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Abstract
A morphological filter is an operator on a complete lattice which is increasing and idempotent.
Two well-known classes of morphological filters are openings and closings. Furthermore, an
interesting class of filters, the alternating sequential filters, is obtained if one composes openings
and closings. This paper explains how to construct morphological filters, and derived notions
such as overfilters, underfilters, inf-overfilters, and sup-underfilters by composition, the main
ingredients being dilations, erosions, openings, and closings. The class of alternating sequential
filters is extended by composing overfilters and underfilters. Finally, it is shown that any
composition consisting of an equal number of dilations and erosions from an adjunction is a

filter. The abstract approach is illustrated with some experimental results.
AMS Subject Classification (1991): 68U10

Keywords & Phrases: mathematical morphology, complete lattice, operator on a complete
lattice, adjunction, opening, closing, composition of operators, morphological filter, filter

derivates, alternating sequential filter, adjunctional filter.

1. Introduction

In mathematical morphology, a transformation or operator is called a filter if it is increasing and
idempotent. Here the notion of increasingness is based on an underlying partial ordering: we
will assume throughout this paper that our object space is a complete lattice. An operator 1) is
idempotent if )? = 1/, where 9? denotes the composition 1)).

The goal of this paper is to construct morphological filters (and derived notions such as
overfilters, underfilters, inf-overfilters, sup-underfilters) by means of composition. A well-known
and useful class of operators obtained by composition (of openings and closings) is formed by
the so-called alternating sequential filters [2, 9, 10].

This paper starts with a short overview of the theory of morphological operators between
complete lattices in Section 2. Then, in Section 3 we discuss some basic results on morphological
filters and derived notions such as overfilters, underfilters, inf-overfilters, and sup-underfilters.
In Section 4 we consider compositions of the type ay, Yo, Yo, apa, where « is an opening
and 9 a filter or some derived notion. Subsequently, in Section 5 we consider compositions of the
type ¢'¢e and €106, where (g, §) and (¢’, ") are adjunctions with ' > ¢ and &’ < e. The notion of
alternating sequential filter can be generalised by composing overfilters and underfilters instead
of openings and closings. Details can be found in Section 6. A simple method to construct
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filters is the following: if (¢, §) is an adjunction on the complete lattice £ (see Section 2), then
every composition of €’s and é§’s comprising an equal number of €’s and é’s is a filter. For
example, 6346226 is a filter. Section 7 is devoted entirely to filters which are compositions of
the operators (dilation and erosion) in an adjunction. We end with some concluding remarks,
in particular on self-duality, in Section 8.

2. Operators between complete lattices

A complete lattice is a set £ with a partial ordering such that every subset K has an infimum
(greatest lower bound), denoted by A K, and a supremum (least upper bound), denoted by \/ K.
The supremum of £ is called the greatest element and is denoted by I; the infimum of £, the
least element, is denoted by O. The lattice £ is modular if

XV(YAZ)=(XVY)AZ for X,Y,Z € L with X < Z.

Refer to [1] for a general exposition on complete lattices. Some simple illustrations of the
modularity assumption can be found in [2, §2.1].

It is generally accepted that complete lattices provide a natural framework for the study
of morphological operators [4, 6, 7, 9, 10]. A comprehensive treatment of the complete lattice
framework for morphology is given in [2]. In this section we recall some basic concepts. If 9 is
an operator (mapping) between £ and M, then we write ¢ : £ — M. Let ¢1,199 : L — M be
two operators. The (pointwise) infimum and supremum are denoted by 1 A 1y and 11 V 1o,
respectively. If ¢ : L — M and ¢ : M — N, then the composition ¢ is an operator between
L and N given by (¥¢)(X) = 1¥(¢(X)), X € L. For an operator % on £ we write 1% = 1.

An operator ¢ : L — M is increasing if X <Y (in £) implies that ¥(X) < ¥(Y) (in M),
for every X,Y € £. If X <Y implies that (X)) > 9(Y), then v is said to be decreasing. An
operator ¢ : L — L is called an operator on £. The simplest operator on L is the identity
operator id given by id(X) = X, for X € L.

2.1. Definition. An operator ¥ on L is

(a) anti-extensive if P(X) < X, for X € £;
(a') extensive if Y(X) > X, for X € L;
(b) idempotent if 1% = ;

c) an opening if ¢ is increasing, anti-extensive, and idempotent;

(c') a closing if 1 is increasing, extensive, and idempotent.
With every complete lattice one can associate an opposite or dual complete lattice L' by reversing
the partial ordering: X <’ Y in £ if X > Y in L. This straightforward observation forms
the basis of the Duality Principle, which says that every definition or statement concerning
(operators on) complete lattices has a dual counterpart. For example, the dual of an opening
is a closing, and vice versa. In Definition 2.1, for example, the duality between openings and
closings is made explicit by using the notation (c) and (c¢’) respectively. A major implication
of the Duality Principle is that once we have demonstrated a certain property, there is no need
to demonstrate also the dual property. In this paper, the Duality Principle will be exploited at
several occasions, often without explicit mentioning.

From our point of view, the main theoretical concept in mathematical morphology is that
of an adjunction.

2.2. Definition. A pair of operators (g,6), where ¢ : L — M and § : M — L, is called an
adjunction between £ and M if

0(Y) <X <= Y <e¢(X),
forevery X € £, Y € M.



We summarize some basic properties of adjunctions in the next two propositions.

2.3. Proposition. Let (¢,6) be an adjunction between L and M. The following are true:
(a) (6,¢) is an adjunction between M’ and L';
(b) for X € L,Y € M:

5(V)= N\{X'eL]|Y <e(X')}, (2.1)
e(X)=\{Y' eM|6Y") <X} (2.2)

c) 6(V..; Y:) =V..,0(Y;), for every family {Y; |1 € I} C M (in particular, § is increasing);
i€l i€l

(c") e(Nser Xi) = Nier e(Xi) for every family {X; | i € I} C L (in particular, € is increasing);

(d) ebe =€ and b6eb = 6;

(e) 6c is an opening on L and €6 is a closing on M.

An operator ¢§ which has the property (c) above is called a dilation. An operator € with property
(c') is called an erosion. Erosions and dilations occur in pairs, as the following proposition shows.

2.4. Proposition.

(a) Given a dilation 6 : M — L, there exists a unique erosion € : L — M, given by (2.2), such
that (g,0) is an adjunction between L and M.

(a') Given an erosion € : L — M, there ezists a unique dilation 6§ : M — L, given by (2.1),
such that (e,6) is an adjunction between L and M.

Next, we consider openings and closings, in this paper denoted by « and 3, respectively.

2.5. Proposition.
(a) If oy (i € I) are openings, then \/,.; o; is an opening.
(") If B; (i € I) are closings, then \,c; Bi is a closing.

The invariance domain of an operator ¥ on L is defined as the set of its fixed points, also called

invariants or roots:
Inv(y) = {X € L | $(X) = X}.

Openings and closings are uniquely characterised by their invariance domain.

2.6. Proposition.

(a) Let ai,ay be openings on L, then oy < ag iff Inv(ay) C Inv(ag). In particular, a3 = a3
iff Inv(aq) = Inv(as).

(a’) Let B1, P2 be closings on L, then 31 > B2 iff Inv(51) C Inv(B2). In particular, By = Bo iff
Inv(B1) = Inv(Bs).

Originally, mathematical morphology was developed for binary images, which can be modeled
mathematically as sets. In the continuous case one has to consider subsets of IR?, and in the
discrete case subsets of Z¢. By the abstract notation E? we represent either of these two spaces.
(If one wants, one can think of IE as an arbitrary Abelian group, and of E? as the d-fold
product IE x - x IE.) For a set X C IE and an element h € IE? we define the translate X,
as X, = {z + h | z € X}. By P(IE?) we denote the power set of IE%; it is well-known that this
defines a complete Boolean lattice [2].

An operator ¢ : P(IE?) — P(IE?) is called translation invariant if (X)) = [¢(X)], for
every X C IE* and h € IE?. We use the following notation [2]. Let X, A C IE, then X @ A is
the Minkowski addition (dilation) given by

XoA={z+a|z€X,ac A} =[] X..
acA
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Dually, X © A is the Minkowski subtraction (erosion)

XoA= ﬂ X_,.
a€A

The pair (€4,84), where e4(X) = X © A and 64(X) = X ® A is an adjunction on P(IE?). By
Proposition 2.3, the composition é 4 4 is an opening and the composition €404 is a closing. We
introduce the following notation:

XOA:(SAEA(X) = (X@A)@A,

XeA=c404(X)=(X Ao A

~—

For X o A one can derive the alternative expression
XoA=|J{An|h e E? and 4, C X}. (2.3)

2.7. Lemma. Let 6,e,v be increasing, translation invariant operators on P(Ed), and assume
that (g,6) is an adjunction. Then

ve < ey (2.4
8 > 8 (2.5)
dipe <9 (2.6)
ePé > . (2.7)

PROOF. Every translation invariant erosion ¢ on P(IE%) is of the form

eX)=XoA=)X_,
a€A

where A C IE* [2]. Using that ¢ is increasing and translation invariant, we get

(¥e)(X) = () X=a) C [ ¥(X-a)

a€A a€A
= [#X@)]_,=v(X)o4
a€A
= (e¥)(X).

Now (2.5) follows from the Duality Principle. Furthermore, (2.6) (resp. (2.7)) follows from (2.4)
(resp. (2.5)) and the fact that (e, ) is an adjunction.

3. Filter-derivates

An increasing operator ¢ : £ — L is called a (morphological) filter if ¢ is increasing and idem-
potent. We emphasize here that this terminology is not consistent with most of the literature on
signal and image processing, where the word ‘filter’ is used as a synonym for ‘operator’. How-
ever, it is common practice in morphology to preserve the word ‘filter’ for the more restricted
class indicated above.

If 11,19 are filters, then ¢ := 11 V 15 is not a filter, in general: it is increasing but not
idempotent. However, half of the idempotence property is preserved: %2 > 1. An increasing
operator ¢ with this property is called an overfilter (see definition below). In fact, the concept
of a filter forms the basis for a number of related concepts: we refer to them as filter-derivates.



3.1. Definition. An increasing operator on £ is called
(a) an overfilter if ¥? > 1;

(a’) an underfilter if 12 < 1;

(b) an inf-overfilter if ¥(id A ¢) = 1);

(b") a sup-underfilter if ¥(id V ¢) = 1;

(c) an inf-filter if 1 is a filter and an inf-overfilter;

(c') a sup-filter if ¢ is a filter and a sup-underfilter;

(d) a strong filter if 1) is both a sup-filter and an inf-filter.

As could be expected from the Duality Principle, these definitions occur in pairs (but the concept
of a strong filter is self-dual). It is easy to see that every increasing, extensive operator is an
inf-overfilter, and that every inf-overfilter is an overfilter. To prove that an increasing operator
is an inf-overfilter, one needs only demonstrate that 1 (id A 1) > 1. The reverse inequality is
trivial.

The set of increasing operators on £ is denoted by OT(L). A subcollection Q of O (L)
is said to be closed under suprema if ¥; € Q, i € I, implies that \/,.;¥; € Q. It is closed
under composition if ¢, € Q implies that ¥¢ € Q. And finally, O is said to be closed under
self-composition if ¢ € Q implies that ¥ € Q for n > 1. It is evident that a collection of
operators which is closed under composition is also closed under self-composition.

3.2. Proposition.
(a) The set of overfilters (inf-overfilters) is closed under suprema and self-composition.
(a') The set of underfilters (sup-underfilters) is closed under infima and self-composition.

The reader may refer to [9] or [2] for a proof.
The next result is well-known; see for example [9] or [2, Thm. 6.26].

3.3. Proposition.
(a) If v is an inf-overfilter then id A is an opening.
(a") If ¢ is a sup-underfilter then id V ¢ is a closing.

Now we state a number of results, some known, some new, but all of them very easy to prove,
which show how to obtain (inf-) overfilters, and (sup-) underfilters.

3.4. Proposition.

(a) If ¢ is increasing and extensive and 1 is an overfilter, then ¢, V¢ are overfilters.

(") If ¢ is increasing and anti-extensive and v is an underfilter, then ¢, V¢ are underfilters.
(b) If ¢ is increasing and extensive and v is an inf-overfilter, then ¢t is an inf-overfilter.
(b") If ¢ is increasing and anti-extensive and ¢ is a sup-underfilter, then ¢1) is a sup-underfilter.

PROOF. (a): If ¢ is extensive and 1) is an overfilter, then

pvpp > gv® > ¢,

hence ¢ is an overfilter. Similarly, one proves that ¢ is an overfilter.
(b): Assume that ¢ is extensive and that ¢ is an inf-overfilter, then

P(id A ) > ¢ip(id A ) = ¢,

hence ¢ is an inf-overfilter. |

It is easy to extend the results in this proposition. For example, under the assumptions given
in (b), one can show that ¢ is an inf-overfilter, too.
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3.5. Proposition. (See [2, Lemma 12.22]).

Assume that L is modular.

(a) If ¢ is an inf-overfilter then ¥ (id V ¢) is an inf-overfilter.
(@") If ¢ is a sup-underfilter then ¥(id A1) is a sup-underfilter.

3.6. Proposition.

(a) If ¢ is an inf-overfilter and ¢ > id A then ¢ is an inf-overfilter.

(b) If ¢ is an overfilter and ¢ > 1), then ¢1p and P¢ are overfilters.

PROOF. (a): See [2, Prop. 6.28(a)]. (b): If ¢ is an overfilter and ¢ > 1 then ¢ehpeh > ¢p3 > b,
hence ¢t is an overfilter. Analogously, one shows that ¢ is an overfilter. ]

3.7. Proposition. Let (¢,6) be an adjunction on L.

(a) If¢ > 6 then e is an inf-overfilter.

(") If ¢ < e then ¥ is a sup-underfilter.

(b) If 1 > e then 61 is an overfilter.

(b") If ¢ < 6 then e is an underfilter.

PROOF. (a): See [2, Prop. 6.28(b)]. (b): If ¢ > ¢, then ééyp > debp = 61, hence 61 is an
overfilter. |

Note that under the assumptions stated in (b), e¢ > id, and hence an overfilter.
For completeness we mention the following result which was first given in [9, §8.4]; see
also [2, Remark 13.39(b)].

3.8. Proposition. Assume that L is modular. If ¢ is a sup-underfilter, ¥ an inf-overfilter,
and ¢ < 1, then v = (id AY) V ¢ is a filter.

We point out that v = (id Av) V ¢, where ¢ < 1, is called the centre operator of ¢ and ¢ [2, 9.

4. Compositions with openings and closings

Probably the most well-known method to construct morphological filters other than openings
and closings, is by means of compositions of members of these two classes. We recall the following
results [2, 9, 10].

4.1. Proposition. Assume that « is an opening and that B is a closing. The compositions

oo}
a < afa < < Bap <
af

are filters. Moreover, af8 and Baf are sup-filters and Ba and afa are inf-filters.

In Section 6 we show that this result can be extended by using overfilters and underfilters. It
has been shown [2, 9] that every inf-filter is of the form B«, and, dually, that every sup-filter
is of the form af. We still get interesting results if 3 is replaced by an arbitrary (increasing)
extensive operator.

4.2. Proposition. Assume that 1 is extensive. Then o), Yaip are overfilters and Yo, apa
are inf-overfilters.

PROOF. We show that 1« is an inf-overfilter.
Ya(id Apa) > Ypa(id A a) = Yaa = Pa.

The proofs of the other statements are similar and as such they are left to the reader. ]

Next we consider the case where 1 is an underfilter and sup-underfilter, respectively.



4.3. Proposition.
(a) If ¢ is an underfilter, then a1, Yo, Ya, apa are underfilters.
(b) If ¢ is a sup-underfilter then ax), Yarp are sup-underfilters.

PROOF. (a): Straightforward.
(b): We prove that ¢a1) is a sup-underfilter if ¢ is a sup-underfilter.

Yarp(id Vo)) < payp(id vV §?) < pagp(id V ¢) = pay.

4.4. Proposition. If a < then ai, Yoy are overfilters and Vo, aa are inf-overfilters. If,
in addition, 1 is anti-extensive, then ay) = Yo = apa = Ypap = a and Inv(a) C Inv(e)).

PROOF. Let a < %; then ¥« is an inf-overfilter, for:
Ya(id A pa) > pa(id A o®) = pa(id A a) = Ya® = Ya.

If, in addition, 1 is anti-extensive, then a1y < a and also a1 > o = o, hence a1 = . Similarly,
one shows that ¥a, aya and Yay are equal to a. |

Of course, one can combine these results to get new ones. For example, Proposition 4.3(a)
in combination with Proposition 4.4 yields that ai, Yot are filters, and that Yo, apa are
inf-filters when v is an underfilter which is > a.

Given an increasing operator ¥ on the complete lattice £, it is easy to find openings «
which satisfy o < 4. Namely, if B € L satisfies ¢»(B) > B, then ¥ > ap, where ap is the

structural opening given by
B, ifB<X
ap(X) = { 0, otherwise.

If £ = P(IE?) and ¢ is translation invariant, then B C t(B) implies that B, C ¢(By), in which
case
X o B C¢(X), X € P(R%).

For, X o B=U{By, | h € IE* and B, C X} by (2.3). If B, C X, then B;, C ¢(Bs) C ¥(X).
Furthermore, we have dual statements of Propositions 4.2—4.4 for closings. For example,
the dual of Proposition 4.3(b) reads as follows: “If ¢ is an inf-overfilter (and 3 a closing), then
B, ¥ By are inf-overfilters.”
We summarize all the results which can be derived from the propositions above (and their
duals) in Table 1. This table has to be interpreted as follows: the contents of the box in the 5th
row, 2nd column means:
e if 9 is a filter, then aty and Yawy are both underfilters;
e if in addition, ¥ > «, then a1y and Yo are filters.

The contents of the box in the 5th row, 4th column means
e if ¢ is a filter, then Bv and 1B are both overfilters;
e if in addition, ¥ < 8, then 8¢ and (1 are filters.

5. Compositions with adjunctions

If (g,6) is an adjunction between the complete lattices £ and M, then ée is an opening on £
and €6 a closing on M (Proposition 2.3(e)). Furthermore, if (¢/,6’) is another adjunction such
that ¢’ < e and (hence) §' > 6, then §'c is an inf-overfilter on £, and €6 is a sup-underfilter



v o, o) Ya, apo By, v Vg, BYs
increasing increasing increasing increasing increasing
>aresp. <f overfilter inf-overfilter underfilter sup-underfilter
overfilter increasing increasing overfilter overfilter
>aresp. <f overfilter inf-overfilter filter sup-filter
underfilter underfilter underfilter increasing increasing
> aresp. <f filter inf-filter underfilter sup-underfilter
filter underfilter underfilter overfilter overfilter
>aresp. <f filter inf-filter filter sup-filter
inf-overfilter increasing increasing inf-overfilter | overfilter
> aresp. <f overfilter inf-overfilter inf-filter sup-filter
sup-underfilter | sup-underfilter | underfilter increasing increasing
>aresp. <0 sup-filter inf-filter underfilter sup-underfilter
inf-filter underfilter underfilter inf-overfilter | overfilter
> aresp. <f filter inf-filter inf-filter sup-filter
sup-filter sup-underfilter | underfilter overfilter overfilter
>aresp. <0 sup-filter inf-filter filter sup-filter
strong filter sup-underfilter | underfilter inf-overfilter | overfilter
> aresp. <f sup-filter inf-filter inf-filter sup-filter
anti-extensive anti-extensive anti-extensive | underfilter sup-underfilter
>aresp. <0 =« =« underfilter sup-underfilter
extensive overfilter inf-overfilter extensive extensive
>aresp. <f overfilter inf-overfilter =0 =0
opening anti-extensive anti-extensive | inf-filter sup-filter
>aresp. <[ =« =« inf-filter sup-filter
closing sup-filter inf-filter extensive extensive
>aresp. <f sup-filter inf-filter =0 =0

Table 1. Constructing filter-derivates by compositions with openings and closings.

on M (Proposition 3.7). In this section we investigate the compositions dve, §'1pe, e1pd, €',
where 1) is an increasing operator. For the composition §1e and é’1e we have to require that
is an operator on M, whereas for the compositions 9§ and £'1¢)6 we must require that v is an
operator on L. Since it is always clear from the context on which space 1 must act, we do not
mention this explicitly in our results. Throughout this section the following assumption will be
made.

5.1. Assumption. (e,6) and (¢/,6’) are two adjunctions between £ and M such that ¢’ < ¢

and &' > 6.

5.2. Proposition. If a is an opening then éae is an opening with invariance domain
Inv(éae) = 6(Inv(a)) = {6(X) | X € Inv(a)}.

PROOF. To show that the operator dae is an opening, we show that it is anti-extensive (hence an
underfilter) and an overfilter. First, fae < 6 < id. Secondly, as €6 > id, facdae > bale = bae.

Concerning the invariance domain, assume that X € Inv(éae), hence dae(X) = X. Since
ae(X) € Inv(a), we have X € §(Inv(a)). Conversely, if X € Inv(a), then daed(X) < de6(X) =
6(X). But also, since 6 > id, we get daed(X) > ba(X) = 6(X). This yields that §(X) €
Inv(éae). [ |
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Note that dae < ée. If, moreover, 6, ¢, a are translation invariant operators on P(IE%) then also
dae < a (Lemma 2.7). In fact, in the translation invariant case a lot more can be said. For, in
this case, every adjunction is of the form (£4,64), and every opening can be written as

a(X)= J XoB,
BeB

for some collection of structuring elements B (see [2, Thm.4.24] or [5]). Thus, using that 64 acts
distributively over unions, we get

bacea(X)=(|J(X0A4)oB)a A
BeB

= U (XeAd)oB) oA
BeB

= U (Xe(AeB)) @ (Ao B),

= |J Xo(4@B),
BeB

which is a union of openings with structuring elements A & B, where B € B.

5.3. Proposition.
(a) If 1 is an overfilter then §'ve is an overfilter.
(b) If ¢ is an inf-overfilter, then §'ve is an inf-overfilter.

PROOF. (a) is easy. We prove (b). As ¢ distributes over infima we get
8" pe(id A §'vpe) = §'p(e A eb'pe) = §'(id A eb'yp)e
> §'h(id A ebrp)e > 8'(id A 1p)e = §'pe.
This concludes the proof. |

Again, the Duality Principle yields dual results of these two propositions. For example, the
dual statement of Proposition 5.3(a) reads as follows: “If ¢ is an underfilter, then ¢'¢é is an
underfilter.”

) bpe &'pe ehd e'hb
overfilter overfilter overfilter increasing increasing
underfilter increasing increasing underfilter underfilter
filter overfilter overfilter underfilter underfilter
inf-overfilter inf-overfilter inf-overfilter | increasing increasing
sup-underfilter | increasing increasing sup-underfilter | sup-underfilter
inf-filter inf-overfilter inf-overfilter | underfilter underfilter
sup-filter overfilter overfilter sup-underfilter | sup-underfilter
strong filter inf-overfilter inf-overfilter | sup-underfilter | sup-underfilter
anti-extensive anti-extensive | increasing sup-underfilter | sup-underfilter
extensive inf-overfilter inf-overfilter | extensive increasing
opening opening inf-overfilter | sup-underfilter | sup-underfilter
closing inf-overfilter inf-overfilter | closing sup-underfilter
Y =id opening inf-overfilter | closing sup-underfilter

Table 2. Constructing filter-derivates by composition with adjunctions.



Our results are summarized in Table 2. For the sake of completeness, we point out that
it is not possible to derive any useful result for d)¢’ and e¢’, apart from the trivial facts that
b1’ is anti-extensive if ¢ is anti-extensive, and that ey’ is extensive if ¢ is extensive.

We conclude this section with the following result.

5.4. Proposition.

(a) If ¢ is an overfilter which is < €6, for some adjunction (g,6), then 6Y™e is an opening
< ébe, for every n > 1.

(a") If ¢ is an underfilter which is > e, for some adjunction (g,6), then ey is a closing > €6,
for every n > 1.

PROOF. First we observe that ¢ < (e6)™ = 6. To get that §)"¢ is an opening we show that
61Y™e is an anti-extensive overfilter. That §1"¢ is anti-extensive (and < d¢) follows from

oYTe < bebe = e < id.
Furthermore, since 1 is an overfilter,

Y ebyYe > SYTidyTe = 5P > Sy,

hence 61¢"™¢ is an overfilter. This concludes the proof. |

6. Alternating sequential filters

In this section we discuss an important class of morphological filters, the so-called alternating
sequential filters or AS-filters. We start with an extension of Proposition 4.1.

6.1. Proposition. Assume that ¢ is an overfilter, that ¥ is an underfilter, and that ¢ < .
The compositions ¢, Vo, dpo, e are filters, and

(o

< <.
W}_d)@fﬂﬁ_d)

¢S¢¢¢S{

If ¢ is an inf-overfilter then ¢ and o are inf-filters. If ¥ is a sup-underfilter, then ¢ and
Yo are sup-filters.

PROOF. That, e.g., 1¢ is a filter follows from V¢ < V3¢ < ¥ and Yod > PP > Po.
Similarly one shows that the other compositions are filters, too.

Furthermore,

¢ < ¢° < P < ¢? < @ < 7Y < Yoy <Y <

The inequalities with ¥ ¢ instead of ¢t follow analogously.
Assume that ¢ is an inf-overfilter, then

Yo(id A pg) 2 Yo(id A ¢?) 2 Yo(id A §) = 99,

hence the filter ¥ ¢ is an inf-overfilter, and therefore an inf-filter. The other assertions are proved
in a similar way. |



6.2. Example. Consider the translation invariant operators on P(Ed). In Lemma 2.7 we have
seen that

bve < Y < ey,

for any translation invariant operator ¥. Now, by Proposition 5.3, if 4 is a filter, then §1c is an
overfilter and 6 is an underfilter. This yields that

bipeapé

2,1 2
dpe o e < {51/1621/)5

} < ep6®pe’

are filters, too. Substituting, for example, ¥» = d¢ one obtains the filters

5236

3.2

8263632 < {
€b’¢e

} < e63£36.

Of course, it is not difficult to find a direct proof of the latter inequalities. Moreover, the results
which will be given in Section 7 yield immediately that these compositions define filters.

Consider an inf-overfilter ¢ of the form ¢ = 64e4, where (4, 64) and (e}, 6;;) are adjunctions be-
tween £ and some other complete lattice Mg such that 6y > 64 and (hence) € < e4. Dually, let
1 be a sup-underfilter of the form ¢ = &/,6,, where (¢4, 6,) and (&7, 6}, ) are adjunctions between
some complete lattice My, and £ such that 6, > ¢, and &, < &y. To apply Proposition 6.1 we
must choose the adjunctions in such a way that

6;5645 S E:/,(Sd,,
or equivalently,
6@6; < Oy (6.1)

6.3. Example. Consider the translation invariant operators on P(IE%). Let Ay be a structuring
element in IE* such that §,(X) = X @ Ay. The structuring elements Ay, Ay, Ay are defined
analogously. The inequality (6.1) holds if and only if

;@Aggqu,@A@

On the other hand, since 6@ > by and 5;5 > b4, we have Ay, C Aﬁj) and A, C A, which means
that the reverse inclusion holds as well. Combining these facts, this means that we have to find
structuring elements satisfying the relations

Ay C A
Agcdy, (6.2)
Ag@ Ay = Ay @ Al

A nontrivial solution of (6.2) is given by

[ ] [ ] [ ] [ ]
AQS:A’l/):A:. . e AI¢=A/I¢:AI=.

In Figure 1 we have applied the inf-filter 1)¢ and the sup-filter ¢+, where ¢(X) = (X © A) @ A’
and ¥(X) = (X @ A) © A’ to a binary image X (the image X being represented by the black
pixels). For comparison, we have depicted the inf-filter Sa(X) and the sup-filter a5(X), where



Fig. 1. First row, from left to right: the original image X, and the images ¢4(X) and
P¢(X). Second row, from left to right: the images af8(X) and fa(X).

a(X)=(XcA)® A and f(X) = (X @ A’) © A', in the second row of Figure 1. This figure
illustrates clearly that the noise-cleaning effect of /¢ and ¢ is much greater than that of Sa
and af, respectively.

In the following result we generalise Proposition 6.1.

6.4. Proposition. Let ¢1,¢9,... be overfilters and 11,1, ... be underfilters such that

<P <P <Y <Py < -

Every composition of operators of these two sequences which contains at least one operator from
each sequence is a filter.

PROOF. Consider a composition £1&5 - - - &, of operators of these two sequences and assume that
one of the ¢;’s and one of the 1;’s occurs in this composition. We show that this composition is
an underfilter. That it is also an overfilter follows by similar arguments. Let {; be the largest
of all operators in the given composition. Then &; is one of the 1);’s, hence an underfilter. We

have
(€18a--&n)(61€a -~ &n) = (1827~ §1&i€i1 - &n)(E182 - §-18i€511 - - &n)
< (ko &o0)E T E - 6n)
<&ior 181 ns
for §;-‘+1 < & since ¢; is an underfilter. |

6.5. Corollary. Let a3 > ag > ag > --- be openings and let f1 < By < (3 < --- be closings.
Every composition of operators of these two sequences is a filter.



In fact, this latter result has first been established by Schonfeld and Goutsias [8].
We introduce the following notation: if £1,€&s, ... are operators, then

(E)n =Enbn1-+ &, n2>1

More generally, if 71,72, . .. is another sequence of operators, then

(én)n = fnnngn—lnn—l T 51771 and (éné)n = Snnngnén—lnn—lén—l v 517]151-

If a1, as, ... is a sequence of openings which satisfy a; > ags > -- -, and if f1, fo, ... is a sequence
of closings with §; < s < ---, then the compositions (af),, (8a)n, (afa),, (Baf), are filters,
called alternating sequential filters or AS-filters [2, 9, 10].

As sequence of operators 11,3, ... is said to be absorbing if

’wn?pm = ’wn; n Z m.

The following result is straightforward.

6.6. Lemma. Let £1,&s,... be a family of increasing operators such that (€), is a filter for
every n, then the sequence (£), is absorbing.

PROOF. Let n > m, then

(g)n(g)m =&nn-1""" £m+1(£)’m(£)m
= gnfn—l T €m+1(€)'m

This proves the result. |

In particular, the sequences (o), (8a)n, (afa)n,, (Baf), are absorbing.
The next proposition shows that the classes of AS-filters obtained from families of openings
and closings can be extended considerably if one uses overfilters and underfilters, respectively.

6.7. Proposition. Let ¢1,¢s,... be overfilters and 11,19,... be underfilters such that the
following conditions are satisfied:

&n < Pn, (6.3)
¢n¢n—1 2 d)n; 6
¢n¢n—1 S 'l;[)n

Then (0U)n, (VD) n, (P P)n, (V1h), are absorbing sequences of filters and

(¢9)n

(¢9)n < {(¢¢)n

} < (d]‘bd})n (6.6)

PROOF. To show that (¢v), is a filter we must show that it is both an underfilter and an
overfilter. Note first that

(V)n = tn - V3thathy < Y- hathy S Y- h3 < ete. < ¢y



Now

w¥n ) (OY)n—1
2) (%) n—1

< ©

This shows that (¢%), is an underfilter. To show that it is also an overfilter, we note first that

(P)n = Pnn—1--- 01 > ¢n.

Therefore,
(U)n (09)n 2 (6)n(¢)n

(@)n(¢)n

v I 1v v v

Thus (¢v), is a filter.
To show that the other three expressions are filters, one can use similar arguments.
Furthermore, e.g.,

(9Y0)n < (9Y¥)n < (9P)n,
since every v, is an underfilter. ]
If, instead of (6.4) and (6.5), one makes the stronger assumption that ¢,, < ¢,_1 and 1, > V1,

ie.,

< P3< P2 <1 <Yy <Yy <Py < -y (6.7)

then the sequences (¢v), and (¢9¢), satisfy, besides the results stated in the previous propo-
sition,

(Om(&n 2 (), m <,
and the sequences (@), and (Y¢1)), satisfy

To prove, e.g., the first inequality for (¢1), we note that

This implies that

6.8. Example. Assume that ¢ is an overfilter, ¢ an underfilter, and ¢ < ¥. Let N > 1 be
fixed, and define
b= NI g =N =12, N.

Then ¢, 1, satisfy the inequalities in (6.7).



6.9. Example. Assume that «,,(, are openings and closings, respectively, and that £ is an
increasing operator such that
S < SESP S Pr <

If ¢, = o€ or €ay, and if ¢, = B,€ or £06,, then ¢,,1, are overfilters and underfilters,
respectively (see Proposition 4.4), and (6.7) holds.

In Figure 2 we depict one particular example. Here ¢ is the median operator on P(Z?) using
the rhombus as structuring element (origin and four horizontal and vertical neighbours), and
O, B are the opening and closing, respectively, with the (2n+1) x (2n+1) square. Furthermore
¢n = ané and ¥, = B,€. It follows easily that the conditions above are satisfied. Thus we can
compute the corresponding AS-filters. The images in Figure 2 show clearly that the performance
of the generalised AS-filter (¢v)), is considerably better than that of the classical AS-filter (af3),.
Similarly, the performance of (¢¢),, is much better than that of (Sa)y.

6.10. Example. Assume that £ = P(IE?), let (¢,6) be an adjunction, ¢ an overfilter, ¢ an
underfilter, and ¢ < ¥. Assume also that all these operators are translation invariant. Define

On = 6" @™ and 1, = e"Po".
Then ¢, = 6¢pp_18 < ¢pp_1, and dually, ¥, > 1,,_1; see Lemma 2.7. Thus (6.7) holds.

6.11. Remark. Let £ be an arbitrary complete lattice, assume that ¢ is an overfilter on L,
that (g, 6) is an adjunction on £, and that ¢ > de. Define

b = B ™.

Then
Pnn—1 = 6"ge"6" g !

> e 6" Leem !

=0"¢gc" = ¢,
that is, (6.4) is satisfied. Dually, if ¢ is an underfilter with ¢ < 6 and

Yo = €"P6",
then ¥, ¥,_1 < 1y, that is (6.5) holds.

7. Adjunctions and filters

If (&,6) is an adjunction on L, then §*c* is an opening, and ¢
The composition £6%¢ is a filter, too. For, (e62¢)? = £6%c26%¢ = £6%¢c. Here we have used that
62262 = 62 since (2, 6%) is an adjunction. Note also that

be < £6%¢ < &6.

kgk a closing, for every k > 1.

Consider an arbitrary finite composition of €’s and §’s. If the right-most term in such a compo-
sition is a (nonzero) power of §, then we call this composed operator of type D; otherwise it is
said to be of type E. For example, £6%¢ is of type E. Thus an operator of type D is of the form

P =¢e®ngdn ... go2gdzgergdr (7.1)

Here the power e,, may be equal to 0, but all other powers are integers > 1. Dually, an operator
of type E can be written as
P = §ngln ... plagezpdiger (7.2)
Here d,, may equal 0, but all other powers are > 1.
We state the main theorem of this section. Its proof will be given later in this section



Fig. 2. Top: the original image X; second row: (¢9)n(X) for n = 1,2, 3; third row:
(aB)n(X) for n = 1,2,3; fourth row: (Y¢)n(X) for n = 1,2, 3; fifth row: (Ba)n(X) for
n=1,23.



7.1. Proposition. Assume that (£,6) is an adjunction on L. Let ¢ be a composition of €’s
and 6’s of the form (7.1) or (7.2). If

i €;, = i di, (73)
=1 =1

then 1 is a filter.

A filter which is composed of an equal number of dilations and erosions from an adjunction is
called an adjunctional filter.

The operator e62¢ considered above is a filter, but it is neither an opening nor a closing;
in fact, it is a composition of the closing €6 and the opening dc. In many cases, expressions
of the form (7.1) (or dually (7.2)) can be simplified. For example, an expression like §*e36°
may be replaced by §%. For, (3,6?) is an adjunction, and therefore (see Proposition 2.3(d))
63363 = 63, yielding that §%c36% = 663c26% = 663 = 6*. More generally, if a composition
contains an expression 6% 6% with e < d and e < d’ , this can be simplified to §atd —e, Dually,
e? 6% with d < e and d < ¢’ can be simplified to gete’—d A composition which does not allow
any further simplification is called irreducible. For example 36362 is irreducible.

7.2. Lemma. Let ¢ be an irreducible composition of either type for which y . e; = > o, d;
and n > 1. (The latter means that the composition contains at least three terms.)

(a) If is of type D (see (7.1)) then e; > d;.

(") If 9 is of type E (see (7.2)) then di > e;.

PROOF. We prove (a). Assume d; > e;. As no simplification is possible we conclude that
en < dp <---<ey<dy<e; <di.

But this yields that >, e; < Y ., d;, a contradiction. [
Define
o, = 6" and (B, ="6".

PROOF OF PROPOSITION 7.1
We show that every composition of type D can be written in the form

/l/] = aanﬂbn e aal ﬂbl)

where a;, b; are integers > 1. Then Corollary 6.5 yields that v is a filter. This would prove the
proposition.
Suppose we have a type D operator given by (7.1), i.e.,

’l/i — Ee"6d" ...ge2 6(12 cet (Sdl,

which is irreducible and satisfies > ., e; = > .  d;. If n =1, then ¢ = (4, and the assertion
follows trivially. Now assume that n > 1. From Lemma 7.2(a) we get that e; > di, and thus we
can write ¥ = ¢’ 34,, where

¢l — 58"5d" . 662 6d2 881—d1 .

Observe that 1’ is an operator of type E which contains one term less than 1. Now there are
two possibilities: (i) ¢’ contains two terms, in which case it is an opening; (ii) ¥ contains more
than two terms. In the latter case it satisfies the conditions in Lemma 7.2(a’), yielding that
dy > e; — dy. In this case we can write ¢’ = 9" ae,_q,. We can repeat this procedure until we
arrive at an operator consisting of two terms: this operator is an opening ay or a closing Gx. I



Thus every composition as described in Proposition 7.1 can be written as a composition of ag’s
and B’s. For example, €6236%c = Braq Brary.
Suppose that 7 is an operator of type D given by (7.1), then we define

P = 6%t gln ... gergdager (7.4)
Dually, if 4 is an operator of type E given by (7.2), then we define
)= dnetn ... glrge2 50 (7.5)

We show the following result.

7.3. Proposition. Let ¢ be an adjunctional filter.
(a) If9 is of type D, and if ¢ given by (7.4) is an opening, then v is a sup-filter.
(") If 4 is of type E, and if ¢ given by (7.5) is a closing, then 1 is an inf-filter.
PROOF. Let 1 be given by (7.1), then
B(id V ) = gonfn ... g2 5% o1 51 (g v gongin ... go2 5 e geh)

= gin . g2§% e (6N v §Pen§in L g2 6Bt 6

=g e226% % (id v 6T een§in - e225% ) 6N

= génfin ... co26% e (id v 1/;)6‘11

— Een é‘dn . 862 é‘dz 661 6d1

= .

Thus v is a sup-filter. Here we have used that id V 12) = id, since 1/; is an opening. |
To check whether a composition of €’s and §’s is an opening or a closing is easy: one has to
simplify the expression until it becomes irreducible. It is a closing if the resulting irreducible
expression is of the form ™6™, for some m > 1, and dually, it is an opening if the resulting
irreducible expression is of the form 6™e™.

For example, the operator ¢ = £6%¢ is of type E, and ¢ = €262 is a closing. Now (a’) yields
that v is an inf-filter.

8. Concluding remarks

In this paper we have described a number of ways to construct morphological filters (or filter-
derivates) by composition. Among others, we have extended the class of AS-filters by taking
compositions of overfilters and underfilters instead of openings and closings. The examples
depicted in Figure 1 and Figure 2 show that such a generalisation may lead to considerable
improvements of known filters.

A major drawback of our construction method is that it does, in general, yield filters which
are not self~-dual. Recall that an operator on a complete lattice with a negation v : X — X~
(a negation is a decreasing bijective mapping v with v? = id) is self-dual if ¢/* = 1. Here
P*(X) = ((X*))* is called the negative operator of 1. For a comprehensive discussion on
self-dual operators and filters the reader may refer to [3].

Consider a filter ¥ that is not self-dual. Let ¥* be the negative of ). Then ¥ A ¢* is an
overfilter and 1 V ¥* is an underfilter. The so-called centre of these two operators, given by

v=(dA@VY)) AW AP,
is self-dual (cf. the last paragraph of Section 3). It is a filter if ¢ is a strong filter. For, in this
case ¥* is strong, too. Then ¥ A 9* is a sup-underfilter and ¥ V 9* is an inf-overfilter. Then,
by Proposition 3.8, the operator «y is a filter, presumed that the complete lattice £ is modular.
Furthermore, -y is self-dual. Unfortunately, this result cannot be extended to arbitrary filters 1,
and as such it is only applicable in a very limited number of cases.
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