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Dense Estimation and Object-Based Segmentation
of the Optical Flow with Robust Techniques

Etienne Memin and Patrick &rez

Abstract—n this paper, we address the issue of recovering and so-called optical flow constraint (OFC). Unfortunately, this
segmenting the apparent velocity field in sequences of images.modeling is very sensitive to noise and behaves badly when
As for motion estimation, we minimize an objective function g aia| or temporal variations of the luminance function are too

involving two robust terms. The first one cautiously captures .
the optical flow constraint while the second & priori) term large. Another source of concern arises from the smoothness

incorporates a discontinuity-preservingsmoothness constraint. To regularizing prior, which is usually associated to these models.
cope with the nonconvex minimization problem thus defined, we The frontiers that demarcate the different apparent motions
design an efficient deterministicmultigrid procedure. It converges coexisting within the same scene are ignored by a blind
g’.‘St toward estimates of good quality, while revealing the large g, hhing This deficiency results in a bad estimation nearby
iscontinuity structures of flow fields. We then propose an ex- . . .
tension of the model by attaching to it a flexibleobject-based these border lines. A great deal of studies has been dedicated to
segmentation devicbased on deformable closed curves (different this specific problem of discontinuity-preserving regularization
families of curve equipped with different kinds of prior can be in computing optical flow (and in computer vision in general):
easily supported). Experimental results on synthetic and natural \ithin Markovian framework, binary edge variables similar
Zg?:rig(t::rs tﬁ:ﬁngresented’ including an analysis of sensitivity ©to Geman and Geman'’s line processes [19] have thus been
' _ _ _ introduced (see, for instance, [22], [28] and [41]); within
e o ASCUOPEC cifusion framevork, nonlinear Euer-Lagrange
optica'l flow. robust estimators. ' PDE’s have been devised along the same philosophy [11],
[14], [15], [32], [35].
Adopting a more global viewpoint, Black has pointed out in
l. INTRODUCTION [3] that the different problems we have just evoked can all be
ANY TASKS in computer vision and image analysisseen as “deviations” from a model (either the data model or the
can be expressed as global optimization problems. TR@0o0thing prior model). Though different in nature, they can
general issue is to find the global minimum of a cost functidtopefully be located and treated within a unified framework:
(or energy involving the data and the “hidden” variables othe one offered by theobust statisticswhose original aim
interest to be extracted from the data. Usually, a first pdft the estimation of models in presence of many deviating
of the energy expresses the interaction between the unkno@d@gurrences among the data [25].
variables and the data, while the second one captures somblevertheless, the introduction of robust estimators in
kind of prior knowledge about the researched information. Thigiergy-based image applications leads most of the time to
latter ingredient is often a mere regularization term that on8/ global nonlinear minimization in presence of numerous
encodes a weak prior, but whose essential role is to remd@gal minima. Even within amultiresolutionformulation of
the ill-posed nature of the problem at hand (it guarantees, ttee problem (which is almost inescapable in case of long range
some extent, the existence and the uniqueness of a consisteations to be estimated), one has to deal with a sequence of
solution which continuously depends on the data). To kegjpobal optimization problems which remain tricky.
the energy-based model tractable, the cost function usuallyfo avoid the use of greedy stochastic algorithms, some
decomposes as a sum of local interaction functions associaaethors [3], [29] have proposed to get benefit from the “scale”
with a neighborhood system [19], [29]. parameter involved in standard robust estimators. A proper
Within this energy minimization framework, we addresgand progressive tuning of this parameter allows to define a
here the particular problem of optical flow estimation, anchinimization strategy similar in spirit to continuation methods
its possible association with some kind of optical flow-baseslich as the “graduated nonconvexity” algorithm proposed by
segmentation. The motion estimator that we present belorigjske and Zisserman [10].
to the class of differential methods which make use of the For the same purpose (i.e., definition of an efficient de-
terministic algorithm to deal with the global optimization
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This is equivalent to handling velocity fields which lie orassumption. The first term of this energy, which depends on

reduced grids, whereas observations are still viewed at tivbat the data exactly are, is highly nonconvex. To cope with

current resolution. this problem, it is usual (as in Gauss—Newton minimization
It is well known that the estimation of the optical flow inprocedures) to linearize this term, provided that a good esti-

the one hand, and the segmentation of the images with respeetew is, somehow, already available. If so, Excremental

to the apparent motion in the other hand, are two importamfinementdw is searched [2] by minimizing

issues of motion analysis which should help each other to

provide better results as well as richer information [12], [38/(w + dw; f) ~ Y [Vf(s +ws, t + 1) dw, + fi(s, w)]?

Following this philosophy, we propose a connection of the scsS

optical flow estimator under concern with an object-based +a Z (ws + dw,) — (w, + dw, )||?

motion segmentation. This is addressed withinaagmented

cost functionwhich involves one or several segmenting closed

curves. . . _ o _where Vf = [f, f,]¥ stands for the spatial gradient of
From the point of view of the optical flow estimation, th'sluminancef and f, (s, w,) A F(s+ws, t41)— f(s, ) is the
3 t ) s) — 59 - ?

curve 1s “S?‘d 0 _hop_e_:fully drlve_ and s_tructure the.appam'%?splaced frame difference. The first term of this approximate
of spatial discontinuities, thus improving the quality of the

o X . . éxpression now measures the deviation from the well-known
estimation. Conversely, the segmenting curve, which provid . .
) o . . . X : C, here displaced according 4m
interesting information of its own, is driven by the spatia

. - .7 ; The weakn f this differential modelin follow
discontinuities of the velocity field under estimation. Wlthoutre vSeII T(?]ovfrfses of this differential modeling, as follows,

much pain, the efficient multigrid algorithm can be adapted &) i , . . .
this joint model. 1) The first-order expansion used is valid for sogiéthe
The paper is organized as follows. In Section II, we start  displacementw, falls into the domain of “linearity” of
from the standard gradient-based optical flow estimation, to (e luminancef(e, ¢ + 1) arounds + ws, this region
design an energy-based multiresolution model for a robustand P€iNg smaller as the spatial gradient gets larger in the
direction ofdw,. As a consequence, large contribution

discontinuity-preserving estimation of the apparent motion. : \
The global optimization issue is then addressed in Section 11l 1O this data term can be expected for large increments
dw, and at sharp edges.

A deterministic multigrid algorithm involving iteratively ) ; ) .
reweighted least squares estimation is proposed. In Section [v2) The underlying assumption of brightness constancy is
already very likely to be violated in cases of occlusions,

we explore a way of coupling the motion estimation process ) A oo
with a simultaneous segmentation of the current optical flow. ~ transparency, specular reflection, change of illumination,
We especially show how a segmenting closed curve can etc. - oL _ _
interact with the discontinuity “indicators” to extract moving <) Most of ‘“real” velocity fields are, at most, piecewise
smooth: they usually exhibit motion discontinuities that

entities while improving the optical flow estimation nearby. In ) ; :
Section V, experimental results of optical flow estimation and ”S_k to be ignored and smoothed out by the quadratic
prior.

object-based motion segmentation on synthetic and real-world = . o
sequences are reported and discussed. To eﬁlClently cope with the Iarge deviations both from the

data model and from the prior model, one can replace the
Il. ROBUST INCREMENTAL OPTICAL FLOW ESTIMATION quadra'tlc penalties byobust penalty functlons [3], [5] in the
approximated energy. Thus, we now consider the new energy
Letw = {w;, s € 5} € Qand f(t) = {f(s,£), s € 5} fynction H 2 H, 4 aHy, with
be, respectively, the unknown bidimensional velocity field at
time ¢ and the luminance function at tinieboth defined on the A T
. . . . H:(dw; = 59 t 1 d s
rectangular pixel lattic&. The configuration space to explore, H(dw; f, w) ; V(s Fwe, T4+ 1)7 dw
Q, is a bounded subset ¢iR x IR). (s, )] @)
Assuming that the luminance of a given “physical point” P sl

(s,T)€EC

does not change much between timeand ¢ + 1, and that Hy(dw; w) 2 Z p2[||(ws + dws) — (w, + dw,)||]
the velocity field is reasonably smooth, one often addresses (s,myeC
the optical flow recovery problem by minimizing an objective 3

function of the following type [28]:
where functions; and p, are standard robust estimatérs.

Ulw; f) 2 Z [f(s +ws, t+1) = f(s, 1)) The estimation of the “guessiv is usually addressed
sCS by embedding this refinement approach immaltiresolution

+ Z |[ws — w,|)? (1) coarse-to-finegprocedure [2], [3], [16], [22]. To this end, for
(s, T)EC each instant of the sequence, a pyramid of imagg¥(t) =

f¥(s,t),s€ S*}, k=0--- N, is derived from the original

where( is the set of neighboring site pairs (with respect t ame f(¢) by successive Gaussian smoothings and regular

the first- or second-order neighborhood syst@manda > 0
ISa pargmeter controllmg the balance betwe_en the Smomhnesgee [8] for a catalogue of such robust objective functions in computer
constraint and the global adequacy to the brightness constatigign. Most of them are bounded, and therefoomconvex
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Fig. 1. Synopsis of the multiresolution incremental optical flow estimation on three leVels @).

of energy expressions, top-down propagation of estimates),
along with the degree of nonlinearity éf depending on the
data, no convergence guaranty of the whole procedure seems
to be within reach. However, this standard and pragmatic
multiresolution approach is of particular interest when the
scene at hand exhibitarge displacementat some locations

in the image.

We now return to the robust aspect of the model. Roughly
speaking, robust objective functions are continuous even func-
tions, increasing ofAR™, and which penalize large “residual”
values less drastically than quadratic functions do. This is
usually achieved by letting their derivative, callédluence
functionin robust statistics [25], have finite limit at infinity
subsamplings by a factor of two in each directfofhe created (usually zero). In the model currently discussed, this charac-
pyramidal structure then allows to incrementally estimate theristic makes them robust to data model outliers for or
velocity field, by usingad hoc “reductions” of energyH: to spatial discontinuities of the apparent motion field (#g}.

Low resolution components are estimated at coarsest levello give an insight into robust estimation as well as a practi-
where the domain of validity of the linearized data model isal way of handling it, it is fruitful transforming its use in terms
hopefully larger (due to the joint reduction of spatial gradientsf dual optimization problem involvinguxiliary variables[3],

by smoothing, and of motion magnitude by subsamplingB], [13], [18]. To this end, we use the following reformulation
This crude estimate is then refined step by step: at resoluti@sult (see [8] or [13] for a complete account): Letbe a

k, an increment velocity fieldiw® in Q% c (R x R)S" is real-valued continuously differentiable even function such that
estimated around the “projection” (by duplication or bilinear 1) p is increasing odR™;

interpolation)w® of the final estimate at previous resolution 2) ¢(v) EN p(+/v) is strictly concaveon R ;

2

/ \
(7= AV VR /=<
(£ [7]=I] N~/
(1 4 [F] 7] 4N F] 2]
w® + dw® / 224NN/
NA] T HEITE) ™ o
7 N<]</7] 7> N]
|7 [ [P [] V] £} e]
£ VI ¥l £/<[7]V

Fig. 2. Energetic structure of the multiresolution mod¥l &£ 2).

level _k + 1 (see Fig. 1). 3) limy_4e0 ¢'(v) = O;
. Th;klsépi;f’?rmeillzy ml2|m|2|ng the reduced energy func- 4) r A lim, _o: ¢/(v) < 400,
lon = fp + ok, Wi There exits a function), continuously differentiable on
Hf(dw"; f*, wh) (0, 1], such that
A : . . . .
= Z p1 [V (s +wh, t 4+ DT dw” + fF(s, w®)]  (4) VueRY, p(u) = I%nl1 T2u? 4+ 1(2). (6)
sESk z€(0,
H (dw*; w") This means that the graph pfis the inferior envelope of a
= ) pofll(wh + awk) — (wh + awk)|)] (5) family of parabolas continuously indexed bye (0, 1. The
(5, ) eCh minimum in (6) is given in closed form by [8] and [13]:
whereC* is the set of neighboring site pairs (w.r.t. neighbor- arg mintzu? 4+ (z) = M = o2¢' (u?) @)
hood systemv) lying on grid S*. Fig. 2 shows this multires- 2€(0,1] 21U

olution energy setup.

From a minimization point of view, the complete multireswhere parametes? 2 r-lis analog to a variancep{u) ~o
olution procedure can be viewed as a Gauss—Newton-tygp€/2]. Functions is obtained as)(z) 2 do () Hrz) -
minimization of the initial nonconvex energy defined by 7z(¢")=1(72).

(1). However, with the introduction of the different pyramidal With such a cost functiorp, one can thus replace the

ingredients (smoothing/sampling of data, duplication/reductignultidimensional minimization inc of some}_, p[g:(z)] by
2The resolution superscrigt will span from 0 for the finest resolution, to the minimization in(z, {:}) of 3=, [rz:g:(x)? + ()] since

N for the coarsest one. both sums have the same global minimumainThe extra
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functions 2(u) = exp[—(u?/0?)] and 2(u) = o*/(c? + u?)?, for o = 1.

(@) Leclerc’s estimatgs(u) = 1 — exp[—(u?/c?)] and Geman-McClure’s ong(u) = u?/(c? + «?) for o = 1
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. (b) Associated optimal weight

variablesz;s act asadaptative weightgontinuously lying in

(0, 1]. Note that in practice, each functign only depends on d/“’:O E\Fk;
a few components of (one or two in our problem, as we dwb! ¢ phi VIS |[reduced
shall See). e 2 increment
The minimization of the new compound function is usually dur” € T 71N N7 o rosol.
lead alternatively with respect toand to thez;,s, as follows. dhs TN =Y
 The zs being frozen, the minimization in becomes @‘I’k’z @‘Dk’l @‘P’“’O
argwmlnzi:[TZ¢gi(a:)2 + ()] ; j ; ; ; ﬁ i i j — 2 i constrained
— are mi (o) = 12171 A=< | N7 oo
arg min EZ: Tz:9:(x)° = &(2). avavar . K ssol.
i @R (dw?) € 0F2| ORL(dwt) € OF1| oRO(dw™’) € OF
If g;s are affine forms, one has to face a standard weight 'Lg:nd Tovol £ — 2 | g level £ — 1 | _grid lovel £ — 0]

least squares problem equivalent to the resolution of

(sparse) linear system.

» z being frozen, thesimultaneousminimization in {z;}

yields

Fig. 4. Constrained increment fields (at resolution lekelfrom Q-2
52““7 %), and reduced increment fields associated to them through
[@% -1, ¢ =2,1,0.

Ploi@)] _

el = o0’

Zi(x) = (8) by the dual formulation ofH}). The first set of weights,
denoted bys* 2 {5k s € S*}, allows to attenuate the
according to (7). The assumptions abqutmean that effect of data for wh|ch the OFC is violated. The second
¢' strictly decreases fronR™ into (0, 7]: when theith one, denoted by3* 2 {8t (s, r) € C¥}, prevents from
“residual” |g;(x)| gets larger, the corresponding optimabversmoothing in locations obviously exhibiting significant

weight z; gets smaller and smaller, providing the robustselocity discontinuities. The estimation at resolution leiés

ness of the estimator. now expressed as the global minimizatior#6f 2 H* +aH,
In casey;s are affine, the whole alternate procedure constitutegth
an iteratively reweighted least squarestimation [24]. Fig. 3
shows the two robust estimators we used in our experiments
and their associated optimal weight functions [20], [29].

Z {716" ka(s—i-w" t+1)7a

Apart from the practical advantage in case of affine resid- sesk
uals, transforming a robust estimator-based energy into its + fR(s, W)+ (85)) (9)
auxiliary variable formulation offers appealing modeling flex-
ibility: the dual compound model can be extended by adding
interactions among auxiliary variables (e.g., to capture some ( 5, B )
“geometric” a priori knowledge, either local or more global, 2 Z [T28% || (w” + dw®) — (w* + dw®)|?
on the discontinuity configurations). The extended model YeC
presented in Section IV relies on these variables to couple the (B )]. (10)

estimation of motion with an object-based motion segmenta-
tion.

In our case the weights are of two natures:daja outliers However, the underlying energy functioH* being often
weights (related to the dual formulation offf), and (b) nonconvex with respect to the unknown variables of interest
discontinuity weightdying on the dual grid ofS* (provided (it will be the case in our experiments), we still have to deal
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Fig. 5. Multigrid structure L = 2) for relaxation at resolution levet.

with a tough optimization problem, despite the reformulatiofprocedure is repeated until the finest le¥ek 0 is reached
In particular, the alternate minimization procedure is ndsee [23] for further details). Note that the definition of the
guaranteed to reach the global minimum, even though eaelduced energy by (11) along with the successive inclusion of
step is an exact minimization (but with respect to only a subgée configuration subspaces, ensures that the eri¢fgyeeps
of variables). Actually, only a “local” minimum depending ondecreasingas the multigrid iterations proceed. Experiments
the initialization is reached. For this reason, we designed eeported in Section V will show that the multigrid approach
extension of the multigrid method proposed in [23], whicis of great benefit both in terms of convergence speed and
hopefully converges fast without getting stuck in high locajuality of final estimates.
minima.

A. Multigrid Energy Derivation

lIl. M ULTIGRID DETERMINISTIC OPTIMIZATION We now go into deeper details about the new multigrid

To efficiently cope with the global optimization problemfunction #*:¢, which is obviously composed of two terms
at resolution’, we design a hierarchical “constrained” exsimilar to those oft*: H*¢ = H*‘ + oMb ‘. For sake
ploration of the configuration spade*: the optimization is of readability, we will omit the resolution superscriptin
led through a sequence of nested configuration subspagitsexpressions throughout the remainder of this sectidh.
QL cobl-l c...c okt c Q"% = QF, whereQ* ¢ computations will be meant to concern resolution lekel
is the set of increment fields which are piecewise constantl) Data Model Adequation TermEor anyn € S¢, denote
according to a2‘ x 2‘-block partition of grid S*. Denote s, ..., s, the sites of blocki!, and define the following
Bkt 2 {Bk:t n=1... Ny} this partition, the number of blockwise expressions:
blocks beingNy . = |S¥|/4° = |S|/4¢+*. Each constrained
field of % ¢ is equivalent to aeduced increment fieldw": ¢ 52 6, - 85", WE(SE) 2 Z 1 (65),
lying on the grids*¢ 2 {1, ... Ny, ¢} associated withB*: ¢ seBL
Let I'*-¢ pe the set of such reduced fields and®ét¢ be the ¢ .

i k, € ; k, € i An dlaqéslv"'vésc)v
one-to-one mapping frorh”: ¢ into % ¢ (see Fig. 4). 4

Constrained optimization i®2* ¢ is then equivalent to the  fi(n, w) 2 [fi(s1, ws,) -+ fi(sae, w, )],
minimization of the new energy function v A
f.(nv w) = [f'(sl + W, t+ 1)
Hk,[(dwk,é7 6k7 /3k7 fk7 wk) f.(34£' +w54“ t+ ]_)]T7 for e — z or Y,
£ Hr@b (aw ), 6%, 8% fF wh. (11) and

113

[fo(n, w)fs(n, w)].

14
At each resolution, we now have a cascade of optimizatio?f (n, w)

problems of reduced complexity: N
arg min H*Eawht, 8, 45 f5 by b= L0 (12) ZAIso, we.W|II denote (X|Y'),, :2 )A(TAfLY for any tho
dwk £, 5k Gk 4*-row matrices or vectors, anfX||; = (X|X),, for any4*-
component column vector. It is then easy to get the following
where dwk’é € Fk’é lies on the reduced gricﬂ’“‘, while Compact expression:
weights and data remain attachedsty whatever the grid level
¢ (see Fig. 5, wheréd* ¢ = ming g H*¢). Each of these it 5.
problems is processed in terms of iteratively reweighted Ieas;tHl(dw » 6 frw)
squares within a multigrid coarse-_to—flne strategy: the final — Z [V £ (n, w) dwl, + F(n, w)|)2 + TE(85)]
estimate at levef + 1 has a natural image at levél(through
[@F-¢]~1 o @k +1) which is used as an initial configuration
for the deterministic relaxation algorithm at that level. This (13)

nest
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which isvery similarto the one of the “parent” energy;, (9). B. Energy Minimization
For each block, one gets a blockwise optical flow constraintthea current reduced increment estimade’ being fixed, we

expression in'volving aggregaied observations. know that the optimal weight values are directly accessible.
2) Smoothing Termiet Cf = {(s, r) € C: (s, 7) C B} According to (8) in combination with energy definitions (4)
be the set of neighboring site pairs included in bid&¢kand ang (5), these values are

ct, 2 {(s,r) €C:s € B, r € B} the set of neighboring

site pairs straddling blocks’, and 5%,. These set{C’} and 5 =20 IV t 1+ 1T dut 2
{ct,.,} form a partition of¢ and reduced grié* turns out to be s =tV (s s, £ 1T dw A+ (s wo)l )

nm 4
equipped with thesame neighborhood systeas S (i.e., first- Vj € B, . (16)
or second-order neighborhood system). The corresponding set o3 ¢s[||(ws + dwy,)
of neighboring pairs will be denoted kg§‘. The smoothing /}ST = —(w, + awt)|]?], V{(s,r)eCt,, (17)
term of H¢ is
a3 phlllws —wi|?], Vs, r) €Cp.

H(dw', B; w) _ o .
According to (17), the discontinuity weights,,. located in
_ 2 between two neighboring blocks & (i.e., (s, r) € C¢,, for
- [Z‘ Z . Porlfws = wrl[” + Z . Z[ some(n, m) € C*) are the only ones to be iteratively updated
nest {s ety {r.m)ECt e mECn a5 qw! evolves. The others only depend anwhich is fixed
along the whole multigrid procedure at levelTherefore, they
+ Baorll(ws + dwl,) — (w, + dwfn)HQ] can be computed right away at the first iteration of the current
level. As soon as the values of all weights are computed and
+ Z Ya2(Bar). (14) frozen, the energy functiot(‘ (dw’, 6, 3; f, w) is quadratic
(s.ryec with respect todw*. Its minimization is equivalent to the
resolution of a linear system whose solution is searched
Noting that with an iterative Gauss—Seidel scheme. All sitesSéf are
repeatedly visited, until convergence.sifis the current site
of S¢, the reduced increment vectéw!, is updated according
To [Z Z Bor||ws — w,||? to (18), shown at the bottom of the page, with
n€sSt (s,r)eCt

Z (ﬁréwn dwfn - Mfwn)

+ Z Z Bsr|lws _w7‘||2] —_¢ A méEv(n)

(n,mycCt (s,r)eCt,, O Z ﬁé |
+ 1/)2(/357,) rnEl/(n)
. A QT
{(s,m)€ ) Yy é 7__2 Z ﬁfwnv
S Bl — w2 + a(Ber)] L omern)

(s,r)€eC

4 L
H2(0, 5; w) A2 VfZTAfLVfZ _ |: 1£=17 <fac|fy>n

= 0 gl 212
(Falfydn  NF 5

one gets the following reduced prior energy: and “detA,” “trace A,” “com A” stand, respectively, for the

determinant, the trace and the cofactor matrix Af Note

H(dw', 3; w) that in the above expressionfs, f, f; vectors, andV f¢
_ ) ‘ O a2 matrices as well, are displayed withdut, w) for the sake of
- H2(07 /37 111) + T2 Z [ﬁnandwn dwrn” ConCiSion.

(n, m)ect

+ 2(dw’, — dw’,)T Aw,

nrn]

We have completely described a multigrid reweighted least
squares minimization algorithm, which is here devoted to
robust optical flow estimation. The use of such a multigrid
(15) iterative relaxation in the present context allows to build an
optical flow estimator which is formally speaking similar to

with B 2 > s myece. Bor and Horn and Schunck’s estimator. In contrast, it is robust to the
xgl A 3 T failures of the OFC-based model, and it is able to localize and
W = s, mecs,, Por(Ws = wy). preserve the discontinuities of the optical flow.
5ot _ o _ WYLV W, + fi)n + detA@], + comA(VS|fi)n
oo v(v + traceA) + detA 18)
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IV. COUPLING WITH AN hibit, to some extent, a noticeable spatial/temporal brightness
OBJECT-BASED MOTION SEGMENTATION consistence.

We now introduce an extension of the model to couple_'” our first attempt to equip our complete estimation model

the motion estimation process with an object-based moti§fith an object-based interacting segmentation device, we

segmentation. By this, we mean that we aim at simultaneou$}§v& chosen so far an interaction mode which leads to a

extracting the silhouette of one dynamical enfitlereafter, SIMPIe energy formulation, and to easy computations. The
the segmentation is defined as a single non-self-intersectfggMment will only interact with the estimation process through
closed curve lying in the image plane. Some discretizatidh€ discontinuity weights. The corresponding cost function
scheme allows to associate with it a unique partition of tHREMPONENEineraci (K, ) exhibits two terms: Tge first one is
pixel set in terms of “interior,” R, and “exterior,” R’ = proportional to the mean value ¢f,.s overCsr = {(s, ) €
S — R. In the following R will be called asegmentThe £ x R’}. It then i) favors low values (close to zero) of
precise definition and parameterization of this curve may éscontinuity weights along the border of the segment, and ii)
of different natures, depending on the problem at hand, on tféves the curve toward the more significant gathering of low-
amount of known or assumed prior knowledge, and on ti@lued;,’s. The second one is proportional to the opposite
affordable computational burden. mean value of3,,s overCp 2 {{s, ) C R}. lts role is i) to
A parameterization of low dimension can be used to specifgvor large values (close to unity) inside, and ii) to make the
a strong geometric prior knowledge on the region shape. Tleisrve surround areas with uniform velocity. The global energy
is allowed by thedeformable templatfamework proposed by of the extended model is designed as follows:
Grenander [21]. Conversely, a “weak” regularizing prior can A
be captured with plane curves controlled by a large numberH(dw, 6, 3, R; f, w) = H(dw, 6, 5; f, w) + Eprior(R)
of parameters. This situation is thoroughly addressed within + Einteract(R, ), (19)
the framework ofactive contourmodels andsnakes[26].
Originally used in still image segmentation, these differenthere
closed curve models have recently appeared as promising tools A 2
to cope with object-based motion issues [9], [17], [27], [30],Eimera‘3t(R’ p) = Z Psr = @ Z Pir
[33], [36], [37].
Our purpose here is neither to choose among the different (20)

deformable shape models, nor to propose a new one. We Wo\y\lllﬂ1 some positive parametegs, and up. As for the class

rather like to show how such a curve-based segmentatio o : )
' . of admissible segments, and associated prior energy, we have
may be connected to the optical flow estimator we propose. . ; .
. . : . .-considered two extreme cases in our experiments.
Therefore, in the coming section, we remain general by neitheér. ) : :
L o . ; The first case corresponds to a tight geometric con-
restricting ourselves to a specific family of possible curves, noy . . . . ]
. . Straint associated with a weak prior on the shape: the
to a specific prior knowledge. As for the experiments, we wi ) . . . .
- ) egmenting curve is a convex quadrilateral with prior energy
demonstrate the feasibility and the interest of the approach 2 ) :
using two simple types of object-based segmentation modé grior (1) = A(|Car["/|R]) (for some A > 0) favoring
that illustrate two extreme cases of parameterization. compact” shapes. For a given surface (i fixed), the
prior on the segment is all the lower that the shape of the

segment is closed to a square. As concerns the size of the
segment, this prior obviously does not depend on it: there is
The extension of the energy-based estimation model ris a priori on the apparent size of the region. When updating
obtained by adding two terms to the global energy functivh the segment such defined, local deformations will be simply
The first one, B0, Captures the priori knowledge about obtained by moving each vertex within a small window (e.g.,
the segmenting curve. The second OW&ueract, Specifies 3 x 3) around its current location. As for global transforma-
the mode of interaction between the segment and the restiohs, rotations, translations and scalings will be considered,
the estimation model (i.e., velocity field, weights, and datajhich do not alter the prior energy.
Different ways of interaction may be considered: The segmentThis prior modeling of the segment is a very simple instance
can directly interact withw by “cutting” the regularization of deformable templates [21]. More sophisticated modelings
through its border, as a set of binary line processes; Tbeuld be used in this context, both in terms of admissible
segment can interact indirectly with the velocity field througburves (class of parametric shapes, number of control parame-
discontinuity and/or data outlier weights; The segment caers) and energy (e.g., prior on the angles of successive edges
interact with the data to capture for instance the fact thef the polygonal silhouette [21], [33]).
the boundary of a moving region is very likely to exhibit The second choice corresponds to a loose geometric con-
large photometric discontinuities, while the interior should extraint associated with a classical minimum length descrip-
tion (MDL) prior [29]: the segmenting curve is any non-

3The extension to fixednumber of such entities would be straightforward self-intersecting closed curve whose cost is proportional to

The estimation of arunknownand varying number of regions is a tough . . . A
problem that we do not address in the present context. its length above a certain threshold, "@prior(R) = A

4Even though the superscript remains omitted, we still suppose in tFEaX{|CBE|v e} for so.me A>0ande > 0. Corltrary to
coming developments that some resolution levés concerned. the previous prior, this energy favors segment with short and

ICar] <

5,7 ECor (s,7)ECR

A. Energy Design
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smooth border (the threshold is thus necessary in general ,,
not to have the segment shrinking to a point). Iterative local
deformations of the segment will be obtained by “moving”  l. _._._ ___ ,
border sites fromf? to R/, and the other way around. As for B <S’T_>C I;é N
global transformations, scalings will change the prior energy. ... <s sg;cx R S
This prior can be viewed as a very simple instance of snake S ’

[26], with only a first-order smoothing. A more sophisticated o} - . - _
shake-type prior could probably be substituted to it, involving N

a parameterized smooth closed curve with stretching and o.} e
bending penalties (first- and second-order smoothing). NI

0.2F ~

B. Energy Minimization ’ . ) R

° B

5 .
05 1 15 2 25 3 3.5

- . . . T . . 4L‘ 4?5 5
The alternate minimization spirit is still considered. Com-
pared to the segmentation-free optical flow estimation 6fg. 6. Modified discontinuity weight functions for Leclerc’s estimator
Section I11-B, two extra features have to be described: i) tH& = 2:5, #5/ICr| = 0.5, 4} /|Cor| = 0.5), according to location of pair
. . . L . s, r) W.r.t. segmentR.
new computation rules for the optimal discontinuity weights,

and ii) the segment updating given the current optical flow

under estimation. multiplication (see Fig. 6 for a plot example):
For given velocity fieldw + dw and segmenk, the optimal
weights 3s, {s, 7} € C, are if (s, ) C R,
) y Bor =323 (25)
fBsr = arg min {/JST [TQIIAwSTII2 + 5 if (s, 7)€ Rx R,
Bar€(0,1] ICor| ’ /
! 3, = exp | — 14 ) 3 . 26
on(s.r) = B 1n(e )| £ a0 | 2D o= ow (-f07) (29)
N————
A
= Kpr<l

where Aw,, 2 (ws + dw;) — (w, + dw,) as a notational if (s, r) C R,

conveniencelg(s, r) [resp.,1sr(s, )] = 1 if (s, ) € C . ! .
. s 1) r(s: 7) : <, é> . Bsr = min { 1, exp 2 B s, (27)
(resp., (s, ) € Csr), and zero otherwise, and, = u;/«, ICr|) "
1 = 1, 2. One gets the new optimal weight computation rule \Tv—’
(see Appendix A for the proof) = Kr>1
; . y A multigrid version with piecewise constant velocity incre-
if (s, ry C R/, . . .
R 5 2 ments is readily derived.
Bsr = o35 [[| Awsr [|7]; (22) The minimization of the energy according to the segment
if (s,7)e Rx R, is addressed in two successive ways. First, on the coarsest
R 5. 5 I grid (¢ = L) of the coarsest resolutiork (= N) where the
Bsr = 03¢5 ||| Awsr||” + 72lCorl |’ (23)  complete procedure starts and where the dimensionality of the
if (s, ) CR, problem is drastically reduced, one can sweep efficiently over
R the set of possible segmentations. A crude estimate of the
By = o2, [IIAwerIQ _ M } (24) segment is thus obtained at onv_qos_t b)_/ a stochasti_c algorithm,
72|Cr| with no need of any manual initializatiorThe location and

shape of the segment is then refined deterministically through
where[e]™ 2 max{0, e}. Basically, the optimal weight com- th?déo(gol”g;gogtr;%sfﬁorei Olurgzglv’t.gg?etzrlg\t;gh 1the fu:)est
putation rule is only changed along and within the segme or b terind ¢ rr\:VIn? q tliJnI h Vv I _it 7f||(7j bein
according to a simple shift of the argument ¢f under _ oth Kinds of segment Updating, the velocily Tield being

fixed, an iterative scheme is used which considers at each

the constraint that it remains positive. Along the border . . . .
this (positive) shift results in a decrease of the weigh?stelo different possible segmenfsalong with the associated

(i.e., smoothing reduction), which is all the more importan ptimal weightsB provided by (22)~(24). The part of energy

that the border is short. Inside the region, the (bound R) actually concerned by the updating process reduces to

negative) shift results in an increase of the weights (i. _h,e one involving the segment and/or the discontinuity weights

smoothing accentuation), with a saturation at one. In this
context, Leclerc’s estimatgs(u) = 1 — exp(—7u?) yields a E(R)
very convenient updating rule: the computation of the optimal

weight turns out to be simply related to tlsegmentation- - Lor(s, 1) — 1 1r(s 7,)} +z/)2(/§sr)}.
free optimal weight$3°, 2 24} (|| Aw,.||2]) through a single ’ ICrl ’

113

!
Eprior(R) + Z /357‘ 7_2||AHJS7‘||2—’_ l“Ll
ICor|

(s,m)€C
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TABLE |
COMPARATIVE RESULTS ON Y OSEMITE

Technique Average error  Standard deviation Density

Horn and Schunck (original) 31.69° 31.18° 100%

Horn and Schunck (modified) 9.78° 16.19° 100%

Uras et ol 8.94° 15.61° 100%

Lucas and Kanade 4.28° 11.41° 35.1%

Fleet and Jepson 4.63° 13.42° 34.1%
Robust multigrid 5.38° 7.73° 100%
Szeliski and Coughlan {39} 2.45° 3.05¢ 100%
Szeliski and Shum [40] 2.20° 5.87° 23.1%

Black and Anandan [6] 1.46° 4.21° 100% | without
Black [4] 3.52° 3.250 100% | sky
Black and Jepson [7] 2.29° 2.25¢ 100%
Robust multigrid 2.34° 1.45° 100%

In the first staged = L, k = N), in absence of any “initial real-world sequences. The first one, Yosemite [see Fig. 7(a)
guess,” the set of possible segmentations has to be exploaed (b)], is the most complex (though synthetic) sequence
thoroughly. This is done by using a simulated annealirfigopm the comparative study by Barraet al. [1] for which a
algorithm based on Metropolis dynamics. Given the currefground-truth” exists. The two other sequences are real. They
segmentR at stepn, a new segment? is proposed by exhibit far more motion discontinuities and OFC violations.
randomly applying a global deformation (rotation, translatior,herefore, they are probably more adapted than Yosemite
and scaling) toR [27], [33]. The new segment is acceptedo demonstrate the nice characteristics and abilities of our
with probability exp{—[E(Q) — E(R)]* /T, }, according to a method, except that there is no ground-truth for them. Fig. 9(a)
geometric coolindl;,, = Tp x (0.99"). shows a parking lot sequence that involves two moving cars.
For the second type of updating, an initial guess is alwayfie camera pans the scene and the wind shakes the trees
available by properly interpolating the segment obtained at the the background. Calendar [Fig. 10(a)] is a TV sequence
previous grid level (ift = N) or resolution (ifk < N). Given involving large displacements. It includes several different
this initial guess, we simply seek a local minimizer of thenoving objects and a horizontal panning camera motion. The
energy nearby this guess, proceeding with small deformatiosalendar translates vertically and the toy train pushes a rolling
In the case of quadrilateral segment for instance, the fdoall.
vertices are displaced in ax3 3 window around their current  The choice of the two robust estimatops and p; has
location, seeking for the largest energy decrease. been based on heuristic considerations arising from our expe-
Before turning to experimental results, let us come back t@nce. Since frequent and large deviations from the brightness
the energy change computation. In case of Leclerc’s estimatoonstancy assumption are very likely to occur, a strongly
using a first-order expansion for inner contour sites such ttsgturating estimator seems to be well suited to the correspond-
| Aw,,.||* — 15/72|Cr| < 0, one gets an approximate energyng component of the energy function. We selected Leclerc’s

variations E(Q) — E(R) = E(Q) — E(R) with estimator [29] (see Fig. 3). As for the regularization, a softer
N A ) saturation seems to provide a better behavior of the alternate
E(R) £ Epia(R)+(1—Kor) > B, minimization procedure. For that reason we chose Geman and
(5,1 €Cor McClure’s estimator [20] (Fig. 3) to be embedded within the
+(1-Kg) Z B smoothness constraint..
(s, 7 eCn The values of the different parameters for the three se-

quences are the followingV = 1, L = 3, o = 320, 0% = 6,
which is very easy to compute (see Appendix B for details)and ¢ = 0.7 for Yosemite; N = 0 (the displacements are
small), L = 4, o = 200, 0 = 6, ando2 = 0.2 for parking
V. EXPERIMENTAL RESULTS lot; N =2, L =4, a =200, 0f =7 ando3 = 04 for
In this section, we present results of optical flow esqalendar: o . .
timation_alone (éection V-A), and results of joint estimas FoIIOW|_ng [1], quantltatlve comp_aratlve results on Yos_emlte
: . . ' are provided for different algorithms. For each estimate,
tion/segmentation (Section V-B). the deviation with respect to the “real” flow is measured
) o at each pixel location by converting the two-dimensional
A. Optical Flow Estimation (2-D) vectors into three-dimensional (3-D) unit vectors,
The optical flow estimation model presented in the firgtnd by computing the anglarccos|(us ui** + v, vieal +
part of this paper has been validated both on synthetic ang/(y/|[w, |2 + 1\/[lwiea||2 +1)] between them.
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TABLE I
INFLUENCE OF THE DIFFERENT INGREDIENTS (MULTIGRID MINIMIZATION , ROBUST PENALTY ON SMOOTHING
TERM, RoBUST PENALTY ON DATA TERM) ON RESULTS FOR Y OSEMITE SEQUENCE WITH AND WITHOUT SKY

Technique with sky without sky  “equiv. sweeps”
quadratic, monogrid (3 =1, =1,L =0) 10.33 +9.29° 8.31 +7.08° 261
quadratic, multigrid (=1, =1,L =3) 6.37 +8.28°  3.47 £ 2.51¢ 183
quadratic on data, multigrid (6 =1,L =3) 5.884+8.44° 2.98 4+ 2.29° 190
robust multigrid (I = 3) 538 £7.73° 2.34+1.45° 206

(b) (©)

Fig. 7. (a) and (b) Two frames of Yosemite and (c) differenge1(0) with the “true” flow.

For some methods reported in [1], estimates are onbyn smoothing term, robust penalty on data term) both on the
available at so-called “reliable” locations. The percentage qtiality of the final estimate and on the computational load,
such locations is the “density” of the estimate. The errors anee provide corresponding results on Yosemite in Table II.
actually computed only at these locations. Table | lists the aVhe computational load is measured as a number of “mono-
erage and standard deviation of these angular discrepanciegfig/monoresolution equivalent sweeps.” This is the ratio of
different algorithms. The five top-lines recall results presentée total number of single-site updates (whateandk) over
by Barronet al. (see references therein). They concern twie number of sites in latticé (i.e., one complete sweep at
different versions of Horn and Schunck’s algorithms (whodevel , £ corresponds td /4**¢ of such equivalent sweeps).
model is the basis of our approach), the best full-density It appears that the multigrid minimization allows to sig-
algorithm (Uraset al) and the two algorithms yielding the bestificantly improve the global quality of results when put
results, but with reduced densities (Lucas and Kanade, FI88ttop of the linear Horn and Schunck’s model, while re-
and Jepson). Other authors have provided similar comparisofidcing the computational loadThe introduction of robust
but on a subsequence where the sky was removed. As a ma{g@}ahzathn first in the smolothmg term, and then in the data
of fact, this region is extremely tricky due to the compleﬁerm; provides furth.er local improvements. The cost for these
luminance and shape evolution of the moving clouds befol@€ Improvements is kept reasonable by the multigrid speed-
the sun. The second part of the table compares our method'fy AS @ rough complexity comparison, our algorithm took
those by Szeliski and Coughlan [39], Szeliski and Shum [4djfound 500 s on a SunSparc 10 (174 s on a SunSparc 20),

Black and Anandan [6], Black [4], Black and Jepson [7], of hic;E i_s the tgam? time as r-ep?rted b%hBlc‘?dT agclj Aknanddan
this reduced sequence. or their continuation minimization method. In Black an

On the complete scene, our method provideteaseesti- Jepson’s approach, a similar load seems to be necessary to

. . royvide theinitial dense optical flow estimate which is then
mate almost as good as those obtained with the best (nondens : . :
. » ; efined through parametric segmentation. Note that a nice
mentioned methods. In addition, the obtained standard ge- S .
viation is the smallest one. On the subscene. the aver €ature of the multigrid approach is that good results can be
. i . ' L Feady obtained on intermediate grids (thus at reduced cost).
error is slightly lower than the one obtained by Szeliski a

. : . is the case on Yosemite where a slightlywer angular
Coughlan, and slightly higher than the one obtained by Bla% ror 5.27 4 7.88° was actually obtained at convergence for

and Jepson, but with a standard deviation significantly reduc%d.: 0, £ = 1, after a total CPU time of 88 s (compared to the
The difference between our estimate and the “real” y '

flow ?74 s of the complete procedure).

displayed in Fig. 7(c) (subsampled anehgnified ten imgs 1, yemonstrate the low sensitiveness of our method to pa-
It clearly appears that most of the discrepancies are gathefgfheters we run it on Yosemite for 1000 triples o2, 03) €
around the two moving clearings in the clouds, which thﬁ40 320] x [3, 12] x [0.1, 1]. In Fig. 8, we plot the corre-

sunlight breaks through.
) In Ol’dgl’ to quant'tatlve_ly_ eva_lu_"ite_ th_e influence of the 5Similar conclusions were reported in [23] for other (nonconvex) energy-
different ingredients (multigrid minimization, robust penaltyased motion analysis models.
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Fig. 8. Average angular error histograms for 1000 parameter triplesr?, 03) € [140, 320] x [3, 12] x [0.1, 1]: without the sky (left) and with the
sky (right); Average angular error for 100 parameter triples, o2) € [3, 12] x [0.1, 1], with « = 320: without sky (lower surface) and with the sky
(upper surface). In both cases, the minimal error is obtainedrfor= 6 and o2 = 0.7.

s B SISO

MR 5 et

s
R -~
-H—>—>—>—>->—>~>-)—74/’/ky,.->~>a Ny g S
NN /l;v Chgy Ay
MWK [/.eﬂ[‘/ e
NN i DDA T o .
I AN N g b kb T Y PR
s ey zL[/,A/A(—\«—— =
»—)«r-y—)—)”—»‘glk([gt‘(l(k(k/((/l/ s

S R I = ol e s e

TNy e T
Mr¢¢‘,}éu¢;v’ww.{//rzt//‘*—>’>‘*’>—’—‘
T Y L e e T
S LAY Y Y EE g T
A R R R R IRy <cael TR
_’*"‘/y///t'¢V‘¢L”“‘¥K‘K//k/, a s
a»agyﬂ// L/JJ,;{M;V‘LuV‘/L/v“—)»—»—»)-»;
)»»w_“_/ EEy pv vy TEE Y YA 2 e

R

Yy

T

I R R saanasad
R e e anaad
*ﬁ-)%\gixiﬂiij‘&::&ig«;\)&%*%e—)—)—)—r%
T e e
N T

B e s b

(©)

(d) (e) ®

Fig. 9. Results on parking lot: (a) one frame, (b) flow estimate, (c) zoom on the foreground car, and (d)—(f) discontinuity weights at resolution level
k = 0, on grid levels¢ = 4, 2,0.

sponding histograms of average angular errors for the completd/isually, the recovered optical flow fields seem of good
scene and of the subscene. In both cases, a high robustnesgsiddity. The location of spatial discontinuities fits with a good
exhibited. This is also noticeable in the plot of the averagecuracy the boundaries of the different motion regions (e.g.,
error versuga?, o3) for fixed o = 320. the first car in parking lot, the train in calendar). This allows
Figs. 9 and 10 present final flow estimates and discontinuitye estimation in quite uniform regions not to be contaminated
weights at different resolutions and/or grid levels for parkingy nearby flows of large amplitude belonging to other motion
lot and calendar. The discontinuity weights are displayed oegions. For instance, the estimation of the left-to-right appar-
256 grey levels on sites of the dual lattice: white pointsnt motion induced by the camera panning within the street
represent zero weights (i.e., maximal discontinuity) and blac&gion beneath the two cars would be dramatically influenced
points are for unity weights (i.e., no discontinuity). in case of plain quadratic estimator, resulting in an almost zero
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Fig. 11. Comparison of estimates on parking lot. (a) Estimation with the proposed model. (b) Estimation with a plain quadratic model.

estimate (see Fig. 11 for a comparison). One can also notestimation in the neighborhood. From the final velocity field
that the motion estimation remains consistent in tough pagstimate, it appears as an independent moving patch that goes
of the dynamic scenes at hand. For example, the motioniofa direction opposite to the one of the car motion.

the calendar is quite well estimated despite highly texturedWe believe that the good quality of these results is partly due
portions exhibiting periodical patterns (like the drawing ofo the multigrid structure of the estimator. It produces good
houses). Another interesting example is found on the left pamtermediate coarse flows. Besides, it allows to extract long
of the front car windshield in parking lot. The motion of astructures of discontinuities. This is particularly noticeable in

patch of specular reflection does not disturb the car velocitplendar [see Fig. 10(d) and (e)].
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(b) (c)

(d)

Fig. 12. Single object motion segmentation on parking lot: (a)-(c) withuaconstrained closed curvat grid levels 4, 2, and 0, and (d)-(f) with a
convex quadrilateralat grid levels 4, 2, and 0.

B. Coupling with the Segmentation o3 = 0.1 for the quadrilateral and 0.3 for the unconstrained

1 I i
We now report experiments of the augmented model (withC4"Ve: #1 = 0.5, and i = 0.05 for the quadrilateral and 0.5
single segmenting closed curve) on two real traffic sequenc the unconstrained curve.

The first one is parking lot, which has already been introduce _Slmllar resk,)ul'i; of good qualllty arehobtamed W'éh botlhzkln((jjslg
The second one, called “street,” is shot from a car driving jfy Curve, on both sequences. In each case (see Figs. 12 an )

a stream of moving vehicles (see Fig. 13). The motion of ﬂ%ge region exhlbltlng the largest motlop d|sco.nt|numes along
; . . . . ItS border (the car in the foreground in parking lot, the car
camera results in a divergent motion component in the |ma%e

As for the choice of the two robust functions, we explaine fitering the image plane in the foreground, and moving away

. . ._Trom the camera in street) are correctly picked (even with the
in Section V-A why we chose Geman and McClure’s funCt'ON/IDL—type prior vvlhich fav)ors short bor}:jg;s) (even wi

in the smoothing term. However, as pointed out in Section 1V- A low dimension parameterization (as with the quadrilat-

B, Leclerc’s estimator, due to its exponential nature, y'eldes_rals) yields computations of lower cost, while allowing to

simpler computations as far as the smoothing energy termcl'?‘pture a strong geometric knowledge (if available) on the

concerned in the estimation/segmentation model. Therefogﬁapes of the moving entities. At the same time, this can
in place of Geman and McClure’s estimator, we made tiscome a drawback if the prior knowledge is not sufficient or
convenient choice fop, in experiments about the augmenteghe restricted family of curves is not well suited to the scene
model. content [compare (c) and (f) in Figs. 12 and 13]. In our case,
Two “extreme” cases oh priori on the curve have beengyadrilaterals are not able to completely fit the complex shape
considered: in the first case, the curve is constrained to §moving vehicles. As a consequence, the relative importance
a convex quadrilateral along with a prior favoring compagf the border-based energy risks to shrink: the region-based
shapes; in the second case, the curve is only constrainedeion has to be reduced by tuning, to a very low value
be closed and nonself-intersecting with an MDL-type prioin order to keep a proper balance. Otherwise, the template
Except for the number of resolution®/(= 0 for parking lot would be mainly driven by regionwise flow uniformity, risking
andN = 2 for street), the values of the parameters were set ttee get stuck around spurious locations such as parts of still
same for both sequences, namely= 4, « = 200, ¢? = 8, background in case of nonmoving camera. These problems can
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@) (b) (©

(d) (e) ®

Fig. 13. Single object motion segmentation on street: (a)—(c) withumronstrained closed curyén Q2%:2, Q2, and €2, and (d)-(f) with aconvex
quadrilateral in %2, Q?, and Q.

hopefully be circumvented by using less constrained curves,n the motion estimation context, one of the nicest features
but at increased cost. of the approach is that it gives access to a consistent and mean-

ingful sequence of finer and finer configurations at each single

level of data resolution. The coarser grain estimates, which

VI.  CONCLUSION are far easier to compute due to their reduced dimensionality,

In this paper, we have presented a multiresolution/multigri§Vveal large discontinuity structures of the apparent motion
framework for optical flow estimation and object-based motidigld. This kind of significant reduced estimates cannot be
segmentation. produced by continuation-type minimization methods since the

The estimation problem is expressed as the global minimiZ2arliest estimates they provide are, to some extent, “smoothed
tion of an energy function which involves robust estimators f¢grsions” of their final estimates [3], [10], [29].
avoid spatial over-smoothing and to attenuate the influence ofVe get benefit from this compact and structured informa-
large data model deviations. The minimization is processin by introducing a closed curve-based device. It allows
through a multigrid algorithm which consists in imposing0 recover with improved accuracy the location of spatial
successively weaker and weaker constraints on the searcfliégontinuities and to naturally handéglge groupingio get
estimates. Applied to a dual formulation of the original er&n object-based motion segmentation. The proposed model can
ergy function, this method leads to a multigrid iterativelgupport any kind of parameterized or nonparameterized family
reweighted least squares minimization which is efficient iof curves, equipped with any prior energy function.
term of convergence rate and in term of quality of the producedWe thus contribute here to the efforts done to define
estimates. It is worth noting that this is general purpose global approaches for a joint and cooperative handling of two
multigrid approach which can be easily applied to most @fportant interleaved issues of motion analysis. As far as our
image analysis objective functions. Besides, it allows to defiobject-based motion segmentation is concerned, it is worth
efficient and original parallel relaxation algorithms [31], [34]noting that neither knowing the motion of the camera (if any),
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nor initializing manually the curve are required. This work < if the site pair straddles the “border” ak ({s, r) €
has now to be extended to deal with complete motion-based R x R'): f,, = o3¢h[||Aws,||? + 1) /72|Corl];
segmentation (i.e.partition of the whole image plane into « if the site pair is insideR ((s, ) C R)
a variable number of regions with different motions). As a
fact, there is a straightforward way to extend the interaction

. . . / +
energy termE; i.ract t0 this case, with the MDL-type prior /351 —02¢2<{||Aw5r||2 Mo } )
on the segmentation becoming a standard Potts model [12], 72|CR]
[29]. However, algorithmic issues related to the choice of the

_ { ﬂmwm |
1

/ /
2 Mo - 2 Mo
— if ||Aw,,.||* > ,
T2|CRJ | _87” ~ 72|Cr|
otherwise.

initial segmentation, and of the update strategy (in terms of
deformation, merge, split, etc.) need attention in this case.
Another direction for such an extension would consist in
joining a region-basegarametric flow interacting with the Also, notice that in casel,,(w, R) > 0, it comes from (29)
dense flow under estimation, as proposed in [36].
that

The interaction mechanism we designed for closed curve,
also suggests to use it witipencurves. In this case, one would
not segment the images, but this would be useful for preservipgs,, A,,.(w, R) + t2(Bsr) = —Bertty(Bsr) + 12(Bsr)

and refining through grid and resolution levels, the precious in- — o B (BN (10 3
formation captured by the (independent) discontinuity weights TQ/S”((?Q)_I (TQ{ ) + 92 (Br)
on smaller grids. =20 (¢2)" (7255r)
APPENDIX A since 2 (z) = @2 o (¢5)"H(m2z) — T22(¢h) "1 (22) by defi-
MINIMIZATION OF H WITH RESPECT TO/3,, nition. If ¢2(v) = 1 — exp{—72v} (Leclerc’s estimator), the

Let (s, 7) € C be a pair of neighboring sites. The part ofPOve energetic contribution becomes
H which actually depends ofi,, is

, , 7_2/951’-’451’(“17 R) + w2([§s1’) =1- BST- (30)
T2Bar | 1AW |2 + 1o (s, 7) = 2 1p(s, 7)
T2|Cor| 72|CR|
~ ~ APPENDIX B
S A..(w,R) COMPUTATION OF AE(R) AND ITS
+ 2(Bsr). (28) APPROXIMATION FOR LECLERC’S ESTIMATOR

It A..(w, R) < 0, which means thats, ) ¢ R and Supposew is_fixed.. L(_atR b.e some segment, grﬁﬂ the _
|Aw,, |2 < 1ib/m|Crl, thenH is a decreasing function of optimal set of d|§cont|nU|t¥ weights gssomated to it according
8., since 1, is decreasing [indeed, it is easy to derivéo the computations previously d.enved. The _part of energy
z/}/Q(ZV)A: — 7)) (ma2) < 0]. Its minimizer in (0, 1] is concerned by the segment updating process is
then 3., = 1 [and the corresponding “energy contribution”

reduces tor A, (w, R) since (1) = 0] . In other cases E(R) = Epior(R) + Z 7285 Asr(w, R) + 12(Bsr)
[As-(w, R) > 0], the minimizer zeros the partial derivative (

s,T)EC
= E)rior(R) + Z (1 - Bsr)
JH N I
DL (Bor) =0 TaAanln, B+ () oy AT 020
=06 flu = o3¢4[Au(w, ). (29) + ) nAs(wR)

{s,1):Asr (W, R)<0

Merging both cases provides the following optimal weight

computation rule: according to Appendix AA;.(w, R) < 0 possibly holds
« if the site pair is outsideR ((s,r) C R'): f,. = only for (s,7) C R, where A,.(w, R) = ||Aw,|? —
o35 || Aws||?]; (ph/72|Cr1R(s, 7).

E(R) %Eprior(R) - Z /921 - K{)R Z /921 - KR Z /921 + |C|

(s,r)CR’ (s,T)ER'XR (s,")CR
= Epiox(R)+ (1= Kpr) > BhL+(1—-Kg) > BL+cl-> 5 (31)
(s,7)ER'XR (s, T"CR (s,71)

-

-~

2 E(R)
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Using (25)—(27), we have [9]

E(R) = Epio:(R) + > (1=72) [10]

(s,r)CR’
>

(1 - KaRBgr)
(s,71)ER'XR

+ 2.

{s,7)CR: | AW, ||2>p, /72 |Cr|

D

<57 7’>CR: IlAw5T||2<H,2/7_2 |CR|

Nl

In the latter term of the right-hand side, #||Aw,,||? —
115/|Cr| = 0, then a first order Taylor expansion yietds

ICr|
[19]

Then energy approximation (31), shown at the bottom of the
previous page, is given. X [20]

The velocity fieldw being fixed (and therefore such 8),
the energy comparison of two segmefitand( is then driven
by E(Q) - E(R) ~ E(Q) — E(R), sincey_,, ,, /39, does
not depend on the segment by definition of tﬁ%s The
approximate expression is very easy to compute. Especially, if
R and@ have the same shape, the only terms changing froft

E(R) 0 E(Q) arey, ,ycp A% andY, yepwr B9

[11]

+
(12]

1— Kgrf°
( R/ 51) [13]

+ [14]

(18]

[16]
(17]

_ ke

2
| ICr|

T2 || Aws,.

%1—exp{_72||Awsr||2+ 18]

=1-Kp.

[21]

~
~

[24]
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