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Abstract—in this paper, we formulate a general modified mean After submitting the paper for publication, the author learned

curvature based equation for image smoothing and enhancement. that very similar results had been independently obtained by
The key idea is to consider the image as a graph in somBR", Sochenet al. [25].

and apply a mean curvature type motion to the graph. We
will consider some special cases relevant to grey-scale and color
images.

. Il. 2-D GREY-SCALE MAGE SMOOTHING
Index Terms—Enhancement, smoothing, mean curvature, par-

tial differential equations. Before considering the general case below, we believe it

is instructive to consider the key case of a two dimensional

greyscale image. Throughout this paper, we will freely use

the basic facts of differential geometry from [7] and [8].
ECENTLY, there have been a number of researchers whgcordingly, we will consider such an image as the graph
have considered the use of nonlinear curvature basgfda surface inR3.

equations for various problems in computer vision and imageFrom an inital imagel(x,), construct an initial parame-

processing. An excellent reference is the volume edited ®ized surfaceS(x,y) = (z,y, I(z,y)). The unit normal of

Romeny [23] to which we refer the interested reader for tais surface is given by

large list of references.

I. INTRODUCTION

In this paper, we consider a twist on the idea of mean 7
t thing of an i in that we treat the i N(z,y) S x5y _ el )
curvature smoothing of an image in that we treat the image as W =T xS -
the manifold defined by the graph of a function embedded 19 > S| I+ + I

in some Euclidean space. For example, a grey-scale two-

dimensional (2-D) imagé : R? — R may be regarded as thegnd the mean curvature by
surface(z,y, I(z,y)) C R3. A 2-D color image similarly may

be regarded as a surface R°. We consider therefore mean

curvature motion of these graphs as our underlying model for  H(z,y) =
image smoothing and enhancement. A very attractive feature 2(1 +I1Z2+ Ig)
is that this gives a natural geometric way to treat vector-valued

imagery. See [21], [26], [27], and [28] for other approaches. Since S is a graph, it will, under mean curvature motion
In particular, Sapiro and Ringbach [21] define an image basgd— g N, evolve into a plane without developing singularities
Riemannian metric in formulating their vector-valued diffusio 8], [10]. As S evolves in this manner, small scale features of
method. While different from ours, it is nevertheless, CloseMgh curvature induced by noise in the image are very qu|ck|y
related in spirit to our philosophy. We should also add that {@moved. However, an undesirable phenomenon occurs from
[11], the authors also consider the image as a graph. Howeygs point of view of image processing, namely, edges become
the level set type equations which they derive are differepfyrred. These effects will be illustrated in the following

Lo (1 4+ I7) — 2L 0y Loy + 1y (14 1)
3/2 :

than ours. examp|e_
The utility of our methods will be demonstrated on some Consider a 2-D grey-scale image which is constant along
grey-scale and color imagery. See Remark 1. the  direction but which is black on the left half and white

This work presented in this paper is part of the authorgn the right half so that any horizontal cross section along the
doctoral thesis done at the University of Minnesota and wasdirection yields a common step function. Now add small
presented at the author's Ph.D. oral exam in September 198&ci|lations to simulate noise in the image and “round off’

the corners of the step edge so that our function becomes
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obtain an edge preserving, noise removing evolution given by
Se=({(HN)-Z)Z
| L (14 12) = 2Ly Loy + 1,y (1 + 12)
2(1+12+13)°

(0,0,1).

Notice that the evolving surface under this modified form
of mean curvature motion takes the form 8fz,y.t) =
(z,y, f(z,y,t)) and sol(x,y,t) is easily extracted from
S(z,y,t) by settingI(z,y,t) = f(z,y,t). This allows us
to dispense withS altogether and simply write down the
following edge-preserving anisotropic filter fdr

Lo (14 I2) — 201, 1y + 1, (14 I2)

It - 2
2(1+12+12)

Ill. SCALING PARAMETER

The filter we have presented can be extended into an entire
family of filters by scaling the height of the image. More
Fig. 1. Mean curvature vectors along a noisy step function. precisely, if we make the substitutiah— k&I into the above
equation for some positive constahtwe obtain the more
general filter

| AR (R = 2Ll Ly + L)
e 1+ E2[VI|?)?

Scaling I by a large value oft amplifies edges in the
image and will yield a filter with very strong edge preserving
properties. However, choosing a smaller valué: afill yield
a faster diffusion. This tradeoff between speed and edge
preservation will be illustrated on real images in Section VII
but can been seen mathematically by observing the limiting
cases shown below.

k—0:. I —» Al

1 VI
k—oo: L — V-< )HVIH
L RRVIIP VIl

As k becomes very small the aniosotropic diffusion approaches
the isotropic heat equation which implements a rather fast
diffusion but does a poor job of preserving edges. As

Fig. 2. Vertically projected mean curvature vectors. becomes very large we approach a damped geometric heat
equation which does a far superior job of preserving edges.

) o ) Futhermore, the damping term applied to the limiting geo-

effect of flattening out the oscillations but will also have thg,etric heat equation helps to prevent the distortion of shapes
undesirable effect of widening the step edge. caused by the pure geometric heat equation. However, this

However, suppose we now constrain the evolution of eagmping term also makes the diffusion much slower.
point of S to be purely vertical by projecting the mean

curvature vectors onto the vertical directiangxis) so that no
sideways motion can occur. Therefore, insteadspt= HN
we considerS; = (HN . Z)Z which causes” to evolve In this section, we will derive two results which will be
according toC, = (kN - Z)Z where Z represents the unit useful in analyzing the general formula for projected mean
vector in the vertical direction. Fig. 2, which shows a samplingHrvature motion.
of the projected mean curvature vectors along the initial curvelemma 1:1f ay,..., an, € R™ then
C, clearly demonstrates that this completely vertical motion _ T

. . . . . . n—m N = Ealai
will still eliminate the unwanted oscillations but will no longer wn(s) =s"""mp(s) where {M = [ai - a;]i;
pull the corners of the step edge further apart. Thus, by S
vertically projecting regular mean curvature motionfwe wherery,w,, denote the characteristic polynomials/af N.

IV. PRELIMINARY LEMMAS
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al iterations (k=.2) 200 iterations (k=1)

100 terations [k=.2) 200 iterations (k=1)

Fig. 3. Projected mean curvature smoothing on a grey-scale MRI image.

Proof: Note thatN = AA” and M = AT A where an eigenvalue of¥/ with the associated nonzero eigenvector
A = [ay---ay]. If Ais a nonzero eigenvalue @f with the w. A similar argument can be used to show that every nonzero
associated nonzero eigenvectorthen sinceNv = AATv = eigenvalue of M is also an eigenvalue ofV. Therefore,
Av # 0 we know thatw = ATv # 0. However, since since M and N share the same nonzero eigenvalues, their
Mw = ATAATvy = AT(\w) = \w we see that\ is also characteristic polynomials must differ only by factorssofin
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-

N s i N
EL'I iterations (k=.05)

Fig. 4. Projected mean curvature smoothing on a color aircraft image.

particular, sinceV isn x n andM ism x m, the characteristic Proof: Using the Lemma above and its notation we have
polynomial of N must differ from that ofA/ by a factor of
Sn—rn_ D

Lemma 2: If ay,---,a,, € R* andk € R then det(kfn +Z“i“;‘f) = (1) (k)

(-

(1P (=R (k)
(=) k""" p (=)

Erm det(Ly, + [ai - ajliy).

det (kIn + Z aia;‘r) = k""" det(klm + [a: - aj]i5)

wherel,,, I,, denote then x m andn x n identity matrices.
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V. THE GENERAL CASE Iy, —v- I, )8 = —J¥(I)v. Substituting foru and C

We will now derive the general formula for the verticallyi€ldsv = [=PJ(D][=J* (I)v]+Pv = P[J(I{)JT(I) +1n]v.
projected mean curvature motion of a graph of arbitrafyom this expression, it is clear tha{./(1)J" (1) +Z,] must

dimension and co-dimension. In what follows below we wilP€ the identity map, and sb = [J(1)J*(I) + Z,]".
use the symbof, for the p x p identity matrix. Now consider using projected mean curvature motion of
In general, the mean curvature vectdf of an m- © @S @ way to smooth then-dimensionaln-vector valued
dimensional surfaceS in R™+" (co-dimensionn) with imagel : R™ — R". As before, we project the mean
coordinateszy, - - -,z iS given by curvature vectotd of S onto then-dimensional subspace of
G= (S, 5.) R™*" orthogonal to then-dimensional domain of under
_ -1 (o2 = Wy " Day)ij the inclusion map via the matrix
H = Tr[G7" Proj(V-9)], {Proj(VQS) = (PSun)iy

where P is the orthogonal projection map which annihilates V= {0 T }

the component of5, ., in the tangent space &f (span of ™

Seyse o, 9e,). Actually, the ' defined here isn tlm_es the where zero represents thex m zero matrix, and,, then xn
true mean curvature vector, but by abuse of notation we Wl'Hentity matrix. Since the resulting evolution

continue to refer tad as the mean curvature vector. Sinee
is linear and T{G~1Proj(V2S)] yields a linear combination of
the elements of Pr6y2S) we can pullP outside and write

0 O

S, = VH = (VP)Te(G-V28) = {c 9

} Te(G~1V29)

— —12
H=PT(GVS) leaves the firstn components o5 unchanged and since the

Note that the matrice®, G, and V25 are all functions of lastn components of5 evolve according ta” Tr(G~V21)

z = (1, -, zm). Consider the case whefis a graph of the (this is because the first. components of the elements of
form S(z) = (x,1(x)), I : R™ — R™. The elementg;; of G, V2S$ are zero and the last components form an element of
which are just the coefficients of the first fundamental fa¥m V_Qf)y we may dispense witli' and evolve the image directly
are thenS,,-S,. = &;+1,,-I.,, and saG = I, +J(I)T J(I) Vial = PTe(G=1V?I). Substituting the values af and P
where J(I) denotes the: x m Jacobian matrix of. Also, note just computed yields

that the elements;; of V25 are given byS;; = (0,1;,,.) N - e
where0 denotes then-dimensional zero vector anil.,, are 1t = o + J(D)J" (D] Te{[Zn + JH (D) J (D] V7L }
the n-dimensional elements 6721. Now represenf in block

form as
A B
r=lc 7]

If we make the substitutioh — kI to account for arbitrary
scalings of! we obtain the more general equation

I = [T, + 2 J(DJE (D] e {[Zn + K2 IV J(D)] V2T
whereAdism x m, Bismx n, Cisn x m andP is n x n.

Since P annihilates any tangent vectst,, we have Note, as seen already in the 2-D grey-scale case, that as
A Bl[e goes to zero, the diffusion approaches the linear heat equation
rs. = |4 2[5 ] =0 (I — Tv2).
i If m > n, then it may be easier to compute the determinant
whereey, -+, en denote the standard orthonormal basis fasf then x » first fundamental form matrix than it is the x m
R™. From this expression we see tl@t; = —P1,, = 0 for projection matrix in the above equation. We can then use
eachi = 1,---,m and so the result of Lemma 2 to avoid the computation of the more
. R R difficult determinant. Pulling out a factor & * and applying
C= [_PI’UI _PIW} =—PJ(I). Lemma 2 yields the formulation shown at the bottom of the

page, or in case > m, it may be easier to use the formulation
shown on the bottom of the next page.
Remark 1: In this paper in co-dimension 1, we are consid-

A Bl|luw| _ |Au+DBv| _ |u| _ ering the equation
=l ][] =letn] =[] =

v v

Next, sinceP preserves any normal vectdf = (u,v)? of S
whereuw € R™ andv € R™ then,

and sov = Cu + Pv. However, note thatV - S,, =
(u,v) - (e;, Ip,) =u-e;+v-I,, =0foreachi=1,---,m H(I) = div<
since N is orthogonal to eacts,,. Thereforew = (—v -

VI (1)
1+ IVI|2)1/2>'

o AdiRT, + J(D)JT (D] Te{ Adj kT, + J7 (1) J(DIVPI
det?[k=2Z, + JT(1)J(I)]

I, = k?(n—rn)—4
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Ciriginal [y

1 ilerations (k=101) 15 sterations (k=_1)

f iterations (k=101) Wl iterntinns (k= 1]

Fig. 5. Projected mean curvature smoothing on a color outdoor image.

It is different from standard mean curvature flow For (1), there are existence and uniqueness results which
prescribed initial and boundary data but in a weak sense, via
L = (14 |VIP)Y?*H(I) (2) a variational formulation; see [16], [17], and [18].

In the variational formulation, the boundary data need not

in which the normal speed equals the mean curvature of the taken in a classical sense so that the surface does not
current surface. There is of course the important questiogcessarily support on the given curve. For (2), the situation
of uniqueness and existence of solutions of the evolutiseems more difficult because the problem is not in divergence
of graphs via such equations of the type we are proposirigrm. The surface will support on the specified curve (the

o AdE2T, + IO I D) THAR2Z,, + JX(DJDIV?T)

I, = k?(rn—n)—4
det*[k=2Z,, + J(1)JT(I)]
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=22+ (12 + 12) Lo + (12 + 1)1y + (24 1)) Lo = 2(Lalyley + L L1y + 1,1 1,)
(E=2 +[|V1]2)?

t =

boundary data will be taken in a classical sense) essentiall\sifow the results of 10 and 20 iterations using a scale factor
the boundary is convex. If not vertical walls may appear. This = 0.05 while the preceding two images show the results
is extensively discussed in [22]. The problem for hypersurfacet four and eight iterations using a scale factor= 0.01.

in R™ was considered [18], [10]. For periodic boundarylthough a larger number of iterations were required in the
conditions, the regularity of the flow has been proven in thebettom two images to attain an equivalent level of smoothing,
works. For higher co-dimension, such problems have recenthe improvement in edge preservation can be seen very clearly

been studied by [5]. by looking at the letters “YF-23" on the tail of the airplane in
the two sets of images. Finally, Fig. 5, a color outdoor image
VI. 2-D COLOR AND 3-D GREY-SCALE IMAGERY chosen for its fine features and significant color contrast, very

: . ) clearly exhibits this trade-off in choosing scaling factors. The
In this section, we compute from the general equation, tlé?i

: q diffusi for the i tWo images on the left show the effect of 4 and 6 iterations
projected mean curvature diffusions for the important spec ing a scaling factok = 0.01 while the two images on the
cases of 2-D color and 3-D grey-scale images.

) s right show the effect of 15 and 20 iterations using a scaling
A 2-D color image amounts to a surface Rr, given by

B Vi h | ion f factor £ = 0.1, an order of magnitude larger. By comparing
S(z,y) = (z,y,1(z,y)). Solving the general equation fory,q ties on the roofs of the houses in each set of images, one
m = 2 andn = 3 with the scaling factot: yields

can easily see that the larger scaling factor has again done a

I = k™2 Adj (k2T + LIT + 1,17 superior job of preserving edges.
(k=2 + 1y - L) — 2(Ly - L) oy + (K72 + I, - 1)1,
(k=2 + L - LY(k=2 + 1, I,) — (I - 1)) ACKNOWLEDGMENT
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