obtained in (A.5).

E[x? = Ed:—z (Elexp{sX}]) |, _ ¢
- 4 (GeOr () (5e) -,
- HeOr(Ee{f o) -wel v (g

= Lo {E - m) + v()

*jw

&

= ST

)}L:o (A.8)

(A.9)
(A.10)

(A.11)




108 Appendix A. Log-Rayleigh Variance

In (A.8) - (A.10) we use the function ¥’(z), defined as,
() = L)
 dzx '
Furthermore, in (A.10) we make use of the identity,
2
T
/
1) = —.
v = 2

Evaluating (A.11), the variance of a zero mean Log-Rayleigh random variable is,

Var [X] = 31.02538




Appendix B

Morphological Operators

We begin by considering the sets, A and B, each defined in a two-dimensional Eu-
clidean space. The sets, A and B, represent the binary image to be processed and
the structuring element to perform the processing, respectively. Different choices of
B, coupled with the various morphological operations provide for many possible out-
comes. These operations may, in turn, be used to perform useful image processing
operations on the binary image, A.

The fundamental binary morphological operation, erosion, is defined in set-

theoretic notation as,
AoB = {z : B+z C A}, (B.1)

where & is the erosion operator. The erosion operation is illustrated graphically in
Figure B-1. This operation may be viewed graphically as those vectors, z, by which
B may be translated such that B is contained entirely within A. The set-theoretic

complement of erosion is dilation, defined as,

AeB = [4°e(-B)|’, (B.2)

109
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Figure B-1: Binary morphological erosion, A& B, of set A by structuring element B.

where @ is the dilation operator and A® denotes the complementary set of A. Whereas
erosion is viewed as a shrinking of sets, dilation, as the name implies, is associated
with the growth of sets. ‘

Binary morphological opening and closing are deﬁﬁéd using these two basic oper-

ations. Specifically, opening and closing are defined as,

AoB = (A©B)9 B (B.3)
AeB = [A®(-B)]e(-B), (B.4)

where o and e represent the opening and closing operators respectively. Again, as

with erosion and dilation, opening and closing are dual operations. That is,

AoB = [4°eB|° (B.5)
AsB = [A%0B]. (B.6)

Opening and closing perform a nonlinear filtering on the set A. Opening filters
out all portions of the set that are smaller in size than the structuring element.

Closing, on the other hand, filters out all portions of the set A® that are smaller than
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the structuring element. Each operation is useful in different situations. Opening
may be used to reduce pepper noise while closing assists in the reduction of salt
noise. Application of the two operations to sets exhibiting each category of noise are
displayed in Figures B-2 and B-3. It is apparent that in these two cases the object

embedded in noise is recovered.

o0 o 4

(a) (b)

Figure B-2: (a) Binary set A displaying pepper noise and structuring element B. (b)
Results after morphological opening of A with B.

> A - A©CB

(b)

Figure B-3: (a) Binary set A displaying salt noise and structuring element B. (b)
Results after morphological closing of A with B.
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