IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 9, SEPTEMBER 1999 1161
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Abstract—n this paper, an experimental study of the statistical distribution of wavelet coefficients, capable of taking that
properties of wavelet coefficients of image data is presented, structure into account. Our first goal then is to identify

as well as the design of two different morphology-based image \,.3herties of the wavelet coefficients of images leading to
coding algorithms that make use of these statistics. A salient .
good coding performance.

feature of the proposed methods is that, by a simple change . . . .
of quantizers, the same basic algorithm yields high performance ~ Standard transform-based image coding algorithms consist
embedded or fixed rate coders. Another important feature is that of three stages: a linear-typically unitary-decorrelating trans-
the shape information of morphological sets used in this coder form, followed by a quantization stage, and final entropy

is encodedimplicitly by the values of wavelet coefficients, thus coding of the quantized data. A good decorrelating transform

avoiding the use of explicit and rate expensive shape descriptors. . . - .
These proposed algorithms, while achieving nearly the same will remove from the datdéinear dependencies, thus producing

objective performance of state-of-the-art zerotree based methods, @ S€t of coefficients such that, when scalar quantized, the
are able to produce reconstructions of a somewhat superior entropy of the resulting symbol stream is reduced substantially
perceptual quality, due to a property of joint compression and more than if the same quantization were applied directly on
noise reduction they exhibit. raw image data. This is the basis for the success of transform
Index Terms—Data compression, image coding, morphological coders [1], including early subband coders [2], [7], [18].

operations, wavelet transforms. Initially, transform coding became popular mainly due to
the introduction of the discrete cosine transform (DCT), an
I. INTRODUCTION efficient approximation to the theoretically optimal (under the

assumption of subband statistics knoarpriori) but highly
A. Statistical Modeling for Wavelet-Based Image Compressieamplex Karhunen—Loeve transform (KLT) [1]. However,

INCE their introduction as a tool for signal representatior"f‘Ithough v.vavelets. sharg many propertles.wnh the DCT (e.g.,
%ecorrelanon), taking this same approach ignores a fundamen-

avelets have become increasingly popular within th | let - the ioint time-Ff localizati
image coding community, because of the potential gains th Cwavgde ?rr]oaer”y. e jon I'”_‘e' requen(;:yl (I):ca Itha |on(.j_
offer for the construction of efficient image coding algorithms. onsider the following simple image model. For the coding
lication, typical images can be described as a set of smooth

Those potential gains are due to the fact that wavelets prov%%p AR . o :
a good tradeoff between resolution in the space and frequer?éggi(aeesr’ ?hilrggfeeitb)éfeggzigéscs:tlgsgfstéfsfgﬁlgé 1v2/.a\|\/lgl\gt’

domains, a feature which results in mapping typical spacg:

domain image phenomena instructuredsets of coefficients lierbank (see _F'gt 2). The abstract pr_operty of joint time-
frequency localization has a very practical consequence: the

in the wavelet domain. However, to be able to make effectiye i f lust . bband i tial
use of any structure for improving coding performance, rmafion of energy clusters in image subbands, at spafia
?ca'uons associated with edges in the original image.

algorithm requires a statistical characterization of the joi . ) . A .
9 q J This clustering effect is attributed mostly to two basic
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Fig. 1. To illustrate the assumed image structure in the spatial domain. Row 20 (up) is a mostly smooth region, while row 370 (down) contains seme textur
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Fig. 2. To illustrate how the wavelet decomposition preserves the locality of data characteristics present in the spatial domain: (a) a steje¢bdpitop
the lowpass space; (c) its projection on the highpass space. Observe how in the highpass projection all of the signal energy is concentrateatfroadneighb
of the spatial location of the step (the Daubechies 9/7 biorthogonal spline wavelet was used here).
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Fig. 3. To illustrate the clustered nature of wavelet data. (a) Coefficients in subbanafLiena whose magnitude is above a fixed threshold (i.e., those
which contain most of the signal energy, necessary to reduce distortion). (b) An equal number of points as in (a), but drawn from a uniform density over
the same area. This figure gives motivation for the type of techniques that will be used later in the coder design, techniques that would be completely
useless if typical realizations of wavelet data were like (b) instead of (a).

B. Data Structures for Wavelet-Based Image Compression magnitude is below a threshold [15]). The success of this ap-

In an attempt to exploit the fact that signal energy formRroach is due to the fact that, in typical images, a large number
clusters in the wavelet domain, zerotree based algorithms [12f, zero-valued coefficients occur in the form of zerotrees;
[15], [19] introduce a special symbol to indicate that in &0, by exploiting this VQ-type gain, better performance is
certain set of tree-structured coefficients associated with thehieved than if each zero were coded independently. As a
same spatial region, all coefficients amsignificant(i.e., their result, the zerotree symbol servedual purpose: on one hand,
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Fig. 4. To illustrate how zerotrees represent zero regions as the union of a highly constrained, blocky grid (a). A representation like (b), capable of
capturing the natural clustering in the data, could potentially be more efficient.

it is a very efficient way of encoding these zeros; on the othesignificant, then coefficients in a small neighborhood, with
it contributes to reducing the uncertainty of thecation of high probability, will be significant too (likewise for the
nonzero values, by means of ruling out certain regions insignificant ones), and therefore the approach of spending 1
which these may fall. b per coefficient seems wasteful. This observation suggests

Such a scheme has some definite advantages, the ntbat someregion growingbased technique, where the map
important one being the ease with which rate/distortion tradis- encoded using local probability models depending on the
offs can be optimized: in [19], a tree-pruning algorithm isegion being encoded, may give an efficient way of encoding
proposed, which achieves substantial improvements in codihgMorphological operators, formally defined in Section I,
performance over the basic zerotree scheme of Shapiro [I&jovide one way of giving a mathematical description of the
Also important is the dual use of the zerotree symbol discussetlitively sought region growing operation. Hence, another
above. Mainly at low bit rates, where the uncertainty in thgoal pursued in this work is the construction of a data structure
location of a few significant coefficients dominates the totalternative to zerotrees, using morphological operators. This
self information of the quantized stream, such a joint pointkew data structure should, while retaining the key elements
ing/value data structure proves extremely useful. However tlitat make zerotrees such an efficient tool for coding, improve
also has its drawbacks. One is that it approximates arbitrardp some of its deficiencies. Furthermore, a fully “backward”
shaped zero regions as the union of a highly constrained approach is desired, in which no side information is needed
of tree structured regions. As a result, certain zero regiotts encode the shapes.
not well aligned with the tree structure may be expensive to
represent, while other portions of zero regions may not be
included in zerotrees at all (see Fig. 4). C. Related Work

Along the same lines, perceptually important edge informa- Maragos and Schafer [8] provide an excellent tutorial on
tion can get deleted in the tree-pruning based rate/distortiotorphological systems and their application to multidimen-
optimization, again due to misalignment with the zerotresional signal processing problems. The applications they men-
structure. Although this may be beneficial in terms of imtdon only deal with nonlinear filtering problems (e.g., rank-
proving rate/distortion objective performance, it is a mostrder filters, multiscale smoothing, sampling, correlation) and
guestionable decision in terms of subjective quality. Anothémage analysis problems (e.g., feature extraction, shape repre-
issue is the fact that zerotrees are not shift invariant: althougkntation and description, size distribution, fractals). However,
this is not a major problem for still image coding, it gainshey do not consider applications to coding problems.
dramatic importance when considering extensions to videoEggeret al.[5] make use of morphology in an image coding
coding. Finally, it should be noted that zerotrees explogtigorithm; however, their approach is completely unrelated
clustering of the significant values only indirectly, by mean® the one being proposed in this work. They propose to
of identifying regions of mostly insignificant values, therebynake use of morphology to implement a nonlinear filterbank,
implying the clustering of significance in the complementanyith the purpose of reducing the ringing effect typical of
regions: a direct approach might have some advantages. linear filterbanks at very low rates. Their new morphological

An alternative approach can be motivated as follows. Bubband representation is then quantized and compressed using
encode what Shapiro [15] refers to significance mapge.g., standard, well understood coding methods. We use a traditional
Fig. 3(a)], a straightforward approach consists of assignifigear filterbank instead (the 9/7 spline wavelet of Daubechies
a 1-b significant or insignificant label to each coefficienf2]), and morphology is applied only in the classification of
However, if a given coefficient is known to be classifiedoefficients into significant and insignificant. Much higher
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coding performance is expected in this case, since while stllat the result of applying a morphological dilation to a
exploiting the known decorrelating properties of the lineagiven set results in enlarging that set with a few “nearby”
filterbank, morphology is used as a tool in the characterizatietements. First, one such partition is computed, and then the

of statistical properties of the quantized data.

global entropy estimate is compared against the sum of the

Salembielet al.[12] consider the application of morphologysubset entropies. Of course, in order to build a real codec,
tools to image and video coding problems. Following thethe partitioning information needs to be accounted for. At this

terminology, thestructure of the coding proceskey consider time,

is motivated by very low bit rate applications, where the goal is

this cost is neglected.

not only to compress a waveform by eliminating redundancgxperiment 1 (On Intraband Dependencies)

but also to make use of properties of the human visual system
As a result, their proposed coding techniques can be describegi)
as object-based Our coder, on the other hand, is a pure
waveform coder. The morphological sets we consider are not
intended to capture any image domain objects or to exploit
any property of the human visual system, but instead are tools
we use to assign probabilities to sets of wavelet coefficients.
o 2)
D. Paper Organization

This paper is organized as follows. In Section Il a few
experiments are proposed, to motivate the novel use of mor-
phological operators as a tool to encode the location informa-
tion of significant coefficients. Then, in Section lll, two image
coding algorithms are presented, and in Section 1V, simulation
results of these algorithms are given. The paper concludes with
Section V, where some perspective is given on the new results
introduced in this work.

Il. STATISTICAL PROPERTIES OFWAVELET COEFFICIENTS

The promise of morphology for wavelet-based image coding
has been first suggested in [9]. The experiments reported in that
work are essentially two. In the first one, correlations among
neighboring coefficients are measured. Not surprisingly given
the decorrelating properties of the linear transform, those cor-
relations were found to be negligible. In the second experimentg)
reported, correlations are measured not among coefficients
themselves, but instead among thagnitudesf neighboring
coefficients. In this case, it was found that correlations are
somewhat higher than in the previous experiment. Now, it
is clear that if dependencies remain after decorrelation, some
form of nonlinear processing will be required, since the role of
the linear transform is precisely to remove linear dependencies.
This agrees with the fact that some correlations show up only
after a stage of nonlinear processing (i.e., taking magnitudes).
Besides, the result of their last experiment suggests that4)

Quantize all subbands with a single uniform quantizer,
such that the entropy of the resulting quantized field
matches a prespecified bitrate. This entropy is esti-
mated by computing the normalized histograsi°”a!
of the bins in each subband, and then letting the en-
tropy estimateH(p&'°ba!) for that subband bes, —

prgllobal 10g2 (prgllobal) .

For each subband, starting with a map of coefficients
all labeled insignificant, compute a patrtition into coeffi-
cientslabeledsignificant or insignificant as follows.

a) Select a coefficient at a random location within the
current subband.

If this selected coefficient is not significant, or if it is
significant but it has already been labeled significant,
go to 2a.

Else, this is an unlabeled significant coefficient.
Apply one step of morphological dilation at its loca-
tion, and label all the dilated coefficients significant.
For each new significant coefficient found by the
dilation, recursively repeat this step, until no new
significant coefficients are found.

Stop selecting coefficients at random when all the
significant ones have been labeled significant. Those
without a label yet are labeled insignificant.

Compute now a different entropy estimate. Define two
histograms,p*e*if and pi™isnil  corresponding to the
frequency of occurrence of the coefficients labeled sig-
nificant and insignificant by this partitioning method, and
based on these estimate the entropy of the composite
modelpc™P: that is, letH (p=°™P) beyH (pe™f) 4+ (1—
yYH(peml) wherey, the unconditional probability of
significance, is estimated as the ratio of the total numbers
of coefficients labeled significant to the total number of
coefficients in each subband.

CompareH(p#loPal) versusH(peomr).

b)

c)

d)

large magnitude coefficients are likely to be found at spatial This experiment was performed on the 51512 test image

locations close to those of other large _magnitude c_oefficien&,na, using a five-level wavelet decomposition based on the
and the same holds for the low magnitude ones; i.e., furt@g"ne 9-7 Daubechies filters, with a uniform quantizer stepsize
ewdepce of the cluster formation property is shown by the% osen so that the global target rate would result in 1b/pixel
experiments. (stepsize= 11.9631). The DC component is accounted for
with a fixed number of bits in both cases, since the statistics
of this set differs substantially from the other subbands. The
The goal of this first experiment is to establish the feasibilityesults of the experiment are summarized in Table I.
of partitioning subbands into two subsets based on morpho-Subbands are numbered from high to low frequencies.
logical dilation operations, and obtaining good performanébserve how in subbands 0-5, which contain 93.75% of
by coding each of these subsets separately. Details abth& data to be coded, the difference of entropies becomes
morphological operations are presented in Section IlI-A argignificant: this difference provides conclusive evidence that
[8]; and this point though, it is enough to intuitively understand carefully designed coding algorithm, provided it makes an

A. Intraband Dependencies



SERVETTOet al. MORPHOLOGICAL REPRESENTATION OF WAVELET DATA 1165

TABLE |
ON THE ENTROPY OF IMAGE SUBBANDS WHEN MODELED AS A SINGLE GLOBAL iid FIELD, VERSUS MODELING IT AS A COMPOSITE OF
A SIGNIFICANT AND AN INSIGNIFICANT FIELD (2 |Ss THE NUMBER OF COEFFICIENTS PERSUBBAND. ENTROPIESARE EXPRESSED INBYTES)

Subband | nH(p"*) v | nyH(pe) ] n(l — y)H(p™ =) || nH (peomr) ] % dift

0 7622.82 || 0.2315 3855.79 2439.88 6295.67 || 21.08%

1 4923.58 || 0.1239 1644.57 2669.48 4314.05 || 14.13%

2 2732.29 || 0.0199 226.16 2396.91 2623.07 4.16%

3 4326.54 || 0.5795 3361.28 499.19 3860.47 || 12.07%

4 3139.36 || 0.4125 2075.43 641.40 2716.83 || 15.55%

5 2857.74 || 0.3589 1775.14 630.07 2405.21 || 18.81%

6 1872.27 || 0.8948 1769.98 45.58 1815.56 3.12%

7 1385.56 || 0.7329 1192.79 99.74 1292.53 7.20%

8 1336.89 || 0.6982 1139.99 84.21 1224.20 9.20%

9-14 Negligible partitions 0.00%
DC 288.00 288.00

Total T 32767.73 29108.33 | 12.57%

First Order Probability Estimates
09 T T T A T T T

08 soild: global histogram |
ast: clustered histogram
‘- circle: residue histogram 3
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Fig. 5. To illustrate the composite nature of subband data: (a) a partition of Leng'sltband data into two sets; (b) normalized histograms of occurrence
of quantization bins in the different partitions and in the subband treated as a whole (the quantizer was chosen so that an overall bit rate ofollt/pixel w
result). Observe how the morphological operators split the subband into two sets whose first-order pdfs have different variances.

efficient management of the side information neglected in thixperiment 2 (On Interband Dependencies)

study, should be able to achieve very high coding performancel) Compute the significance map with respect to some
In Fig. 5, the resulting partition, as well as the three corre- given threshold.

sponding histograms for subband §.lth Lena are displayed. 2) Define a new map, thprediction map, as follows: for

each coefficient, if its parent in the wavelet tree is labeled

B. Interband Dependencies significant, predict that this one will be significant too;

That important—and necessarily nonlinear—dependencies ©Otherwise predict insignificance.
exist among different subbands has been known for some3) Apply the morphological dilation operation to the pre-
time. For example, the excellent performance achieved by diction map, as in Experiment 1.
zerotree based coders [11], [15], [19] is directly attributed to 4) Using the prediction map instead of the significance
this fact; these coders exploit the fact that sets of zero-valued, Map, compare entropies as in Experiment 1.
tree-structured across bands coefficients occur with probabilityln this experiment, the morphological dilation of step 3
much higher than that predicted by an independence assumsgrves a different purpose than in Experiment 1. In this case, it
tion. However, since it has been postulated that clusters @&@eaised to reflect uncertainty in the location of the significant
due to spatial edges, some energy concentration around tharafficients in the child band. Unlike in the case of zerotrees,
can be expected at all scales. Based on this intuition, a nesuere the existence of a zero value in a parent provides strong
hypothesis is formulated, on dependencesossbands: the evidence to suspect the presence of zeros in all of the children
location of energy clusters in the high frequency bands can teefficients, here the presence of a nonzero parent does not
predicted from the location of clusters in the low frequencieBnmediately imply the presence of nonzero children. However,
To test this new hypothesis, another experiment is performesihhce nonzero values are assumed to be generated by image
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TABLE I
ON THE ENTROPY OF IMAGE SUBBANDS WHEN MODELED AS A SINGLE GLOBAL iid FIELD, VERSUS MODELING IT AS
A COMPOSITE OF PREDICTED SIGNIFICANT AND INSIGNIFICANT FIELDS (p”'*‘g“‘f.,pp"“*‘g“‘f AND pP~¢°™MP) REFER TO THE
PrEDICTED COMPOSITE DISTRIBUTIONS, AND 72 |S THE NUMBER OF COEFFICIENTS PERSUBBAND; ENTROPIESARE GIVEN IN BYTES.

Subband l nH(pFo>n) | v | nyH(prEE) | (1 — ) H(pristent) | nH (pP comv) f % diff

0 \ 7622.82 | 0.3351 1673.18 1959.80 6632.98 | 14.92%

1 4923.58 || 0.2145 2230.51 2206.77 4437.28 || 10.96%

2 2732.29 || 0.2043 1338.18 1105.10 2413.28 || 11.83%

3 4326.54 1] 0.6781 3606.08 434.65 4040.72 7.07%

4 3139.36 || 0.4968 2260.62 578.44 2839.06 || 10.58%

5 2857.74 | 0.4749 2027.47 539.50 2566.97 || 11.33%

6 1872.27 || 0.9517 1826.79 20.58 1847.38 1.35%

7 1385.56 | 0.8467 1279.46 60.51 1339.96 3.40%

8 1336.89 || 0.7825 1193.81 81.00 1274.81 4.87%

014 Negligible partitions 0.00%
DC | 288.00 288.00

Total || 32767.73 | 29990.31 || 9.26%

edges, it is reasonable to expect their presence at all scales

in related locations. Therefore, although the exact location of r

the children nonzeros will depend on various factors (such '> ® D D

as filter length, response, etcspmewherenear the location L

of the children of a nonzero parent the probability of nonzero

children becomes much higher than over the whole subband. It S B S®B (S®B)\ S

is this uncertainty about the exact location of nonzero children,  Fig 6. llustration of the morphological dilation operation.

and not possible intraband dependencies in the child subband,

that the dilation operator captures. ] ) o ) )
This experiment was performed under exactly the SameCc_)nS|der a sefS to which the dilation _opera’uon will be

conditions as Experiment 1. The results are summarized 3RPlied, and lef represent some structuring elemeniet &

Table II. As in Experiment 1, the high frequency subbandi€note the morphological dilation operator, and \ledenote

containing a substantial amount of the data to be encod®§ Set theoretic difference operator. The dilated%et B is

show some predictability that could be potentially exploited féf€fined to be the union of all points falling under the support

coding. Now, unlike as in the case of intraband dependenci@§he structuring elemenB, when this structuring element is

no side information is required in this case to be able to takgNt€red at each point ifi. The setS & B can be written as

advantage of them, so they could be incorporated by aﬁgJ (S @ B\S), whereS & B\S is the set of points not it
coding method at no cost. obtained by the dilation. This process is illustrated in Fig. 6.

Intuitively, for simple structuring elements lik, a dilation
produces an enlarged set containing the origfghlus a few
nearby elements. Experiment 1 provides empirical evidence
that if S is a subset of subband data containing large-valued

In this section, the design of two different image coding/avelet coefficients, the séf ¢ B)\:S has much higher first-
algorithms is presented, whose main design goal is to directlyder probability of significance than the whole complement
exploit the statistical properties of wavelet coefficients uncogf S.
ered by the experiments in Section Il. The two algorithms
have distinctive features: the first one is built to achieve high General Architecture of the Source Coder
performance at a single target bit rate; the second one is built ) ) _ . .
to obtain a successively refinable, fully embedded encoding ofAS mentioned in the introduction, th_e standard archltectgre
the image. The presentation starts with a brief review of thol transform coding methods consists of a decorrela_tmg
aspects of mathematical morphology relevant to this WorKf'inSform’ fpllowed by some quantization strategy,. and f!nal
Then, a high level description of the basic coding algorithm tropy coding of the resulting symbol stream. In this section,

presented. And finally, both the single rate and the embed design of the quantizers and entropy coders is presented
algorithms are described in detail (the decorrelating transform is, of course, the wavelet trans-

I1l. A NEW SOURCE CODING ALGORITHM

form).
1) Binary Classification and QuantizationThe experi-
A. Mathematical Morphology: A Brief Review ments presented in Section Il suggest the presence in the

In this section, some elementary aspects of mathemati#BRge subbands of at least two subsets of coefficients, having
morphology relevant to the application being considered glissimilar statistical properties, that can be efficiently captured
this work are reviewed. For an excellent survey of the appll_1An arbitrary set, with the intuitive role of defining a morphology-based

cation of |_”norphology to muIt|d|r_nenS|onaI S|gnal processm&stance; although not strictly necessary, in this wirks assumed to be a
problems in general the reader is referred to [8]. connected set.
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Fig. 7. Different stages in the execution of the morphological coder: observe how the structure is built in a data driven way, thus tracking the shape
of clusters naturally present in the data.

with morphological operations. Here, one particular algorithtihe symbol used to signal the transition from an insignificant
is presented, to compute and encode one such classificatiora significant region. Observe that in this method of using
map in a uniquely decodable way, and making use of onlyvalues to encode the clusters, after the location of the first
minimal amount of side information. coefficient in the cluster is knowrgll other locations are
Assume that a single quantizer has been applied to teplicitly) encoded relative to this first one, by values which
whole image, so that a quantized field is obtained. Omeould have had to be sent anywaherefore, values serve a
straightforward way of partitioning this quantized field whichglual purpose: they both convey information about themselves,
as discussed in Experiment 2, can be incorporated at &ad about the location of future values. This is a most efficient
extra cost in terms of side information, is that of partitioningvay of encoding location information, that is able to avoid
a child subband based on the energy activity in its paref@king use of typical shape descriptors (e.g., chain codes),
subband. This first stage of partitioning produces a bina¥@ry expensive in bit rate.
classification of subband data: coefficients gredictedto ~ 2) Simple Numerical ExampleTo help the reader to better
be significant or insignificant, where significance is define(sualize the recursive growing process, Fig. 7 shows a few
relative to a quantizer-dependent threshold. Now, like in af§ames taken from an animation available at our website [10],
prediction scheme, errors will occur, and therefore improvéfat illustrates the operation of this recursive algorithm.
performance can be achieved by encoding the prediction'” the same spirit, Fig. 8 illustrates with a simple numerical
errors. Experiment 1, on intraband dependencies, sugges@<@mple the recursive region growing operation, as well as the
natural way to accomplish this: further partition each subbag@mputation of the symbol stream.

into truly significant and insignificant coefficients. As a result, 3) Pseudocode Descriptionin this section a pseudocode
a partition into four sets is defined as follows: description of the recursive dilation performed at both encoder
f’;\nd decoder is given, to give the reader a more intuitive

1) truly ?"g_r"f'?‘f"”t coeff|C|_er_1ts, predlct_ed to be S|g_n|f!ca_n understanding of how the data-dependent scanning order is
2) truly insignificant coefficients, predicted to be ms@mf'computed

icant S - . .. ... Atthe encoder, each subband is scanned in raster order, cod-
3) truly significant coefficients, predicted to be insignifi- . . T )
cant: ing coefficients using one of the insignificant tables depending
4) trul ’insi nificant coefficients. oredicted to be si nifion whether it was predicted insignificant or not. Then, when a
) can)t/ 9 € » Pre 9 significant one is found, an extra symbol is sent to the decoder

] . ] ] to signal this event, and the algorithRecursiveSend is
Now, it was already pointed out in Experiment 1 thag,nlied (see Table Ill); once it terminates, raster scanning
intraband partitioning would require the use of some amoupisymes on those locations left untouched. The decoder can
of side information. A particularly efficient way of doing so isxeep track exactly of the decisions taken by the encoder, with
by using morphology. Assume the encoder scans subbandginaigorithm analogous tecursiveSend ~ (see Table IV).
a raster scan order, until a significant coefficient is detected.4) Entropy Coding: It is well known that good implemen-
In such a situation, the encoder signals this event to thgions of arithmetic coding [3] produce bitstreams of length
decoder with a special symbol (i.e., side information). Withimost equal to the entropy bound. Motivated by the entropy
both encoder and decoder aware that a significant coefficigimbers obtained in the experiments, the resulting symbol
is present at the current location, one step of dilation is peftream is compressed using this technique. Now, in order to
formed: the encoder sends to the decoder and labels signifiqaike full advantage of the potential gains suggested by these
those coefficients in a neighborhood of the current significagkperiments, each of the four sets into which each subband
one. Once encoder and decoder have access to a few eidrpartitioned is encoded independently of each other, using
coefficients, these new ones are examined: if new significaparate probability tables in the arithmetic coder. Each of
coefficients are found, the process is applied recursively @fese tables is adaptively updated as encoding progresses.
each of these new values; otherwise, the process stops Mlate: the reason for using adaptive arithmetic coding is not
raster scanning of insignificant coefficients resumes, until the capture possible nonstationarities in the data, but instead to
whole subband is exhausted. As a result, clusters of significanicode a source modeled as being stationary without having
coefficients are efficiently captured by morphological dilatiorto explicitly send its pdf as side information. During encoding,
the only side information required to encode a new cluster éach of the tables is reset at the beginning of each subband.
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Fig. 8. lllustration of the region growing operation. Suppose the set of coefficients in (a) is to be encoded. (b) Applying a structuring eleménko8 size
starting at the coefficient whose value is 40; (b)—(g) show how the region is grown by applying the dilation operator centered at each signifieamit coeffic

in the set. The coefficients below each figure correspond to those actually transmitted at that step of region growing, and black dots next tota coefficien
are used to indicate those which have already been sent (and therefore need not be retransmitted).

C. Algorithm 1: Efficient Single Rate Coding nearly flat distributiond. Therefore, while conceivably it

Details on the construction of one specific image codirl§ POSSible to achieve better results by using, for example,
algorithm within the proposed framework are presented hefd! entropy constrained scalar quantizer (ECSQ) [4], the

This algorithm was designed to achieve high coding perfo?'mIOIer deadzone quantizer is used as an approximation to

mance at a single target bit rate. h?\lgv?/tlg}?r:oicﬁg sdezsr;?snreasonable to expect that a complex
1) Quantization: For this algorithm, simple scalar 9 P P

search over all possible values gfand 7" is necessary to
uniformr4-deadzone quantization is used. The quantizers
achieve high performance, this is not the case. By means

are described by two parametdis T): the uniform stepsize of lengthy simulations, it was found that for typical im-

(9), and the width of the zero binT). Now, besides the ages, there exists a strong dependence between the values

obvious reduction in complexity of these quantizers OV%rf and T that achieve optimal operational rate/distortion

more elaborate ones, there is a justification in terms Bferformance. Specifically, it was found that if the value of
coding performance for using such a simplistic quantization

strategy. Consider the histograms shown in Fig. 5. It is,
20f course, the variance in the significant set is higher than in the

clear that the effect of partltlonlng subbands into Slgmflcamslgnlflcant one, but within their support, both are closer to being flat than
and insignificant sets is having the effect of producing twwe global one.
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TABLE I
Pseubocobe DESCRIPTION FOR THEBASIC ENCODER

RecursiveSend (Qwv, VisitedMap, Location (i,j), ACContext)

1. For all locations (i+di,j+dj) within the support of the structuring
element, centered at location (i,j):
If (VisitedMap at location (i+di,j+dj) is NOTSENT)
- Set VisitedMap at location (i+di,j+dj) to NEWCOEFF.
- Compute the conditioning term corresponding to (i+di,j+dj).
Encode Quv at (i+di,j+dj) into ACContext.
- Update the proper probability table.
2. For all locations (i+di,j+dj) within the support of the structuring
element, centered at location (i,j):
If (VisitedMap at location (i+di,j+dj) is NEWCOEFF)
- Set VisitedMap at location (i+di,j+dj) to SENT.
- If (Qwv at location (i+di,j+dj) is significant)
RecursiveSend (Qwv, VisitedMap, (i+di,j+dj), ACContext).

TABLE IV
Pseubocobe DESCRIPTION FOR THEBASIC DECODER

RecursiveReceive (Qwv, VisitedMap, Location (i,j), ACContext)

1. For all locations (i+di,j+dj) within the support of the structuring
element, centered at location (i,j):
1f (VisitedMap at location (i+di,j+dj) is NOTRECEIVED)
- Set VisitedMap at location (i+di,j+dj) to NEWCOEFF.
- Compute the conditioning term corresponding to (i+di,j+dj).
- Decode Quv at (i+di,j+dj) from ACContext.
- Update the proper probability table.
2. For all locations (i+di,j+dj) within the support of the structuring
element, centered at location (i,j):
If (VisitedMap at location (i+di,j+dj) is NEWCOEFF)
- Set VisitedMap at location (i+di,j+dj) to RECEIVED
- If (Quv at location (i+di,j+dj) is significant)
RecursiveReceive (Quv, VisitedMap, (i+di,j+dj), ACContext).

T is set to be approximatly 40% larger than the regulaest for significance is defined as a simple comparison of the
stepsize, at all rates tested and for all images tested, theantized bins with a threshold.
rate and distortion numbers obtained differ only after the 2) Entropy Coding: Other than in the use of a uniform
third decimal place from the numbers that result from aguantizer with a wider zero bin, this encoder has not taken
exhaustive search of the jointly optimal parameters. As aalvantage of any form of entropy constraining [4] operations
result, and without any significant performance degradatiol, improve performance.
the whole encoding operation is parameterized by a singleln this framework, location and value information are very
“quality factor,” thus avoiding complex search methods. Otheleeply intertwined because of the data-dependent scan path,
coders (e.g., [19]) derive their excellent rate/distortion perfoas illustrated by the example in Section 11I-B2. As a result,
mance from complex quantizer optimizations: given a usérseems unlikely that a computationally tractable form of
specified parameter that trades off rate for distortion, othentropy constrained optimization can be devised, as was done
coders have teearchfor the quantizers that achieve highfor example with the tree pruning method of Xiorg al.
performance. This coder simply takes the user supplied quality [19]. However, a simple heuristic along these lines is
control parameter as the uniform stepsize, without furth@rcorporated: in the set of correctly predicted insignificant
computation. coefficients, all values are set to zero.

In the remaining aspects, this algorithm follows exactly the In the remaining aspects, the other three sets are coded as
partitioning method described in the general architecture. THescribed in the general framework.
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D. Algorithm 2: Efficient Embedded Coding TABLE V

. . . . .. . RATE/DISTORTION PERFORMANCE OF THESINGLE RATE ALGORITHM
1) Quantization: In this version, each coefficient is quan-

tized with a set of embedded quantiz§r3, - - - 2,,—1 } [16]: Lena

Rate (bpp) 0.03256 | 0.125 | 0.25 0.50 0.75 1.00

] (compression) || (256:1) | (64:1) | (32:1) | (16:1) | (11:1) | (8:1)

z x| <T/2H Algorithm 1 25.82 | 31.09 | 34.12 | 37.17 | 38.98 | 40.33
Qi(z)=<p T/2H <x<T/2! Goldhill

n _T/2z <z < _T/2i+l Rate (bpp) 0.0325 | 0.125 | 0.25 0.50 0.75 1.00

- (compression) || (256:1) | (64:1) | (32:1) | (16:1) | (11:1) | (8:1)

Algorithm 1 25.20 | 28.47 | 30.53 | 33.15 | 35.02 | 36.56

for: = 0---n — 1, and for some parameter (typically

the largest magnitude in the data stream to be encoded). TABLE VI

By successively applying these quantizers to each wavelet RATE/DISTORTION PERFORMANCE OF THEEMBEDDED ALGORITHM
coefficient, a symbol stream is generated with the property that Lena

asn is allowed to increase, a sequence of reconstructions iSRatc (bpp) 00325 10125 [ 025 | 050 [ 075 | 1.00

generated that converges to the original image, and such thdtompression) || (256:1) | (64:1) | (32:1) | (16:1) | (11:1) | (8:1)
e e . yOy ] r B Qc . ‘ >
any initial substream corresponds to some lower resolution®!gorithm 2 || 25.76 | 30.87 | 33.90 | 47.01 | 38.67 | 40.20
encoding. The issue of embedded quantization as well as why: Goldhill
N ' ) o Rate (bpp) 0.0325 ] 0125 7 025 | 0.50 | 075 | 1.00
it is important and its many applications has been thoroughly (.., ression) || (256:1) | (64:1) | (32:1) | (16:1) | (11:1) | (8:1)
studied elsewhere, and will not be dealt with in this work. Algorithm 2 || 25.31 | 28.31 | 30.61 | 32.92 | 31.67 | 35.96
The reader is referred to the many good references available
on the subject [6], [15], [16]. TABLE VII
2) Entropy Coding: The design of optimal quantizers for COMPARISON OF THE RATE/DISTORTION PERFORMANCE
bedded d . bl that like th f OF THE PROPOSEDALGORITHMS WITH OTHER HIGH

an embedded coder Is a problem at, uniike € case o PERFORMANCE CODING METHODS FOUND IN THE LITERATURE

optimal designs for a single target bitrate, has no solution:

Equitz and Cover [6] showed that optimality can only bel28¢ __Lena _ Goldhill
: X ate (bpp) 0.25 [ 0.50 | 1.00 || 025 | 0.30 T 1.00
achieved when the source has a certain Markov property. X:nnpression) Gy | a6y | s || g2 | a6 | @)
opt|mal'|ty we refgr to t'he ability of an encoder to achieve theg 15 33.17 | 36.28 | 39.55 | N/A | N/A | N/A
theoretical rate/distortion performance bound for the SOUrc&d Peariman [11] || 34.12 | 37.22 | 40.41 || 30.56 | 33.13 | 36.55
being coded. Algorithm 1 3412 | 37.18 | 10.33 || 30.53 | 33.15 | 36.56
In this work, the quantizers to be used are fixed beforehand)gorithm 2 33.90 | 37.01 | 40.20 || 30.61 | 32.92 | 35.96
and this is done independently of the image to code. ASiong [19] 34.33 | 37.36 | 40.52 || 30.71 | 43.37 | 36.70

a result, the performance of the embedded coder is entirely
determined by the efficiency with which the resulting symbd. Performance of the Embedded Algorithm
stream is entropy coded. Conditional arithmetic coding based;, a second set of simulations, the performance of the

on four probability tables (as described in Section I1I-B) i%mbedded algorithm is explored. The numbers obtained are
used on each resolution level. shown in Table VI.

C. Comparison with Other Coders
IV. EXPERIMENTAL RESULTS )
In Table VII, the performance of the proposed methods is

In this section, experimental results obtained in the simyhareq against that of other zerotree based high perfor-
ulation of the proposed algorithms are given. For the tes{S;nce coders found in the literature.

the 9-7 Biorthogonal spline filters of Daubechies [2] and the o hiaf comment is due on the algorithms chosen for

standard 512« 512 test images Lena and Goldhill were used.,mparison. The coder by Shapiro was selected because of
The wavelet decomposition consists of five levels. The Bi nisorical importance: it is in that work that the concept
rates rePO”Ed are qctgal file sizes (i.e., no e”trOPY eStImat%?)making use of location information is first exploited with
and the image quality is measured by the peak signal-to-nojg&,arkable success. Also the coders by Xi@tgl. and by
(PSNR) ratio, computed from actually decoded images.  gaig and Pearlman were selected because, to the best of our
knowledge, they represent the best performing zerotree based
A. Performance of the Single-Rate Algorithm coders; besides, they serve the purpose of showing that it is
n;i)ossible to achieve coding performance similar to the best

In a first set of simulations, the performance of Algorith . X . .
P g gerotrees have to offer using entirely different techniques.

1 is explored. In Table V, the performance at various bit rat

of the single rate algorithm is shown for both test images. )
Sample reconstructions obtained using this algorithm dre Perceptual Quality

shown in Fig. 9. Only reconstructions corresponding to low On perceptual issues, these coders are a good tradeoff

rates are displayed because, on printed material, the origibatween conflicting goals such as maximization of objective

and reconstructions at higher rates are visually indistinguisteding performance (as measured by PSNR), and subjective

able. quality. While the objective numbers achieved by these coders
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(@) (b)

(©) (d)

Fig. 9. Sample reconstructions for Algorithm 1. (a) Lena at 0.5 b/pixel (16:1). (b) Lena at 0.125 b/pixel (64:1). (c) Goldhill at 0.5 b/pixel (16:1).
(d) Goldhill at 0.125 b/pixel (64:1).

are similar to those of [19], unlike the latter, the improvememtccasionally they may contain significant energy. However, if
in PSNR with respect to the basic zerotree coder of Shapperceptual gains are sought, these coders are far from optimal:
[15] does indeed translate into better looking pictures, essem+ig. 12, a few reconstructions at extremely low bit rates are
tially due to some noise reduction properties briefly illustrateshown, since there it is possible to visually recognize where
in Figs. 10 and 11. bits are being invested. It is clear that the textured region

While [19] very efficiently represents high-frequency, loweorresponding to the feathers in Lena’s hat takes a significant
magnitude texture like coefficients (essential to achieve higimount of bits at low rates; in terms of perceptual quality,
PSNR values), these proposed coders are not as efficient. Akia is a most questionable decision taken by both encoders.
result, isolated significant coefficients are deemphasized, witlom these observations it is concluded that a transform
preference given to more clustered values. This translates ib&tter matched to the statistics of this image (e.g., wavelet
somewhat better perceptual quality, since such isolated cogfckets), can potentially improve subjective quality while still
ficients are not very relevant to the human eye, even thougtaximizing objective performance.
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Fig. 10. lllustration of the noise reduction properties of the proposed coders: (a) a synthetic image; (b) location of the significant wavegsttsa#ffici

the synthetic image; (c) location of the significant wavelet coefficients of the synthetic image corrupted by additive white Gaussian noisgorfdniarti
coefficients labeled significant and insignificant computed by the morphological coder. Observe how the set of coefficients labeled significgnt is most
composed of those drawn from the signal part of the input, while those labeled insignificant correspond mostly to noise.
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Fig. 11. lllustration of the noise reduction properties of the proposed coders: (a) an original background section from Lena; (b) SFQ’s recatsiructi

b/pixel (40.52 dB); (c) reconstruction of the fixed rate algorithm at 1 b/pixel (40.33 dB). Observe that while both coders are preserving the eitge to gre
accuracy, the zerotree coded image preserves some of the noise in the background of the original, whereas the morphologically coded image blurs this
noisy contribution. Even if this noisy background were due, e.g., to some image texture (i.e., not noise, like in this case), this is informatbnthe whi

human eye is fairly insensitive, and therefore not very important in a perceptual sense.

() (b) (© (d)

Fig. 12. lllustration of where bits go. Sequence of reconstructions at very low bit rates: (a) 512 bytes, (b) 1024 bytes, (c) 2048 bytes, (d) 3@t2albytes;
that the original has 262144 bytes. Observe how textured regions receive a significant amount of bits.

E. Code Availability with zerotrees is made. Then, the main concepts presented in
dhis paper are summarized. And finally, areas requiring further

More information (test images, sample reconstructions, !
gsearch are discussed.

imations that illustrate the operation of the proposed method
source code, documentation, etc.) can be downloaded from

our website [10]. A. Comparison with Zerotrees

The morphology based approach to coding proposed in this

V. CONCLUSIONS work is an attempt to exploit the same features of wavelet data

In this final section, some perspective is given on all thiat zerotrees do to achieve their excellent coding performance,
new concepts introduced in this work. First, a comparisamhile at the same time improving on some of its deficiencies.
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In a sense, the morphological approach proposed in this workThe amount of gain that could be obtained by a careful
is a concept dual to that of zerotrees, in that it exploitselection of filterbank and quantizers is yet to be determined
directly the clustering of significance. Also, arbitrarily shapeh this framework, as there is evidence that perhaps the ones
regions of nonzero coefficients are defined at no extra cost. @sed in this work are not the best ones to maximize objective
the perceptual side, it is reasonable to expect better lookipgrformance.
reconstructions in this case, since the bit allocation policy is Many extensions to this work are possible. Optimization as
driven mainly by energy clustering, thus avoiding decisioria the traditional approach is certain to improve results, given
such as zeroing out important edges because of their not beting simplicity of the quantization strategy employed. Another
well aligned with some arbitrary prespecified grid. Howevegource of expected gains is by doing a more general form of set
it also has certain drawbacks, of which the fact that thgartitioning: even within the significant and insignificant sets
rate/distortion optimization of this structure is much moreomputed by this coder there is still evidence of statistical
complex is the most important one. diversity; an algorithm capable of determining the optimal
In summary, both methods are seen, each with its owimber of sets into which to partition each subband for a
pluses and minuses, to exploit the same source of gains:gigen target bitrate is likely to boost perfomance too. Also,
inference can be made regarding the superiority of one methbe studies that led to the improved statistical description of
over the other. This work serves the purpose of showingavelet coefficients provide insight to attempt a formalization
the feasibility of achieving similar performance to the besif these concepts into a random field model. All of these topics
attained so far by zerotrees, with equal or lower complexitgre being currently investigated.
and making use of entirely novel coding tools.
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