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Abstract— Quadtree-like pyramids have the advantage of re-
sulting in a multiresolution representation where each pyramid
node has four unambiguous parents. Such a centered topology
guarantees a clearly defined up-projection of labels. This concept
has been successfully and extensively used in applications of
contour detection, object recognition and segmentation. Unfortu-
nately, the quadtree-like type of pyramid has poor approximation
powers because of the employed piecewise-constant image model.

This paper deals with the construction of improved centered
image pyramids in terms of general approximation functions. The
advantages of the centered topology such a symmetry, consistent
boundary conditions and accurate up-projection of labels are
combined with a more faithful image representation at coarser
pyramid levels. We start by introducing a general framework
for the design of least squares pyramids using the standard
filtering and decimation tools. We give the most general explicit
formulas for the computation of the filter coefficients by any (well
behaving) approximation function in both the continuous (L2)
and the discrete (l2) norm. We then define centered pyramids
and provide the filter coefficients for odd spline approximation
functions. Finally, we compare the centered pyramid to the
ordinary one and highlight some applications.

Index Terms— Haar pyramid, multiresolution decomposition,
multiscale processing, pyramids.

I. INTRODUCTION

MULTISCALE processing is an old but powerful idea
[7], [16]. It is usually applicable whenever one wishes

to implement an image processing algorithm that is iterative
in nature and requires many successive updates. The basic
principle is to construct an image pyramid and to start applying
the procedure at the coarsest level on a very small version of
the image. Upon convergence, the solution is propagated to
the next finer level where it is used as starting condition. One
then proceeds with this coarse-to-fine iteration strategy until
one reaches the finest level of the pyramid which corresponds
to the image itself. This type of multiresolution approach has
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two advantages. First, it decreases the number of computations
since most iterations are spent processing reduced versions of
the image. Second, it usually also improves robustness; the
pyramid has a smoothing effect on the criterion to be optimized
which often reduces the likelihood of getting trapped in local
optima.

There are numerous examples of the application of this
principle in the literature. Boumanet al. [5] employ a quadtree-
like pyramid for unsupervised texture segmentation and Kato
et al. [12] uses a multiscale relaxation algorithm applied to
image classification. Pyramids have also been used in [4] to
compute time-varying motion parameters and in [18], a Haar
pyramid is used for segmentation of moving objects. A Haar
pyramid of processors is used in [11] for efficient exploration
of the Hough parameter space for line detection. Th´evenazet
al. [20] employ a multiresolution strategy for the computation
of displacement parameters.

Recently, there has been a renewed interest in pyramids
because of the key role of these structures in the mul-
tiresolution theory of the wavelet transform [8], [13], [19],
[27]. One of the main concerns there is data compression
and the multiresolution decomposition is usually optimized
for maximum energy compaction [21], [22], [26]. While the
wavelet theory has resulted in the construction of improved
image pyramids, most multiscale algorithms that assign image
labels still operate with the oldest and most primitive form:
the nearest neighbor or Haar pyramid. The main reason for
this is that this pyramid has a nice centered (quadtree-like)
topology in which each coarser level node is situated exactly
in the center of its finer level predecessors. This is in contrast
with most other pyramids (Gaussian or spline-based) which
use symmetric reduction and expansion filters so that there is
an ambiguity when one attempts to propagate an image label
(not a pixel) from one level to the next (Fig. 1). Naturally,
a one-pixel wide label should lead to a two-pixel wide label
at the finer level that has twice the resolution of the coarser
level. The centered topology guarantees a clearly defined way
of propagating labels across scales. This advantage has been
exploited in [5], [11], [12], [18] which employ quadtree-like
pyramids. The down side of the Haar pyramid, however, is that
it has very poor approximation power because the underlying
model is piecewise constant, hence one operates on a bad
replica of the original image at coarser resolutions.

The purpose of this paper is to correct for this deficiency of
the Haar pyramid by introducing higher order extensions that
preserve the centered topology and provide more accurate rep-
resentations of the original image at coarser resolution levels.
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(a) (b)

Fig. 1. (a) Ambiguous situation for up-projection of a label in the ordinary pyramid. (b) Symmetric up-projection with the centered pyramid.

Fig. 2. Original signal is reduced by filtering and downsampling, the extrapolated signal is obtained by upsampling and filtering.

In addition, the centered topology assures that the image center
at resolution maps onto the image center at resolution

thus simplifying multiresolution motion or displacement
parameter estimation because of a common spatial reference
system. Also, the centered pyramid offers an accurate way
of up-projection because it is symmetric. Applications include
multiscale contour detection, object recognition/detection and
segmentation, and potentially also zerotree pyramid coding.
Furthermore, with the introduction of appropriate boundary
conditions, the resulting signal has a periodicity of rather
than This means that 1) fast Fourier transforms (FFT’s)
are easier to use and 2) the boundary conditions are mutually
compatible at all levels.

The construction of a pyramid requires the repeated appli-
cation of a reduction function that reduces the (rectangular)
image sizes by a factor of and the image content by a factor
of The reverse operation is obtained via an expansion
function which extrapolates a coarse image representation
onto a finer one. This procedure is outlined in Fig. 2. The
reduce operation is typically implemented by filtering and
downsampling. Similarly, the expand function is implemented
by upsampling and filtering (i.e., interpolation). The filter

is called the analysis filter whereas the filter
is called the synthesis filter. The analysis filter should be
designed in such a way as to minimize the loss of information
occurring during resolution conversion, and the synthesis
filter should be designed in such a way as to minimize
the approximation error between the original image and the
extrapolated one [25]. Moreover, in the type of pyramid we
are introducing here, the grid of the coarser representation is
shifted with respect to the finer one so that the pyramid is
centered.

The paper is organized as follows. After some brief defini-
tions in Section II, we derive the general pyramid formulas in
both the continuous and the discrete framework for arbitrary
generating functions (Section III). Note that in contrast with
the conventional wavelet theory, our multiresolution spaces are
not necessarily nested. In Section IV, we define the concept
of centered pyramid and derive explicit transfer functions
using polynomial splines. We discuss the problem of boundary

TABLE I
BASIC DISCRETE SIGNAL PROCESSINGOPERATORS

AND THEIR EFFECT IN THE z-DOMAIN

extension in Section V and highlight some applications in
Section VI.

II. DEFINITIONS

Our developments are a generalization of the work per-
formed by Unseret al. in [25] for the continuous case and
of the work by Aldroubiet al. in [1] for the discrete case. We
adopt the same notations as in these references. Hence,
denotes the space of measurable, square integrable functions

is the vector space of square summable
sequences We will use a variety of operators that
act on discrete sequences; these are summarized in Table I.
Note that the whole theory is developed in one dimension.
The extension to multidimensional signals such as images
is straightforward. We simply use separable (tensor product)
basis functions and implement the algorithm (reduction or
expansion) by successive one-dimensional (1-D) processing
of the various dimensions along the data.

III. GENERALIZED LEAST SQUARES PYRAMIDS

Our objective is to derive the synthesis and analysis transfer
functions for a centered pyramid construction. In this section,
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however, formulas by more general basis functions will be
developed (for any shift of the coarser grid), since it does
not complicate our task and only clarifies the mathematics.
Appropriate basis functions yielding a centered pyramid will
be given in the next section. First, the continuous case will
be considered and then the discrete case, which is completely
analogous.

Let us consider a step-wise optimal approximation from a
fine space to a coarse space These spaces are generated
by dilated an shifted basis functions, such that

(1)

(2)

The approximation of the original signal becomes coarser
as we employ larger dilations and larger shifts of the basis
functions. A multiresolution pyramid may be constructed
in an iterative way by considering coarser spaces of basis
functions dilated and shifted by multiples of Typically,

but there is no theoretical difficulty in considering
other integer reduction factors. We propose to compute the
expansion coefficients in (2) by digital filtering. Digital
filtering means that we require the expansion coefficients

of a coarse representation level to be specified by
the expansion coefficients of the finer resolution level.
Furthermore, the generating functions and must satisfy

(3)

where denotes the Fourier transform of i.e.,
and must generate a Riesz basis. Condition (3) guarantees
that the spaces are closed in and that a least squares
approximation of a function into exists [2].
The conditions for multiresolution decomposition in have
been defined in [13]. In the theory of wavelet transforms, the
spaces are self-similar and their union over all scales is dense
in Our conditions here are weaker; no nestedness between
approximation spaces is required and and may even
use different basis functions. The originality of our approach
is that it will be possible to use more general basis functions
that can be tailored to specific requirements. In Section IV,
we will use shifted spline basis functions to obtain a centered
pyramid that has several nice properties. Next, we derive the
pyramid transfer functions in the general case.

A. Analysis Function (REDUCE Operation)

We now turn to the issue of finding the best approximation
of a function into the coarser subspace
by minimizing a least squares criterion. The minimal-
norm approximation of a signal is obtained by
orthogonally projecting into Thus, the expansion
coefficients in (2) must be obtained from the ones given
in (1).

Let be a generating function in that spans
and let be another generating function that spans

dilated by a factor and completely independent from
Before stating our first result, we define the following

correlation coefficients:

(4)

(5)

(6)

The following theorem provides a solution to the general
approximation problem:

Theorem 1: Let and
be two sets of Riesz basis functions of and

respectively. The orthogonal projection of the function

(7)

into is given by

(8)

where the expansion coefficients are obtained as:

(9)

The proof is given in Appendix A. In the -transform
domain, the transfer function is written as

(10)

where and are the -transform of and
respectively.

Sometimes it is convenient to compute (9) and (10) for some
basis functions, but to represent the signal with other
basis functions (e.g., cardinal spline representation). This can
be done with the coordinate transformation expressed in the
following corollary.

Corollary 1: Let

and

where

(11)

Then

(12)

(13)
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Given the special case where a link from the coarse scale to
the fine scale exists -scale relation)

(14)

then (12) and (13) may be further simplified by replacing
the cross-correlation term by Here,
we have introduced an auxiliary function which may
be distinct from (e.g., it may be a shifted version by
half a sampling step). Note that (14) is more general than the
two-scale relation encountered in the theory of the wavelet
transform: is not necessarily identical to and is not
necessarily a power of two.

B. Synthesis Function (EXPAND Operation) in

To go in the other direction, i.e., expanding a resolution
level, the approximation in the finer scale is achieved by
orthogonal projection of the coarser space into the finer space.
Note that this process, which guarantees a minimum loss of
information, is equivalent to an interpolation when the spaces
are nested.

Theorem 2: Given the same settings as in Theorem 1, the
orthogonal projection of a function

(15)

into is given by

(16)

where the expansion coefficients are obtained as:

(17)

The proof is given in Appendix B. The corresponding
synthesis transfer function is therefore

(18)

In the same way as for the reduction operation, the transfer
function can be represented using the m-scale relation and a
transformed coordinate system:

(19)

(20)

where ’s are the sequences in (11).

C. Analysis and Synthesis Function in the Discrete Space

The formal derivations of the discrete transfer functions are
completely analogous to the continuous case. We now consider
discrete Riesz basis in a space

where the link with the continuous formulation is
.

Theorem 3: Let be a discrete function and
a Riesz basis of a discrete space

The orthogonal projection of into is

(21)

where the coefficients are given by

(22)

Proof: The prove follows the one given in Appendix A.
The -orthogonality of the error implies that

(23)

(24)

which gives (22). Notice that we have used the fact that
The developments are analogous

to the ones for (9), except that we can not further simplify the
correlation product (in the continuous case, it
leads to autocorrelation).

In the -domain, the transfer function of the equivalent
analysis filter is

(25)

with By definition, the corresponding re-
sulting approximation is given by
Thus the transfer function of the expansion filter is simply

IV. CENTERED PYRAMID

In this section, we define the centered pyramid and give
examples using polynomial splines.

A. Definition of Centered Pyramid

We will only consider basis functions with an axis of
symmetry. These correspond to the nodes of the pyramid. In
this way, there is no phase distortion and the objects in the
image are not shifted. Both conventions are crucial if we want
to correctly maintain the localization of objects in the coarser
levels of the pyramid. From now on, we will only consider
pyramids with a scale reduction of two

Definition 1: For a centered pyramid, the basis functions
must satisfy

(i) (26)

(ii) (27)

(iii) (28)
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where Note that (ii) and
(iii) imply that

A centered pyramid exhibits clear advantages in a number of
typical image analysis problems that involve the up-projection
of labels. These advantages stem mainly from the propriety
of symmetry (Fig. 1). As an example, we may consider the
important problem of contour detection or segmentation, where
a one pixel wide boundary needs to be extrapolated to a finer
scale. In a scale reduction of two, naturally, the extrapolated
boundary must be two pixels wide. It is immediately given by
a centered pyramid, whereas an ambiguous situation subsides
in the noncentered case.

Since the greatest part of the energy in an image is contained
in the DC component, we also impose a perfect reconstruction
of the constant. In the continuous framework, this is equivalent
to requiring that

(partition of the unity). (29)

In the discrete case, the condition is

(30)

It is well known in wavelet theory that (29) is equivalent to
[19]. We will show here that the same condition

is also necessary and sufficient in the discrete case. The
left side of (30) is periodic with period two, and therefore
can be represented by two samples of its continuous Fourier
transformation. Therefore,

which is true if and only
if and

Proposition 1: For a centered pyramid

(31)

(32)

Proof: Let us consider the synthesis transfer function
first. For the discrete case, and (31)
follows directly from (27). In the continuous case, is
given by (18). The autocorrelation function is symmetric, and
thus we only need to characterize

(33)

This signal is symmetric with respect to a shift by half a
pixel. This implies that and proves (31).
The developments for the analysis function are analogous. In
the discrete case, we may also use (31) as a definition.

Proposition 2: Given a centered pyramid for which
is a stable rational transfer function (ratio of two polynomials)
and which reproduces the constant, then

with
(34)

where is a stable symmetric transfer function.
Proof: If is rational, then implies that

(35)

has a zero at and is stable (i.e., no root at
The fact that is symmetric then follows from

Proposition 1.
Next, we will present explicit examples of centered pyra-

mids using polynomial splines.

B. Definition of Polynomial Splines

Spline polynomial functions [17] have been shown to be ap-
proximation functions with nice properties such as regularity,
least oscillation, smoothness [15]. The symmetrical B-spline
of order zero is defined as:

for
for

(36)

The continuous B-spline function of degreeis denoted by
It can be constructed using the important convolution

property

(37)

The discrete version and shifted discrete version of splines
is obtained by sampling the continuous one

(38)

(39)

C. Transfer Functions for Centered Pyramids

Constructing the filter coefficients for a spline pyramid
means replacing and in (12) by spline functions.
On all levels of the pyramid, splines are imposed and further-
more, we want the grid of the coarser level to be centered;
i.e., shifted by one-half with respect to the grid of the finer
level. Hence, the changes become

(40)

(41)

For an easy visualization of the discrete image, we will
choose the coefficients and to be the discrete
data points of the signal at each resolution
level. This representation is known as the cardinal spline
representation. It determines the function and in
(11) which are given in [25], as follows:

(42)
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TABLE II
ANALYSIS AND SYNTHESIS TRANSFER FUNCTIONS IN THE TRANSFORMED COORDINATE SYSTEM FOR n ODD

Furthermore, a two-scale relation exists for spline functions
[23], which is given for being odd as

(43)

We obtain for the various convolution products odd):

(44)

(45)

(46)

The transfer functions for the discrete and continuous case
can now be formulated and they are given in Table II in the
time domain and in the-domain (convention:

and and, for odd,
The transfer functions can be computed for even

in an analogous way. Then, and

The corresponding pyramid filters are infinite impulse re-
sponse (IIR), and can be expressed as sums of exponentials.
Such a direct computation of the filter coefficients is not
practical. Instead, it is much simpler to pass through the
Fourier domain. Our strategy will be as follows.

1) Express the transfer functions in the-domain.
2) Replace by to switch to the Fourier domain.

3) Sample the Fourier domain with a sampling step high
enough to avoid significant time-domain aliasing.

4) Compute the inverse discrete Fourier transform to obtain
the filter coefficients.

These computations can be easily carried out with software
packages such as Mathematica or Matlab. Implementation is
done using truncated filters with an effective length that is
even (odd length convolved with Haar). In Fig. 3(a) and (b), a
plot of the transfer functions in the frequency domain for the
continuous case is shown, for and The
analysis filter acts as antialiasing filter and the synthesis filter
plays the role of the interpolation filter. An exact computation
of the impulse response may be obtained using a recursive
computation.

The transfer functions for centered pyramids as defined
above are for spline functions of any odd order of A
spline of order zero corresponds to the Haar pyramid; it seems
intuitively obvious that a centered pyramid of higher order
will perform better than the Haar pyramid. In Table III, those
expectations are experimentally verified. For a number of
different images, the ordinary and centeredpyramid was
computed performing one reduction operation followed by
an expansion operation. Then, the peak signal-to-noise ratio
(PSNR) is computed comparing the up-projected image to
the original one. The centered pyramid compares well to the
noncentered one, performing always better or at least as good.
As we approach higher spline orders, the differences
in PSNR become insignificant. As a matter of fact, the centered
and noncentered pyramids have identical performance for an
infinite order cardinal spline, which corresponds to the sinc
interpolator and which is shift-invariant [3]. However, the
centered pyramid is preferable because of the properties men-
tioned before. Since we are dealing exclusively with digital
pictures, we have considered the discrete image pyramid.
Splines also compare favorably with respect to Gaussian
pyramids [24], which have not been considered here anymore.
The centered topology is also optimal with respect to a shift-
invariance measure, which has been introduced and studied
elsewhere [14].
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(a) (b)

Fig. 3. Transfer functions for spline pyramid. (Dashed: degree 1. Dotted: degree 2. Solid: degree 3). (a) Analysis function. (b) Synthesis function.

TABLE III
COMPARISON OFPSNR BETWEEN THEHAAR, ORDINARY AND CENTEREDPYRAMID

V. BORDER CONDITIONS

In the above developments, the signals were generally
assumed to be of infinite length. Such a hypothesis is not
valid anymore for real signals and we need to define ap-
propriate boundary extensions to extend the finite signal to
infinite length. The boundary conditions have to fulfill two
requirements:

1) the boundaries at resolution levelmust be computed
from the signal values at level;

2) the reduced (expanded) boundaries from level
must be the same as the boundaries computed at the next
lower (higher) level .

In other words, the boundaries should not be affected by the
discrete convolution operator of the filter. Traditional boundary
extensions such as mirroring or antimirroring do not fulfill
these requirements. A valid boundary extension is obtained by
mirroring with respect to a symmetry axis at the end of the
interval shifted by half a pixel off the limit signal values, as
depicted in Fig. 4 (half-sample symmetry [6]).

In the case of a centered pyramid, it was shown that the
analysis and synthesis filter can be decomposed into a sym-
metric component and a Haar component
The validity of the proposed boundary extension can then be
proven as follows. It is easily verified that the Haar filter by
itself fulfills the boundary extensions requirements. Indeed, the

Fig. 4. Black dots represent the original signal; gray dots represent the
extended boundaries. The mirror axis is between the grid points.

averaging operations on either side of the symmetry axis are
identical. As far as the remaining component is concerned, it
suffices to realize that the symmetric filter component produces
the same result for equidistant pixels on each side of the
symmetry axis, as is obvious from Fig. 4. Hence, the boundary
conditions are valid for any centered approximation. They can
be formalized as follows. We denote by the
original signal of length and by the extended signal
of infinite length.

if
otherwise.

(47)

if
if

(48)

Note that these boundary conditions are of periodicity
which may be advantageous for FFT based implementations.
Furthermore, a periodicity assures consistent boundary
conditions across scales, which is not the case in ordinary
pyramids with symmetric boundary extensions, for instance.

The filter coefficients (discrete or continuous) may be down-
loaded via FTP. Also, a C-program is available that im-
plements the border extension mechanism and computes the
centered pyramid in the 1-D and two-dimensional (2-D) case.
The pyramid decomposition for images is obtained by applying
the filters in the direction of the rows first, and then by applying
the filters in the directions of the columns. The C-routines can
be accessed in the public directory of the anonymous ftp site:
picasso.ncrr.nih.gov.

VI. RESULTS AND APPLICATION

Because of their centering properties, these new pyramids
should provide an interesting alternative for all multiscale
applications that use quadtree-like representations or Haar
pyramids. The centered pyramids should provide better or at
least identical results for any application involving pyramids.
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Fig. 5. Multiresolution Hough parameter fitting.

In particular, they should be useful for applications wherever
a result at a coarser resolution level needs to be projected
upwards onto a finer resolution level where the processing
continues. Such applications include edge detection, motion
estimation, and parameter fitting.

A. Multiresolution Hough Parameter Fitting

The Hough algorithm is used to fit curves to binary signals
[9]. Every variable in the analytical curve model defines one
dimension in the multidimensional Hough space. The Hough
space is then scanned for all possible parameter values. For
each bin in the Hough space, the number of signal points
that are covered by the model are counted. The bin with the
maximal counts represents the parameters of the unknown
curve model.

This algorithm is very simple, but very time consuming.
Computation time is proportional to the square of the image
size and is proportional to the number of curve parameters to
be estimated. Since we can not affect the second factor, we
can substantially decrease the amount of processing time by
a multiresolution approach. With this implementation, the bin
with maximal counts in the Hough space of a spatially reduced
signal is computed. This result then needs to be symmetrically
up-projected onto the next finer level, of which the result is
immediately given by the centered pyramid. At this level,
the optimal result is situated in the neighborhood of the up-
projected pixels, and it is therefore sufficient to only compute
the number of counts in the neighboring bins.

An example is given in Fig. 5. The image shows a SPECT
scan (single-photon emission computed tomography) of a long
axis slice of the heart, where the myocardium is imaged. The
ultimate imaging goal is to find the endo- and epi-cardial
borders. Because of the ellipse like coordinates of the heart,
image processing is facilitated if the heart is expressed in
ellipsoidal coordinates rather than in Cartesian coordinates.
We have employed the centered cubic spline pyramid and
the Hough algorithm to find the optimal short and long axes
and the center of the ellipse. The fitted ellipse is superimposed
in black on each of the resolutions in the image of Fig. 5. The
search for the elliptical parameters involves the computation
of five parameters (center, radii and orientation). A pyramid
decomposition into three levels enormously speeds up the
computation and still allows us to find the correct ellipse.
Experimentally, we have determined three pyramid levels to
be optimal, as it optimizes speed and still guarantees an

TABLE IV
COMPARISON OF COMPUTATION TIME

accurate enough approximation of the original image at the
coarsest pyramid level. Computation time for different choices
of number of pyramid levels are reported in Table IV. The
image size is 128 128 pixels, and computation were done
on a low end workstation (120 MHz PowerPC). The algorithm
has been tested on more than 100 images, and in all of them,
the correct ellipse was found.

B. Multiresolution Image Registration

The general problem of image registration concerns the
matching of two images minimizing ana priori chosen dispar-
ity criterion. The problem arises for example when two images
have to be compared and one of them has been translated with
respect to the other. Typically, no closed-form expression for
the motion parameters exists and the global disparity minimum
has to be found iteratively. In a bottom-up multiresolution
approach, two pyramids are computed for the original image
and the test image, respectively [20]. The algorithm starts at
the coarsest resolution and finds the best fit. The result is up-
projected onto the next finer level until the original image is
reached.

In the case of the affine transformation, one has to fix a cen-
ter of origin of the coordinate system at each resolution level.
The up-projection from one level to the next involves an ad-
justment of the affine parameters by a scale factor. In addition,
if the origins at different levels are not identical, an additional
translational term is required, which complicates the compu-
tation. The centered pyramid offers a straightforward way of
up-projection, reducing some computational complexity and
reducing considerably the risk of errors in the program code.

C. Motion Compensation

For subpel motion compensation, the current image as
well as the reference image are interpolated [10]. On these
expanded frames, motion estimation and compensation is per-
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TABLE V
MOTION COMPENSATED PSNR OBTAINED

FOR TEST IMAGE USING DIFFERENT FILTERS

formed and the predicted frame is reduced subsequently to the
original size. Typically, bilinear interpolation is used followed
by simple subsampling. In fact, subsampling can already be
included in the match criterion avoiding the interpolation
of the current frame. The use of spline filters provides an
improvement both in terms of the prediction gain and in a
more accurate motion vector field. The best results in terms
of prediction gain has been achieved by using the centered
spline filters. For simulations a test image pair has been
generated, consisting of a noise texture. To simulate half
pel displacements, the texture has been displaced by an odd
number of pels and subsequently filtered and subsampled with
a standard lowpass filter.

For expansion and reduction the separablespline filters
are employed. The four filter configurations analyzed are: first-
and third-order and both filter centered as well as noncentered.
Motion estimation and compensation was performed on the
expanded frames using a standard block-oriented approach
with full pel accuracy (Table V).

Obviously, the prediction gain obtained using spline filters
is significant. Moreover, for the first-order pyramid centering
increases the prediction approximately by 1 dB. For cen-
tered third-order splines the number of inaccurate motion
vectors was lowest. The highest motion compensation gain
was achieved by the centered cubic splines.

In case of natural image pairs (frames from a video scene),
the accuracy of the motion vector field can not be judged, since
the true displacements are unknown. However, the motion
compensation gain can be observed. In Table V, the mean
motion compensation gain is given, obtained by averaging over
17 frame pairs of the test sequence foreman in QCIF format.

For both filter orders, an improvement of the prediction
gain for the centered filters over the noncentered filters can
be observed. As before, centering is especially beneficial for
lower order splines. The best results are obtained with the
centered cubic spline which provides a 0.7–1 dB improvement
over the noncentered first order pyramid. Note that this latter
is already 0.8 dB better than the traditional method that uses
bilinear interpolation.

VII. CONCLUSIONS

In this paper, we have presented the concept of centered
pyramids that fulfill the three requirements of 1) minimiza-
tion of loss of information during resolution conversion, 2)
minimization of approximation error during extrapolation, and
3) perfect centering of resolution levels. We have provided
general formulas for the analysis and synthesis filters in both
the continuous and discrete spaces. The only requirement
imposed is that the generating basis functions must form
Riesz-bases. The obtained formulas may then be used by any
specific basis functions. The cubic B-spline basis functions
were employed as a specific example for the computation of
the filter coefficients. The explicit transfer functions in the
-domain are given. We have justified the need for centered

pyramids because of their symmetry and periodicity of
which result in better properties for image analysis. Also, in
the type of pyramid proposed, the center at low resolution
levels get perfectly mapped onto finer resolution levels, and
the centered pyramid is left/right and up/down flip invariant.
We have presented applications that benefit from the mul-
tiresolution analysis by centered pyramids, because of speed
consideration, better accuracy and the ease of up-projection
of parameters. This pyramid can be used as a good substitute
in any multiscale algorithm that performs the reduction by
averaging (Haar pyramid).

APPENDIX A

Let us define the correlation products as in (4)–(6). Given
two spaces and the orthogonal pro-
jection of onto such that the approx-
imation error is orthogonal to is defined through the
equation

(49)

It is solved as follows:

(50)
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The step from the third to the fourth line is obtained by
realizing that

(51)

The downsampling can then be omitted by substituting
for Hence, we obtain (9), q.e.d.

APPENDIX B

The development for the expansion function is similar to
the one for the reduction function given in Appendix A. Given
two spaces and the orthogonal pro-
jection of onto must satisfy the
orthogonality requirement

(52)

Solving for we get

(53)

and we get the result of (17), q.e.d.

ACKNOWLEDGMENT

The authors are very grateful to A. Aldroubi for his most
valuable suggestions and help on filter design, and to P.
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