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Modified Curvature Motion for
Image Smoothing and Enhancement

Anthony Yezzi, Jr.,Member, IEEE

Abstract—In this paper, we formulate a general modified mean
curvature based equation for image smoothing and enhancement.
The key idea is to consider the image as a graph in someRn,
and apply a mean curvature type motion to the graph. We
will consider some special cases relevant to grey-scale and color
images.

Index Terms—Enhancement, smoothing, mean curvature, par-
tial differential equations.

I. INTRODUCTION

RECENTLY, there have been a number of researchers who
have considered the use of nonlinear curvature based

equations for various problems in computer vision and image
processing. An excellent reference is the volume edited by
Romeny [23] to which we refer the interested reader for a
large list of references.

In this paper, we consider a twist on the idea of mean
curvature smoothing of an image in that we treat the image as
the manifold defined by the graph of a function embedded
in some Euclidean space. For example, a grey-scale two-
dimensional (2-D) image may be regarded as the
surface . A 2-D color image similarly may
be regarded as a surface in . We consider therefore mean
curvature motion of these graphs as our underlying model for
image smoothing and enhancement. A very attractive feature
is that this gives a natural geometric way to treat vector-valued
imagery. See [21], [26], [27], and [28] for other approaches.
In particular, Sapiro and Ringbach [21] define an image based
Riemannian metric in formulating their vector-valued diffusion
method. While different from ours, it is nevertheless, closely
related in spirit to our philosophy. We should also add that in
[11], the authors also consider the image as a graph. However
the level set type equations which they derive are different
than ours.

The utility of our methods will be demonstrated on some
grey-scale and color imagery. See Remark 1.
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II. 2-D GREY-SCALE MAGE SMOOTHING

Before considering the general case below, we believe it
is instructive to consider the key case of a two dimensional
greyscale image. Throughout this paper, we will freely use
the basic facts of differential geometry from [7] and [8].
Accordingly, we will consider such an image as the graph
of a surface in .

From an inital image , construct an initial parame-
terized surface . The unit normal of
this surface is given by

and the mean curvature by

Since is a graph, it will, under mean curvature motion
, evolve into a plane without developing singularities

[18], [10]. As evolves in this manner, small scale features of
high curvature induced by noise in the image are very quickly
removed. However, an undesirable phenomenon occurs from
the point of view of image processing, namely, edges become
blurred. These effects will be illustrated in the following
example.

Consider a 2-D grey-scale image which is constant along
the direction but which is black on the left half and white
on the right half so that any horizontal cross section along the

direction yields a common step function. Now add small
oscillations to simulate noise in the image and “round off”
the corners of the step edge so that our function becomes
differentiable. Finally, for the sake of illustration, assume
that this modeled noise is constant along thedirection
so that mean curvature motion of the surface
causes the cross sectional curve,, to evolve according to
its curvature . Fig. 1, which shows a sampling of
the mean curvature vectors along the initial curve, clearly
demonstrates that this type of motion will have the desirable
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Fig. 1. Mean curvature vectors along a noisy step function.

Fig. 2. Vertically projected mean curvature vectors.

effect of flattening out the oscillations but will also have the
undesirable effect of widening the step edge.

However, suppose we now constrain the evolution of each
point of to be purely vertical by projecting the mean
curvature vectors onto the vertical direction (-axis) so that no
sideways motion can occur. Therefore, instead of
we consider which causes to evolve
according to where represents the unit
vector in the vertical direction. Fig. 2, which shows a sampling
of the projected mean curvature vectors along the initial curve

, clearly demonstrates that this completely vertical motion
will still eliminate the unwanted oscillations but will no longer
pull the corners of the step edge further apart. Thus, by
vertically projecting regular mean curvature motion ofwe

obtain an edge preserving, noise removing evolution given by

Notice that the evolving surface under this modified form
of mean curvature motion takes the form of

and so is easily extracted from
by setting . This allows us

to dispense with altogether and simply write down the
following edge-preserving anisotropic filter for

III. SCALING PARAMETER

The filter we have presented can be extended into an entire
family of filters by scaling the height of the image. More
precisely, if we make the substitution into the above
equation for some positive constant we obtain the more
general filter

Scaling by a large value of amplifies edges in the
image and will yield a filter with very strong edge preserving
properties. However, choosing a smaller value ofwill yield
a faster diffusion. This tradeoff between speed and edge
preservation will be illustrated on real images in Section VII
but can been seen mathematically by observing the limiting
cases shown below.

As becomes very small the aniosotropic diffusion approaches
the isotropic heat equation which implements a rather fast
diffusion but does a poor job of preserving edges. As
becomes very large we approach a damped geometric heat
equation which does a far superior job of preserving edges.
Futhermore, the damping term applied to the limiting geo-
metric heat equation helps to prevent the distortion of shapes
caused by the pure geometric heat equation. However, this
damping term also makes the diffusion much slower.

IV. PRELIMINARY LEMMAS

In this section, we will derive two results which will be
useful in analyzing the general formula for projected mean
curvature motion.

Lemma 1: If then

where

where denote the characteristic polynomials of .
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Fig. 3. Projected mean curvature smoothing on a grey-scale MRI image.

Proof: Note that and where
. If is a nonzero eigenvalue of with the

associated nonzero eigenvector, then since
we know that . However, since

we see that is also

an eigenvalue of with the associated nonzero eigenvector
. A similar argument can be used to show that every nonzero

eigenvalue of is also an eigenvalue of . Therefore,
since and share the same nonzero eigenvalues, their
characteristic polynomials must differ only by factors of. In
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Fig. 4. Projected mean curvature smoothing on a color aircraft image.

particular, since is and is , the characteristic
polynomial of must differ from that of by a factor of

.
Lemma 2: If and then

where denote the and identity matrices.

Proof: Using the Lemma above and its notation we have
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V. THE GENERAL CASE

We will now derive the general formula for the vertically
projected mean curvature motion of a graph of arbitrary
dimension and co-dimension. In what follows below we will
use the symbol for the identity matrix.

In general, the mean curvature vector of an -
dimensional surface in (co-dimension ) with
coordinates is given by

where is the orthogonal projection map which annihilates
the component of in the tangent space of (span of

). Actually, the defined here is times the
true mean curvature vector, but by abuse of notation we will
continue to refer to as the mean curvature vector. Since
is linear and Tr Proj yields a linear combination of
the elements of Proj we can pull outside and write

Note that the matrices , and are all functions of
. Consider the case whereis a graph of the

form . The elements of ,
which are just the coefficients of the first fundamental form,
are then , and so
where denotes the Jacobian matrix of . Also, note
that the elements of are given by
where denotes the -dimensional zero vector and are
the -dimensional elements of . Now represent in block
form as

where is , is , is and is .
Since annihilates any tangent vector we have

where denote the standard orthonormal basis for
. From this expression we see that for

each and so

Next, since preserves any normal vector of
where and then,

and so . However, note that
for each

since is orthogonal to each . Therefore

. Substituting for and
yields .
From this expression, it is clear that must
be the identity map, and so .

Now consider using projected mean curvature motion of
as a way to smooth the -dimensional -vector valued

image . As before, we project the mean
curvature vector of onto the -dimensional subspace of

orthogonal to the -dimensional domain of under
the inclusion map via the matrix

where zero represents the zero matrix, and the
identity matrix. Since the resulting evolution

leaves the first components of unchanged and since the
last components of evolve according to
(this is because the first components of the elements of

are zero and the last components form an element of
), we may dispense with and evolve the image directly

via . Substituting the values of and
just computed yields

If we make the substitution to account for arbitrary
scalings of we obtain the more general equation

Note, as seen already in the 2-D grey-scale case, that as
goes to zero, the diffusion approaches the linear heat equation
( ).

If , then it may be easier to compute the determinant
of the first fundamental form matrix than it is the
projection matrix in the above equation. We can then use
the result of Lemma 2 to avoid the computation of the more
difficult determinant. Pulling out a factor of and applying
Lemma 2 yields the formulation shown at the bottom of the
page, or in case , it may be easier to use the formulation
shown on the bottom of the next page.

Remark 1: In this paper in co-dimension 1, we are consid-
ering the equation

(1)
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Fig. 5. Projected mean curvature smoothing on a color outdoor image.

It is different from standard mean curvature flow

(2)

in which the normal speed equals the mean curvature of the
current surface. There is of course the important question
of uniqueness and existence of solutions of the evolution
of graphs via such equations of the type we are proposing.

For (1), there are existence and uniqueness results which
prescribed initial and boundary data but in a weak sense, via
a variational formulation; see [16], [17], and [18].

In the variational formulation, the boundary data need not
be taken in a classical sense so that the surface does not
necessarily support on the given curve. For (2), the situation
seems more difficult because the problem is not in divergence
form. The surface will support on the specified curve (the
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boundary data will be taken in a classical sense) essentially if
the boundary is convex. If not vertical walls may appear. This
is extensively discussed in [22]. The problem for hypersurfaces
in was considered [18], [10]. For periodic boundary
conditions, the regularity of the flow has been proven in these
works. For higher co-dimension, such problems have recently
been studied by [5].

VI. 2-D COLOR AND 3-D GREY-SCALE IMAGERY

In this section, we compute from the general equation, the
projected mean curvature diffusions for the important special
cases of 2-D color and 3-D grey-scale images.

A 2-D color image amounts to a surface in , given by
. Solving the general equation for

and with the scaling factor yields

In fact, by merely replacing in the above equation with
, we obtain the projected mean curvature diffusion equation

for an -vector valued 2-D image.
A 3-D grey scale image amounts to a 3-D hypersurface

in given by . Solving the
general equation for and with the scaling factor

yields the formulation shown at the top of the page.

VII. N UMERICAL EXPERIMENTS

Figs. 3–5 illustrate the use of projected mean curvature
smoothing on 2-D grey-scale and color data. The color
images here will be shown in grey scale. The origi-
nal color images can be found at the author’s website,
www.ece.umn.edu/users/ayezzi. A time step of 0.1 was
consistently applied in each example so that the number of
iterations performed in different cases could be compared in a
meaningful manner. In all three figures, the uppermost image
displays the original unfiltered data and the lower four images
display the results of our filter under two different scaling
factors. In Fig. 3, a grey-scale magnetic resonance image
(MRI) of the spinal cord lumbar region, the two images of the
left exhibit the effect of 50 and 100 iterations using the scaling
factor . Alongside these images, on the right-hand
side, are the results of 250 and 500 iterations using a larger
scaling factor . The larger scaling factor has done a
superior job of preserving edges; the images on the left-hand
side are clearly more blurred. However, this improvement in
performance has come at the cost of a slower diffusion as seen
by comparing the number of iterations required in these two
cases. Fig. 4, a rather grainy aircraft image, reveals this same
type of behavior on a color image. The bottom two images

show the results of 10 and 20 iterations using a scale factor
while the preceding two images show the results

of four and eight iterations using a scale factor .
Although a larger number of iterations were required in the
bottom two images to attain an equivalent level of smoothing,
the improvement in edge preservation can be seen very clearly
by looking at the letters “YF-23” on the tail of the airplane in
the two sets of images. Finally, Fig. 5, a color outdoor image
chosen for its fine features and significant color contrast, very
clearly exhibits this trade-off in choosing scaling factors. The
two images on the left show the effect of 4 and 6 iterations
using a scaling factor while the two images on the
right show the effect of 15 and 20 iterations using a scaling
factor , an order of magnitude larger. By comparing
the tiles on the roofs of the houses in each set of images, one
can easily see that the larger scaling factor has again done a
superior job of preserving edges.
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