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Estimation of Shape of Binary
Polygonal Object from Scattered Field

A. Buvaneswari and Prabhakar S. Naidu

Abstract—We present a method of estimating the shape of a weakly
scattering binary convex polygonal object from the backscattered field.
We use the concept scattering centers where it has been possible to model
the scattered field as a sum of complex sinusoids. All corners of an object
could be estimated with three or more illuminations, out of which at least
two are in orthogonal directions. Using the amplitude of the sinusoids,
we have also resolved the ambiguity in joining the corners when there
are more than one object.

Index Terms—Broadband illumination, diffraction tomography, pair-
ing algorithm, shape estimation.

I. INTRODUCTION

If the boundary of an object is piecewise linear, the corner
points are sufficient for pattern recognition, image compression and
coding, and shape analysis, etc. [1]–[6]. The presently available
corner detection algorithms work on spatial image data, that is, a
photograph. The present work is aimed at corner detection from the
scattered wavefield (acoustic or electromagnetic). When an object
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Fig. 1. For an angle of incidence,�0 = 45
�, the scattered field received

by a circular array is proportional to the object Fourier transform on a circle
as shown.

whose refractive index is slightly different with respect to that
of the surrounding medium is illuminated with a plane wave, the
scattered field measured around the object is proportional to the
Fourier transform of the object. Thus, the shape information is buried
in the scattered field. It is of some interest in medical diagnosis,
in subsurface imaging, and in nondestructive testing to be able to
recognize the shape of the buried object from the scattered acoustic or
electromagnetic field, particularly when only a few limited views are
permitted. We shall show (Section II) that when the object is binary,
convex, and having a nondegenerate polygonal cross section, the
scattered field is a sum of sinusoids, a function of wave number and
corners of the polygon. The object is illuminated with a broadband
plane wave and the scattered field is measured as a function of
wavenumber. The frequencies of the sinusoids are estimated from
the scattered field using an algorithm described in [7] and [8]
(Section IV). The approach has been extended to a multiobject scene
in Section V, where we shall assume that the number of objects
present is known; only shape and location are unknown. Finally,
some computer simulation results are presented in Section VI.

Though we consider only the cases where the spatial Fourier data is
obtained through DT imaging, the mathematical results and the ideas
presented in this work can be well utilized for even straight line
tomography or in any other imaging modality that provides spatial
Fourier information.

II. DIFFRACTION TOMOGRAPHY

Diffraction tomography refers to the cross-sectional imaging of
objects from diffracted or scattered wavefield [9], [10]. An object
is illuminated from various directions with a diffracting source of
energy such as acoustic waves, whose wavelength is comparable with
the scale of inhomogeneities. The incident wave energy is scattered
in all directions by diffraction process. Usually, a long linear array of
sensors facing the incident wave field is used to record the forward
scatter, but the backscatter is lost. A circular array transceivers was
proposed to capture both forward and backward scatter [11]. It is
shown in [11] that the scattered field measured by a circular array is
proportional to two-dimensional (2-D) Fourier transform of the object
profile taken on the circumference of a circle of radius equal to the
wave number and centered at(�k0 cos�0;�k0 sin�0), where�0
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Fig. 2. To evaluate the Fourier transform of a polygonal object, we consider each triangle.

is the angle of illumination (see Fig. 1). By changing the direction
of illumination (0 to 360�), the object Fourier transform is scanned
over a disk of radiusk0. By inverse Fourier transformation, we can
reconstruct the object profile pixel by pixel. When the object is binary
(i.e., refractive index is constant through out the object), the interest
is in the shape of the object. The shape information may be directly
obtained from the scattered field without having to reconstruct the
object profile pixel by pixel. This approach was taken by Milanfar
and co-workers [12], [13] in the context of ray tomography, where
the input data is projections of the object.

III. FOURIER TRANSFORM OF A BINARY CONVEX POLYGONAL OBJECT

Consider the evaluation of the 2-D Fourier transform over ap-
sided binary and convex polygonal domain (see Fig. 2). Take any
point inside the polygon and join it to all corners formingp triangles,
which lie entirely inside the polygon and make this as the origin of
the coordiante system:

F (kx; ky) =

over polygon

e
j(k x+k y)

dx dy

=

p

n= 1
over nth triangle

e
j(k x+k y)

dx dy:

(1)

To evaluate the integral overnth triangle, refer to Fig. 2(b), where we
show the integration along a narrow strip under a rotated coordinate
system such that the newx-axis is perpendicular tonth side. Note that
this is valid for a class of nondegenerate objects that are star-shaped
with respect to the origin (convex bodies form a subset of these). The
triangle is then covered by a series of strips. Equation (1) reduces to

F (kx; ky) =

p

n= 1

�

0

x tan�

x tan �

e
�j((k cos � +k sin � )x +(k cos � �k sin � )y )

dy
0

dx
0

(2)

wherex0 = (x cos �k + y sin �k) and y0 = (y cos �k � x sin �k).
Evaluate the integral in (2) first with respect toy0 followed by
integration with respect tox0. We obtain

F (kx; ky) =

p

n=1

e�j(k �k tan� )�
� 1

k0y(k0x � k0y tan�1n)

�

e�j(k �k tan� )�
� 1

k0y(k0x � k0y tan�2n)
(3)

wherek0x = (kx cos �n+ky sin �n) andk0y = (ky cos �n�kx sin �n).
We shall now rewrite (3) by replacing�n; �1n; and�2n in terms of
the coordinates of the two corners corresponding to thenth side,

namely,(an; bn) and(an+1; bn+1). The following relations are used
for this purpose:

�n = an cos �n + bn sin �n

�n = an+1 cos �n + bn+1 sin �n

an = �n(cos �n + sin �n tan�1n)

bn = �n(sin �n � cos �n tan�1n)

an+1 = �n(cos �n � sin �n tan�2n)

bn+1 = �n(sin �n + cos �n tan�2n):

We obtain

F (kx; ky)

=

p

n=1

�n
e�j(k a +k b )

� 1

k0y(kxan + kybn)
�

e�j(k a +k b )
� 1

k0y(kxan+1 + kybn+1)
: (4)

Our goal is to determine(an; bn) and (an+1; bn+1) from (4). This
may be achieved by expressing (4) on theky = 0 andkx = 0 axes.
We get following equations:

k
2
xF (kx; ky = 0)

= �

p

n= 1

�n
e�jk a

� 1

an sin �n
�

e�jk a
� 1

an+1 sin �n

k
2
yF (ky = 0; ky)

=

p

n= 1

�n
e�jk b

� 1

bn sin �n
�

e�jk b
� 1

bn+1 sin �n
:

(5)

The above equations may be solved by modeling them as a sum of
sinusoids and using the well-known Prony’s algorithm or its more
modern versions [7], [8]. From the coefficients in the exponents of
the complex sinusoids we obtain(an; an+1) and(bn; bn+1), but we
are yet to pair them, that is, select the rightx andy coordinate pair,
which will form a valid corner.

IV. PAIRING ALGORITHM

In the previous section, we saw how to obtain thex and y

coordinates of the corners of the polygon. This alone will not
suffice to define a unique convex polygon. We need some additional
information on how to pair a givenx-coordinate with the righty-
coordinate from the list of estimatedy-coordinates. This problem
was resolved by using an additional illumination at an angle�

k
2
F (k cos �; k sin �) =

p

n=1

�n
e�jk(a cos �+b sin �)

� 1

(an cos � + bn sin �)

�

e�jk(a cos �+b sin �)
� 1

(an+1 cos � + bn+1 sin �)
: (6)
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TABLE I
x AND y COORDINATES AND THEIR LINEAR

COMBINATION (� = 30�) ARE SHOWN IN THE TABLE

TABLE II
ESTIMATED PROJECTIONS FROM THESCATTERED

FIELD (NOISE FREE) ARE SHOWN IN THE FIGURE

Fig. 3. Square object and the projection of its corners on thex andy axes.

�n =
�

sin(��� )
. From the backscatter due to an illumination at angle

� (6= 0 or �

2
), we can estimate the coefficients in the exponents

of the complex sinusoids, as described in Section II. Thus, we get
additional information in the form of linear combination of thex and
y coordinates of the corners,(an cos � + bn sin �) n = 1; 2; � � � p.
The steps in the pairing algorithm are as follows.

1) Generate a list ofx-coordinates,y-coordinates, and the linear
combination of thex andy coordinates. It is presumed that the
list is not in the same order as indexed corners.

2) Take the first element from thex-coordinate list and anyone el-
ement from they-coordinate list and form a linear combination,
(a1 cos � + bn sin �) n = 1; 2; � � � p.

3) Compare the result of linear combination with those estimated
with � (6= 0 or �

2
) illumination. The best match (within the

limits of estimation error) will indicate the correct choice of
bn.

4) Take the next element from thex-coordinate list and go to step
(2).

For illustration purposes, we consider a square object of size
(6 m, 6 m), rotated by 30� and shifted away from the origin by
(5 m, 5 m). It is illuminated from three directions,0; �, and�=6.
The x and y coordinates got from the noiseless scattered field got
in the first two directions and their linear combination (� = 30�)
are shown in Table I, and those estimated from the scattered field
got in the third direction are shown in Table II. The application of
pairing algorithm is illustrated in Table III. The best match with the

TABLE III
NUMERICAL ILLUSTRATION OF THE PAIRING ALGORITHM (� = 30�)

TABLE IV
AMPLITUDES OF THE SINUSOIDS ARE COMPARED WITH THE

COMPUTED AMPLITUDES FOR THREE DIFFERENT CONVEX MODELS,
WHICH MAY BE OBTAINED BY JOINING THE CORNERS. THE

MODEL WITH THE BEST MATCH (a) IS THE ACTUAL MODEL

estimated coefficients is shown in column three in bold figure and
the correspondingy-coordinate is shown in the last column.

We may encounter the problem of repeatedx or y coordinates
or their projections. The projections of two corners may overlap or
come very close to each other depending upon the orientation of the
object. As shown in Fig. 3, for a square object depending upon the
orientation, the adjacent projections (e.g.x1 andx2) may come close
to each other or overlap. The problem of repeated projection can be
resolved by selecting another set ofx; y, and� directions whenever
the number of sinusoids estimated inx; y, and� illuminations differ.
The number of sinusoids observed in all three illuminations must be
equal. In practice, it may be necessary to illuminate an unknown
object along several directions and estimate the sinusoids along
each direction. From this set, choose three directions, preferably two
orthogonal directions, having equal number of sinusoids. The number
of sinusoids that may be determined from a finite data in the presence
of noise is indeed a complex problem and, hence, it is outside the
scope of this paper. The reader may like to refer to a book, for
example, [14], or current literature on this topic.

V. MULTIPLE OBJECTS

When there are two or more objects, as the center of coordinates
would lie outside all but one object, it is necessary to modify (4),
which was derived under the assumption that the center lies inside
the object. Also, there may be some ambiguity in the process of
constructing the object shape even when allx andy coordinates are
correctly paired. The amplitude of the sinusoid corresponding to a
corner can then be used to resolve such an ambiguity in addition
to the fact that the objects are convex and the number of objects is
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(a)

(b)

(c)

Fig. 4. Three different convex models can be obtained by joining the corners
estimated from the scattered wavefield.

known. For this, we rewrite (6) as a sum of contributions fromp
corners.

k
2
F (k cos �; k sin �) =

p

n=1

Tn e
�jk(a cos �+b sin �) � 1 (7)

where

Tn =
1

(an cos � + bn sin �)

�n

sin(� � �n)
�

�n�1

sin(� � �n�1)
(8)

or, after simplification, we obtainTn = fcot(�n� �)� cot(�n�1�
�)g. Note that p

n=1
Tn = 0, therefore (7) reduces to

k
2
F (k cos �; k sin �) =

p

n= 1

Tne
�jk(a cos �+b sin �): (9)

Note that Tn does not depend on the coordinates of the corner
and, hence, is independent of the object location. Now, let us shift

Fig. 5. Computed backscatter from a weakly scattering square object (shown
in Fig. 3) illuminated by a broadband signal.

Fig. 6. MSE(m2) in the estimation ofx and y coordinates as a function
of SNR.

Fig. 7. Mean square error(m2) in the estimation of the coordinates of the
corners as a function of the number of corners.

the object to a new location,(xc; yc), such that the center of the
coordinates lies outside the object. Then, the corner coordinates of
the shifted object, say(gn; hn) turn out to be(gn; hn) = (an +
xc; bn + yc). Following the well-known shift theorem of the Fourier
transform (9) may be expressed as follows:

k
2
Fshifted(k cos �; k sin �)

=

p

n=1

Tne
�jk((a +x ) cos �+(b +y )+sin �): (10)
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From this, it is clear that we can estimate the corner coordinates
of even the objects that are away from the origin, using the same
procedure. Note that we are interested in estimating(gn; hn), which
can be easily done without any overhead. As side information we
also getTn; n = 1; 2; � � � p along with the coordinates of the corners,
(gn; hn), from the Prony’s algorithm or it’s modern versions.

In the process of joining the neighboring corners, it is suggested
that Tn be computed and compared with the estimated valueTn

for the corner formed by the lines. A mismatch is an indication
of the possibility that the selected edges are incorrect. We have
found that this simple idea works well in most cases. An example
is used to illustrate how the amplitude of the sinusoids may be used
to ascertain the correct object shape. Consider two square objects
with their corners as shown in Fig. 4(a). We shall take it that the
corners have been estimated from the scattered field as described in
Sections III and IV. We need to connect the corners to form convex
objects. The number of objects present should be known. In Fig. 4,
we show three out of four possible convex object sets. The amplitude
of the sinusoids for all three models are compared with the observed
amplitudes (see Table IV). It is seen that the observed amplitudes are
indeed closest to those of the true model.

VI. PERFORMANCE ANALYSIS

The performance of the object shape estimation procedure proposed
here was studied through numerical experiments. For this, we have
considered a square object (refractive index contrast equal to 0.01) of
size 8� 8 m2 and rotated by 9� with respect tox axis (see Fig. 3).
The object was illuminated with a broadband plane wavefront whose
wave number is varied from�

64
to � in steps of �

64
along three

directions, namely,x-axis, y-axis, and a radial direction at an angle
� = 30�. The backscatter at each wavenumber was computed using
the Fourier transform approach described in [11]. A typical example
of backscatter caused byx-axis illumination is shown in Fig. 5. To
this scattered field, we added white Gaussian noise such that the
signal-to-noise ratio (SNR) is equal to a specified figure. Here, the
SNR is defined as

SNR= 10 log
10

average scattered energy
noise variance

:

The corners and also theTn’s were estimated using the procedure
given in [8]. The mean square error (MSE) in the estimation of
coordinates of the corners was studied as a function of SNR. The
results, obtained by averaging over fifty independent experiments, are
shown in Fig. 6. Notice that MSE rises very rapidly for SNR below
8 dB. This is largely because the projections of two adjacent corners
(e.g.x1 andx4 andx2 andx3 in Fig. 3 are close to each other; in this
example, they are 1.2515 m apart. For a different orientation, say, at
6� when the separation becomes 0.8362 m, the MSE rapidly rises for
SNR below 15 dB. The estimation error (MSE) also depends upon the
number of corners in a polygonal object. We have numerically studied
this phenomenon by increasing the number of corners but keeping the
object size approximately same (inscribing circle having same radius).
Each object was so aligned that the projections of the corners were
approximately uniformly spaced. The results are shown in Fig. 7.
Finally, we have experimented with a composite object consisting of
two squares [shown in Fig. 4(a)] having in all eight corners. All eight
corners were correctly estimated with MSE averaged over all eight
corners equal to6:046e–03 m2 in the presence of background noise
(SNR= 11 dB), and the corners were also joined correctly.

VII. CONCLUSION

We have shown that the backscatter from a weakly scattering
binary object with polygonal cross section can be expressed as a

sum of complex sinusoids, from which we can estimate the corner
coordinates. All corners of the object can be estimated with as few
as three illuminations. An algorithm to correctly pair the estimated
coordinates has been developed. When we have more than one object,
the task of joining the corners becomes ambiguous. We have used
additional information of amplitude of the sinusoids to overcome the
ambiguity. Numerical simulations were carried out to demonstrate
the robustness of the method in the presence of noise.
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