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Abstract 

Several active contour models have been proposed to 
unify the curve evolution framework with classical en- 
ergy minimization techniques for segmentation, such 
as snakes. The essential idea  is to evolve a curve (in 
2 0 )  or a surface (in 30) under constraints from im- 
age forces so that it clings to features of interest in an 
intensity image. Recently the evolution equation has.  
been derived from first principles as the gradient flow 
that minimizes a modified length functional, tailored io 
features such as edges. However, because the flow may 
be slow t o  converge in practice, a constant (hyperbolic) 
term is added  t o  keep the curve/surface moving in the 
desired direction. In  this paper, we provide a justifi- 
cation for this term based on the gradient flow derived 
from a weighted area functional, with image dependent 
weighting factor. When combined with the earlier mod- 
ified length gradient flow we obtain a pde  which offers 
a number of advantages, as illustrated b y  several ex- 
amples of shape segmentation on medical images. In  
many cases the weighted area flow may be used on its 
own, with significant computational savings. 

1 Introduction 

In the application of curve evolution theory to  vi- 
sual shape analysis, Kimia, Tannenbaum and Zucker 
introduced a reaction-diffusion space for shape repre- 
sentation [ll, 13, 121. Using a reaction-diffusion model 
from mathematical physics, a planar shape is evolved 
with a velocity vector in the direction normal to the 
moving front, which consists of two terms: a constant 
(hyperbolic) term, and a curvature (parabolic) term. 
The key idea is to play off one term against the other: 
the constant motion term leads to the formation of 
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shocks from which a representation of shape can be 
derived, and the diffusive curvature term smoothes the 
front, which is essential for distinguishing more signif- 
icant shape features from less significant ones. 

This type of technique was introduced into shape 
modelling by Casselles et  al. [4] and Malladi et al. [14], 
via the addition of a multiplicative image gradient stop- 
ping term. This has led to powerful new techniques 
for edge capturing. These active contour models have 
a significant advantage over classical snakes, in that 
changes in topology due to the splitting and merging of 
multiple contours are handled in a natural way. Along 
these lines, Tek and Kimia [23] have further suggested 
a reaction-diffusion space of bubbles, where in place of 
a single contour, a number of bubbles are simultane- 
ously placed and grown from homogeneous regions of 
the image. 

Against this background, in several independent 
works [5, 9, 10, 201 a new active contour model was 
proposed which unified the curve evolution approaches 
with the classical energy minimization methods [8]. 
The technique is motivated by the Euclidean curve 
shortening equation (interpret the gradient direction 
as that in which the Euclidean perimeter is shrink- 
ing as fast as possible). The key is to multiply the 
Euclidean arc-length by a function tailored to the fea- 
tures of interest in the intensity image, and then to 
write down the resulting gradient evolution equations. 
Mathematically, this amounts to defining a new metric 
in the plane tailored to the given image, and then com- 
puting the corresponding gradient flow. This leads to 
new snake models which efficiently attract the evolving 
front to features such as edges. A viscosity analysis 
demonstrates the existence and uniqueness of a solu- 
tion to the partial differential equation and provides 
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theoretical justification for its use. 
Whereas the above method motivates the use of a 

curvature term in shape modelling, such flows can be 
unacceptably slow to converge in practice. Therefore, 
the authors of [5, 9, 10, 201 follow [4, 141 by adding 
a constant inflation term to keep the curve moving in 
the desired direction. Our main contribution in this 
paper is the replacement of this hyperbolic term with 
one derived from minimizing a certain weighted area 
energy functional. More precisely, in analogy to the 
case of Euclidean arc-length we multiply the infinites- 
imal Euclidean area by a conformal factor and com- 
pute the gradient flow for the modified area functional. 
The derived flow turns out to have two components, 
one which is constant and one which depends on the 
conformal factor as well as the evolving curve. When 
combined with the weighted length minimizing flow 
derived in [5, 9, 10, 201, we obtain a partial differ- 
ential equation whose parabolic and hyperbolic com- 
ponents each have consistent interpretations as gradi- 
ent flows. In application to shape segmentation the 
new flow exhibits a stronger attraction force to fea- 
tures of interest than the constant inflation term previ- 
ously used, due to the inclusion of a new doublet term. 
In fact, in several numerical experiments we used the 
weighted area flow alone to segment the image. Since 
this flow requires the computation of only first-order 
derivatives, it offers significant computational savings 
over the weighted length minimizing flow. 

2 Weighted Gradient Flows 

The foundation of our approach is the mathemati- 
cal theory of curves flowing in the plane with speed a 
function of curvature. In [ll, 13, 121, the two key com- 
ponents of this motion were combined into a reaction- 
diffusion space for shape analysis. More precisely with 
K the curvature, N the inward unit normal, and C 
the curve coordinates, consider families of plane curves 
flowing according the equation 

dC 
at 
- = ( a  + D K ) N  

where a,P E R, p 2 0. In this section we shall 
examine the weighted generalizations of the two parts 
of this evolution. 

2.1 Curvature Motion 

Referring to Eq. 1, we take a = 0, p = 1, and so we 
get the family of plane curves flowing according to the 
geometric heat equation 

ac 
at - = KN. 

This equation has a number of properties which make 
it very useful in image processing. In particular, (2) is 
the Euclidean curve shortening flow, in the sense that 
the Euclidean perimeter shrinks as quickly as possible 
when the curve evolves according to (2) [6, 71. Since 
we will need a similar argument for subsequent models, 
let us work out the details. 

Let C = C ( p ,  t )  be a smooth family of closed curves 
where t parametrizes the family and p the given curve, 
say 0 5 p 5 1. (Note we assume that C ( 0 , t )  = C ( l , t )  
and similarly for the first derivatives.) Define the 
length functional 

Differentiating (taking the “first variation” with re- 
spect to  t ) ,  and using integration by parts, one can 
show that 

where ds =llg/l d p  denotes arc-length. Thus the direc- 
tion in which L ( t )  is decreasing most rapidly is when 
- ac at = K N .  Thus (2) defines a gradient flow. 

A much deeper fact is that simple closed curves 
evolving according to (2) converge to “round” points 
without developing singularities [6, 71. 

2.2 Weighted Length Gradient Flows 

In the recent papers [5, 9, 10, 201, the standard Eu- 
clidean metric ds2 = dx2  + dy2 of the underlying space 
over which the evolution takes place is modified to a 
conformal metric ds; = @(dx2 + dy2). Using this met- 
ric, the ‘‘+-length” of the curve is defined as 

(3) 

Here 4 : R2 + R is a positive differentiable function 
defined on the image plane. By requiring the &length 
to shrink as quickly as possible, the following flow is 
obtained 1 ct = {4K - ~4 . N I  N .  I (4) 

Note that this last equation consists of two terms. The 
first is the curvature term of equation (2) multiplied 
by 4,  and the second depends on the gradient of the 
conformal factor. In application to shape modelling 
the latter term acts like a doublet which attracts the 
active contour to the feature of interest. We will now 
treat the constant speed term of the reaction-diffusion 
model in the same way. 
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2.3 Constant Motion 

Again, referring to equation (l), we take Q = 1, p = 
0, which gives the constant motion flow 

ct = N .  (5) 

In analogy to the geometric heat equation which mini- 
mizes Euclidean length, this evolution may be derived 
as the gradient flow which locally minimizes area. In- 
deed, for the family of closed curves defined above, the 
area functional is given by 

Again, taking the first variation 

associated with the &area,  ab^ As above, differenti- 
ating the functional with respect to t will give us the 
evolution equation for the curve: 

e L 
-2A’,(t) = 1 ( V d , C t ) ( C , N ) d s + L  d ( C t , N ) d s  

\ v ’- 
11 12 

1 s  

In I1 and I 2  we have changed the parametrization to 
arc length. For Is, using integration by parts, we get 

1 1 

A’(t) = -: 1 (Ct ,  ( -yp ) )  d p  - 1 ( C ,  ( -ypt ) )  dp .  vector, its “perp” is defined by 
X P  X P l  

Using integration by parts for the second integral and 
changing to arc-length parametrization 

r L  
A’(t) = - j0 ( C t , N ) d s .  

Thus the direction in which A(t) is decreasing most 
rapidly (locally) is when Ct = N and (5) also defines a 
gradient flow. 

Remark. Equations ( 2 )  and (5) are guaranteed to 
give the direction of maximal decrease of their respec- 
tive functional only locally. Global existence results 
are much deeper. In fact, we have already stated that 
a smooth embedded curve shrinking under ( 2 )  remains 
regular, that is, the flow is indeed smoothing. The 
constant motion flow (5) on the other hand can cause 
a smooth curve to evolve to a singular one. In fact, this 
is one of its desirable characteristics since the resulting 
shocks are important features for the computational 
theory of shape in [11, 13, 121. 

2.4 Weighted Area Gradient Flows 

Our strategy, in analogy to what has been done for 
length, is to consider area in the conformal metric. 
Hence our starting point is the modified area functional 

We will use the following notation: let I/ = (a ,  b )  be a 

V I  = (-b,a). 

With respect to the scalar product we have the follow- 
ing properties 

( V I J q )  = -(ViL,V2) 
(Vl’J;’, = (V1,Vz). (6) 

Using this, we rewrite I3 as follows 

1 1 -1 ( ( 4 C ) p 7 ( c t ) ’ ) d P = 1  ( C t , ( d c ) ; ) d P .  

But 

hence 

Using equation (6) and changing to arc length 
parametrization 

1 U t )  
Ad(t) = -- / 6 , ( C , N )  d s  = -f /U’ 4 ( C ,  ( -yp )) dp. 

2 0  X P  Grouping everything together, we get 

Here q5 : R2 + R is a positive differentiable function L 

defined on the image plane. We now derive the flow -2A$(t) = (Ct , ( C ,  N)V4 + 24N + (04‘, N)C’) ds. 
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Therefore for A+ to decrease as fast as possible, take 

1 
Ct = 6N + 5 [(C,N)Vd + (Vd',N)C*] . 

Now decomposing Vd and C' in the Frenet frame 
{T ,N) ,  and dropping the tangential terms, which can 
always be done by reparametrizing the curve, 

$ +  f [(V+,N)(C,N) + (Vd',N)(C',N)]}N. 

The Past result can be simplified further. Writing Vd = 

scalar products we obtain 
($E9 d y h  C ( P ,  t )  = ( Z ( P ,  t ) ,  Y(P, t ) )  and expanding the 

(V4,N)(C,N) + (Vd',N)(C',N) = (C,Vd). 

By differentiating (9) with respect t o  t ,  and then with 
respect t o  the curve parameter p ,  it can be shown that 

Qt = s JIVQII . (10) 

Equation (10) is solved using a combination of straight- 
forward discretization and numerical techniques de- 
rived from hyperbolic conservation laws. The curve 
C, evolving according to (8), is then obtained as the 
zero level set of Q. As an example, noting that 

the level set representation of the 4-area minimizing 
flow (7) is given by 

Hence the $-area minimizing evolutfon equation takes 
on the following simple form 

Jet = {4+ f ( C , V d ) ) N . (  (7) 4 Shape Modelling 

Note that since 4 is a globally defined function on the 
image plane, (7) defines a hyperbolic equation. 

Remark. Whereas in the present work we are mod- 
ifying the area functional in the usual Euclidean L2 
sense, it is interesting to note that minimizing the area 
functional in an affine sense leads to the aEne curve 
shortening flow introduced in [l, 171; see [15] for the 
details. If the area functional is modified by a stop- 
ping term, and the minimizing flow is computed again 
in this affine invariant sense, one gets an affine invari- 
ant snake model based on K ~ / ~ ,  [15]. This is the affine 
analogue of the work in [5, 9, 10, 201. 

3 Level Set Representations 

In this section we review the level set representa- 
tion for curves flowing according to functions of cur- 
vature, due to Osher and Sethian [16, 18, 191, which 
is the basis for their numerical algorithm for curve 
(and hypersurface) evolution which we utilize. Let 
C ( p ,  t )  : S1 x [0, T )  + R2 be a family of curves sat- 
isfying the following evolution equation: 

dC - = S N .  
at 

The curve C ( p ,  t )  is represented by the zero level set of 
a smooth and Lipschitz continuous function Q : R2 x 
[ O , T )  -+ R, given by { X  E R2 : Q ( X , t )  = 0). Since 
C(p,t) is on the zero level set, it satisfies 

9 ( C , t )  = 0 .  (9) 

We now apply a combined length and area minimiz- 
ing flow to the problem of shape segmentation. We 
begin with a brief review of earlier work in the area. 
Caselles et al. [4] and Malladi e t  al. [14] proposed an 
active contour model based on the following level set 
formulation: 

Here the potential +(z, y) is constructed to have local 
minima at edges so that the evolving curve stops at 
them. For example, in [4, 141 &(z,y) takes the form: 

1 
1+ (IVG, * I((" d =  

where I is the grey-scale image and G, is a Gaus- 
sian smoothing filter. Building upon this work, Tek 
and Kimia suggested a reaction-diffusion space of bub- 
bles [23] where the key idea is to randomly initialize a 
number of "seeds," allowing for multiple structures to 
be captured, such as objects with holes. 

It is important to note that in the above methods, 
the Euclidean curve shortening part of the evolution 
equation is the gradient flow for shrinking the perime- 
ter of the curve as fast possible; Section 2.1. As ex- 
plained earlier, in [5, 20, 9, 101 this model is revised 
and given theoretical justification by replacing the Eu- 
clidean metric with a conformal metric one and de- 
riving the associated &length gradient flow. In the re- 
sulting evolution equation (4) the second term (V4, N )  
acts as a doublet, attracting the curve when it is in the 
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vicinity of an edge ’. Nevertheless, the flow suffers 
from the practical limitation that the simulation can 
be extremely slow to converge. As a remedy, the au- 
thors of [5, 20, 9, 101 follow [4, 141 by adding a constant 
(hyperbolic) term to keep the curve moving in the de- 
sired direction. The calculation of Section 2.4 suggests 
the modification of replacing the hyperbolic term with 
the $-area minimizing flow. The combined equation in 
level set form is given by: 

+length 

T 

+area 

Note that we have put in a “fudge” factor (Y in order 
to make the units compatible (area and length can- 
not be added) in (15). Since C#I is a globally defined 
function which depends on the given image, the &area 
part indeed defines a Hamilton-Jacobi equation. No- 
tice by equation (11) that the +area minimizing com- 
ponent provides the constant inflationary term (with 
v = 1) used in the earlier approaches to shape mod- 
elling [4, 14, 23, 5, 9, 10, 201, as well as a second dou- 
blet term which provides an additional attraction force 
when the front is in the vicinity of an edge. We will 
illustrate the application of (15) with several numerical 
simulations of shape segmentation in Section 6. 

5 Volumetric Extensions 

The 3D extension of our model can be derived as the 
gradient flow that minimizes an analogous weighted 
Euclidean volume; see [all for details. With S : 
[0,1] x [0,1] * R3 a compact embedded surface, N 
its inward unit normal, and 4 : R3 + R a positive 
differentiable (stopping) function, the +volume mini- 
mizing flow turns out to be 

I St = {d + ;(S, V4))N. 1 (15) 

Note the similarity in form to equation (7). 

Remark. 
The equations considered in this paper are special cases 
of a nonlinear diffusion equation of the form: 

*t  = d(”)a~~(VQ)&jQ+H(t ,  VQ), 2 = (21,. . .,to). 

(16) 
‘In fact due to the doublet the front will pass back and forth 

across the edge, but will not stray from it. In contrast in the 
earlier methods which rely on Eq. 13 the front could eventually 
pass through and move away from the edge. 

As in [2, 4, 91, under mild hypotheses obeyed by our 
contour models, one may show that 

Theorem 1 There is a unique viscosity solution of 
(16) in Lo3(0, T ;  W1+03(Rn)). 

6 Examples 

An important consideration for the numerical sim- 
ulation of shape modelling flows is that for any t the 
image-based stopping term 4 has proper meaning only 
on the zero level set of the embedding surface \E. In 
order to extend this influence to other level sets we use 
the narrow band technique of [14]. We compute the 
diffusive &length minimizing component using central 
differences and the hyperbolic &area minimizing one 
using upwind schemes. 

As observed in [9] a difficulty with using a large con- 
stant motion force v (which is desirable for fast conver- 
gence) in equation (13) is that it may cause overshoot- 
ing of the edge since 4 may not be rigorously zero on the 
contour to be captured. Whereas the stopping behavior 
of the (Vq5,VQ) term introduced in [SI 9, 10, 201 can 
help, in our experience a combined 4-length and +area 
minimizing flow offers at least two advantages. First, 
the hyperbolic component of the flow is now adaptive, 
adjusting itself according to the local gradient of the 
scalar potential 4 in the vicinity of the evolving curve 
C. Second, the doublet term (V4,C) in (15) provides 
an additional attraction force in the vicinity of edges. 

We consider several examples of shape segmenta- 
tion using a 256x256 MRI section of a brain, and a 
276x268 CT image of a bone2. For all simulations q5 
was constructed as in (14), but with curvature based 
smoothing of the original image [3]. Figure 1 depicts 
the segmentation of the brain ventricle, with the evolv- 
ing curve overlayed in white on the curvature smoothed 
original. We should note that when run with the same 
parameters (At, and the weights for the parabolic and 
hyperbolic components), the flow of [5, 9, 10, 201 pro- 
duces comparable results. The advantages of using the 
$-area component emerge when the above flows are ap- 
plied to the more difficult CT bone image ’. Whereas 
our new flow converges on the desired boundary, Fig- 
ure 2 (left), the flow of [5, 9, 10, 201 eventually “leaks” 
through, Figure 2 (right). Finally, we use only the 
&area component for segmentation in Figure 3, un- 
der three different initial conditions but with the same 
parameters as in Figure 1. This offers significant com- 
putational savings because only first-order derivatives 

2The CT bone image is contrast normalized for display pur- 
poses since the original has pixel values ranging only from 0 to 
38. 

3Note that here the direction of the hyperbolic component 
has been reversed, so it is actually a &area maximizing flow. 
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Figure 1: The front evolving under equation (15), over- 
layed in white, converges on the outline of the brain ven- 
tricle. TOP TO BOTTOM, LEFT TO RIGHT: iterations 
1,200,400,600,800,1000,1200,1400, and 1600. 

have to be computed. Also, in most cases the front 
converges in fewer iterations since it is no longer con- 
strained to remain smooth. We note that although the 
evolution is not translation invariant due to the dou- 
blet term (Vq5, C), the final segmentations in Figures 3 
(a) and 3 (b) are basically identical except for the addi- 
tional piece of noise captured in the latter; observe that 
in case (a) this structure is not enclosed by the initial 
contour. The length minimizing component has the ad- 
vantage of pushing through such “pieces of noise” since 
they are typically small structures of high curvature. 

7 Conclusions 

Curvature flows have proven to be a powerful tool 
for a variety of problems in  image processing and com- 
puter vision. In this paper we have proposed a confor- 
mal area based gradient flow for image segmentation 
and edge finding. This is to be used in conjunction 
with the conformal length based gradient flows already 
proposed in the literature [5, 9, 10, 201. As such, we 
believe that we now have a rather complete picture for 
the use of such curvature-driven evolution equations for 
segmentation. Experiments must still be run to study 

Figure 2: Reversing the direction of the hyperbolic component, 
the front evolving under equation (15), overlayed in white, 
converges on the outline of the bone (LEFT). Using identi- 
cal parameters, the flow of [5, 9, 10,  201 eventually “leaks” 
through (RIGHT). TOP TO BOTTOM, LEFT TO RIGHT: itera- 
tions 1,500,1000, and 1750. 

the efficacy of the new flow for volumetric imagery. 
On the level of shape representation, our flow can 

be regarded as defining a “conformal skeleton.” In- 
deed, we have been recently employing this flow for a 
theory of hyperbolic smoothing of shapes, and to de- 
fine a new “reaction-diffusion” space for planar shape 
representation. The idea is to use the stopping term 
to hierarchically remove noise before letting the hyper- 
bolic morphological component take over. This work 
will be described in our paper [22]. 
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