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On the Phase Response of the Error
Diffusion Filter for Image Halftoning

Akhil Kumar and Anamitra Makur

Abstract—Conventional error diffusion halftoning uses a causal
error filter. We propose the iterative error diffusion algorithm
by extending the error diffusion to accommodate noncausal
error filters. We realize the importance of the phase response
of the error filter in the error diffusion halftoning method, and
demonstrate it using examples. Iterative error diffusion is able
to realize a zero phase error filter. We also trace a drawback
of error diffusion to the shape of the error filter, and provide a
remedy. The results obtained using zero phase error filter in the
iterative error diffusion algorithm are, in our opinion, superior
to the error diffusion halftones.

Index Terms—Error diffusion, image halftoning.

I. INTRODUCTION

I MAGE halftoning is the technique of rendering continuous
tone images on display devices and printers that are bilevel,

i.e., capable of reproducing only two levels, black and white.
A halftone, though a binary image, possesses the appearance
of continuous shades of gray owing to the way the black and
white dots are distributed. Hence, the objective of halftoning
is to create a halftone as much perceptually truthful to the
continuous tone image as possible. While traditional halftones
were analog halftones generated using various screening meth-
ods, today’s digital image processing and multimedia utilities
extensively use digital halftoning methods.

The invention of the error diffusion method [1] is regarded
as a breakthrough in digital halftoning. For a halftone of
a specified dot density, the error diffusion method produces
better quality than methods invented before. Fig. 1 shows the
block schematic of the error diffusion halftoning algorithm.
Past errors in converting a gray input pixel to
a binary value are filtered and added (diffused) to the
neighboring future pixels . It is a sequential single-pass
algorithm. The error diffusion method may be interpreted using
two-dimensional (2-D) signal processing, where the diffusion
is understood to be a finite impulse response (FIR) filtering.
The filter, referred to as theerror filter, plays a crucial role in
the performance of the algorithm.

There are a few classes of halftoning algorithms besides
error diffusion. References [2] and [3] present a survey of
these techniques. In [2], error diffusion is referred as the
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Fig. 1. Error diffusion method.

minimized average error technique. Till date, error diffusion
remains an active area of research. Analysis of the error
diffusion algorithm may be found in [4]–[6]. Ulichney showed
that error diffusion generates blue noise which is desirable
for halftoning [4]. Stucki used a larger error filter to disperse
the objectionable patterns of error diffusion [7]. Fan proposed
applying error diffusion on a halftone generated using the
ordered dither [8]. In his method, error diffusion operates not
on pixels but on ordered dither dots (except partial dots). The
same author, in another paper, proposed reversing the scan
order in error diffusion [9]. Both algorithms are examples of
two-pass halftoning. Knox and Eschbach introduced threshold
modulation by varying the threshold in error diffusion [10].
Such a scheme may be used for edge enhanced halftoning,
image mixing, etc. Visual error diffusion suggested in [6]
computes the error as the difference between the input and
the visually blurred output halftone. Wong used least mean
square algorithm to adapt the error filter based on the local
intensity [11]. His approach improves the uniform regions
while producing edges comparable to the conventional error
diffusion.

II. I TERATIVE ERROR DIFFUSION

In this section, we propose an augmentation to the error
diffusion procedure to accommodate noncausal error filters. A
noncausal error filter may be realized if the future quantization
error is available. We extend the error diffusion to an iterative
(multipass) algorithm, so that the quantization error of one
iteration (pass) may be collected and used during the next
iteration as the quantization error of the future pixels. Though
the quantization error from the last iteration will not be the
exact quantization error of the future pixels in the current
iteration, it indeed is a good estimate.
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Fig. 2. One iteration of the iterative error diffusion method.

A. Proposed Algorithm

We refer to this extension of conventional error diffusion
as the iterative error diffusion algorithm. An error image,
containing some starting value of the quantization error for
all pixels, is required. In each iteration the conventional
error diffusion procedure is applied with the difference that
a noncausal error filter is used instead of a causal error filter.
The quantization error is updated on the error image on a
pixel-by-pixel basis. As a result, the quantization errors for
any iteration serve as the starting error values for the next
iteration. The iterations are continued until a convergence
criterion is satisfied. Fig. 2 depicts one iteration of the iterative
error diffusion. The symbols , , , and denote identical
quantities to that of Fig. 1, and the subscripts indicate the
iteration numbers. The error filter has a full plane
region of support, which is split into a strictly causal part

and the remaining (anticausal) part .
The iterative error diffusion algorithm needs a starting set of

error values (similar to the required starting halftone in
the iterative Fourier transform algorithm [12]). Subsequently,
the algorithm attempts to shape the feedback quantization error
so that not only does it have the desired magnitude response,
but also that it adds to the input signal in phase. This objective
is achieved through a number of iterations or passes. We now
show that the resulting halftoning noise does get shaped in a
desirable way.

B. Halftoning Noise in Error Diffusion

It is possible to relate the halftoning noise to the error filter
(similar prior work may be found in [6], [13], and [14]). Let

denote the halftoning noise, i.e., the difference between
the actual image and the halftoned image

(1)

with reference to Fig. 1. It follows that

(2)

where is the region of support of the error filter. Taking the
Fourier transform of both sides

(3)

where and represent the horizontal and vertical fre-
quencies, respectively, and the capital letters represent the
Fourier transforms of their lowercase counterparts (in [6, eq.
(8)], also obtainable from [14, eq. (12a)]). Equation (3) relates
the spectrums of the halftoning noise and the quantization
error to the error filter response. The halftoning noise
spectrum, therefore, is shaped by . The quanti-
zation process may be modeled as a gain-plus-additive noise
[15], where the noise is white and input-independent. Thus,
the quantization error consists of a signal component and a
white noise, and has a relatively flat power spectrum even for
lowpass image input.

C. Halftoning Noise in Iterative Error Diffusion

The input to the quantizer during theth iteration is

(4)

Here, is the full plane region of support. However,
has zero coefficients outside the nonsymmetric causal half
plane region of support excluding the origin, and has zero
coefficients outside the nonsymmetric anticausal half plane
region of support including the origin. Therefore, works
only on , the error produced in the current iteration,
while works only on , the error of last iteration.
Since , it follows from (4) that

(5)

where the capital letters denote the Fourier transforms of there
lowercase counterparts. If the spectrum of the halftoning noise
during the th iteration is denoted by , then

(6)

The feedback error spectrum gets shaped as the iterations
proceed. If this shape converges afteriterations, then

(7)

Therefore, after convergence

(8)

This relation is identical to that in (3).
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In practice, convergence is achieved when a resulting
halftone has no perceptual difference from the previous
halftone. This happens when the changes between two
halftones and take place only in the high
frequency regions. Let the difference between two consecutive
halftones be

(9)

Instead of assuming the convergence of the feedback error
spectrum in (7), a good approximation after a few iterations is

(10)

which means that the feedback error spectrum changes by
some given amount during each iteration after, say,iter-
ations. It follows from (6) that

(11)

Since is a highpass filter, the last relation
shows that after a few initial iterations, the changes from one
halftone to another are limited to the high frequency region.
This confirms the observed fact that the output halftones from
different iterations look similar, because the high frequency
changes are not noticeable to the human eye in the case of
halftones. This fact will be illustrated later by example.

D. Initialization and Convergence

The iterative error diffusion algorithm is initialized using
a starting set of quantization error values. Any starting value
such as all zeros may be used. However, for faster conver-
gence, it is desirable that the values are limited to
with a zero mean (where 1 is the maximum intensity value that
any pixel in the input can have), and that the spectrum contains
high frequency components. Some possible choices satisfying
these conditions are highpass noise and white noise. An even
faster convergence may be achieved when the starting values
are the quantization errors from a good halftone.

It has already been pointed out that a suitable convergence
criterion for the iterative error diffusion algorithm should be
based on the change in the output halftone. A numerical
measure for this change is the energy of . Since
takes a value of 1, 0, or 1, its energy is proportional to
the fraction of pixels that change their values between two
iterations. It has been observed that this fraction depends on the
error filter but is rather insensitive to the input image. A typical
convergence threshold for this fraction is 0.06. Typically
after ten iterations, the fraction of changed pixels falls below
this threshold, and no significant perceptual improvement or
decrease in the fraction value is observed subsequently.

III. Z ERO PHASE ERROR FILTER

Since iterative error diffusion allows use of noncausal error
filters, we propose using a zero phase error filter to exploit
this added flexibility. In the next section we illustrate the
importance of the phase response of the error filter.

(a)

(b)

Fig. 3. Magnitude response of the error filters of example 1: (a)h1 andh2
and (b) h3.

A. Magnitude Versus Phase

The error filter is situated at the feedback path. The quantiza-
tion error, after passing through this filter, is added to the input
image as a corrective measure. The response of the error filter,
therefore, determines which part of the input image spectrum
is retained by the halftoning method, and which part is not. We
shall illustrate this fact later with respect to both the magnitude
and the phase spectrum. If the magnitude response of the error
filter is lowpass with unity gain as zero frequency, it ensures
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that the low frequency spectrum of the halftone is similar to
that of the input image. If the error filter is zero phase, it
ensures that the error that has been fed back is added in phase
with the input image. While a lowpass response is desirable
in order to simulate the human visual system, a zero phase
response is desirable in order to retain the sharp edges. The
phase response of the error filter is more important than its
magnitude response for halftoning. We demonstrate this fact
using the following example.

Example 1: Consider the following three error filters in
(12)–(14), shown at the bottom of the page.is a separable 2-
D lowpass zero phase filter and is a separable 2-D lowpass
filter having identical magnitude response as. However,
the phase response of differs from that of since
is not a zero phase filter. is a nonseparable 2-D lowpass
zero phase filter having identical phase response as. The
magnitude response of differs from that of . Fig. 3
shows the magnitude responses of (or ) and . Fig. 4
shows the halftones obtained using filters, , and , on
the popular image Lenna using the iterative error diffusion.
While the output halftones of Fig. 4(a) and (c) are comparable,
the halftone of Fig. 4(b) is clearly unacceptable. The radially
averaged absolute phase error between the original image and
the halftone is plotted in Fig. 5 for all three cases. The phase
error is unwrapped to within an interval to before
taking the absolute value, and the 2-D spectrum has been
radially averaged. Observe that the zero phase filtersand

produce considerably less mean absolute phase error at the
low frequencies than the nonzero phase filter. This figure
illustrates that the phase response of the error filter determines
which part of the input image phase spectrum is retained by
the halftoning method.

The above example shows that, at least in this case, the
phase response is more important than the magnitude response
of the error filter. It is only desired that the magnitude response
should be a lowpass, preferably with its pass band not less than
the passband of the human visual system. A nonzero phase
error filter, however, introduces a phase distortion to the error
feedback so that the input and the feedback error do not add in
correct phase. The result of this out-of-phase addition is that it
tends to place the halftone dots at wrong locations. It results in
the loss of fine details in the output halftone and creates edges
which are rough. When the human eye perceives these rough
edges, they look blurred because of the extended width of the
edges. Various researchers have referred to this blur. Ulichney
calls it the unsharpening degradation, or the transient behavior
near abrupt edges, and includes it as one of the three defects
of error diffusion [4]. This phenomenon is also identified as

a drawback of error diffusion and referred as diffusion across
edges [6] or bad rendition of edges [16].

Edge blurring should be distinguished from the edge en-
hancement in error diffusion pointed out in [17]–[20]. While
edge blurring refers to the deterioration of edge slope, edge
enhancement refers to the enhancement of edge contrast.
Eschbach and Knox experimentally shows the occurrence of
edge blurring and edge enhancement in error diffusion in
[17, Fig. 6(a)], where both slope degradation and contrast
enhancement are observed.

Even though the fact that zero (or linear) phase is essential
in image processing application to preserve edges is well
known, to our surprise we did not find any explicit men-
tion of zero phase error filter in halftoning literature. The
reason perhaps is that such a filter is not implementable in
a single-pass algorithm using a sequential scanning. Several
researchers, however, used noncausal filters and phase con-
straints in halftoning. Kollias and Anastassiou realized that
“bad rendition of fine edges” in the error diffusion is “related
to the unidirectional processing,” and suggested a “symmetric”
noncausal error filter as a remedy [16]. They subsequently
used neural network to bypass the single-pass limitation. Note
that their proposed quadrant-symmetric error filter is more
restrictive than a zero phase error filter. In order to achieve
a “more symmetric error distribution” than is possible using
a sequential scan, Fan proposed a two-pass error diffusion
where the second pass uses a reverse scanning order [9].
The author states that such an algorithm realizes a symmetric
magnitude response of . Katsavounidis and
Kuo used a noncausal error filter, but their scheme realizes an
order statistics filtering rather than a linear filtering [21]. The
scanning order used by them is based on the intensity, and
due to multiscale processing the required complexity is
times more than a single-pass processing (where is
the size of the image). Bryngdahl and group have found in
[22] and [23] that introducing some phase constraints in the
iterative Fourier transform algorithm for halftoning [12] leads
to some improvements.

B. Drawbacks of the Error Diffusion

The error diffusion method is known to have two drawbacks,
edge blurring (degradation of the edge slope), and worm arti-
facts in uniform highlight or shadow regions. Worms are the
periodic artifacts in low-modulation image regions [6] that are
also referred as the avalanche patterns [3]. We are not aware
of any attempt to pinpoint the reason for these drawbacks,
even though investigators have looked into modifications to

(12)

(13)

(14)
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(a) (b)

(c)

Fig. 4. Halftone using the error filters of example 1: (a)h1, (b) h2, and (c)h3.

overcome these shortfalls. For example, Ulichney mentions
use of sharpening to improve, or at least defeat, unsharpening
degradation [4]; in [6] a brief survey of works toward reducing
worms such as that of Stucki [7] is provided. We attribute both
these drawbacks to the response of the error filter. Specifically,
as argued in the previous section, nonzero phase response is
responsible for the edge blurring. We now examine the worm
artifacts.

Refer to (3). The magnitude response of is
typically a lowpass filter modeling the human visual response.
Since a conventional error filter is strictly causal,
is not zero (or linear) phase. Consequently,
does not have a shape which is exactly the complement of

, but it is a nonzero phase high pass filter. In this

work we have used a 3 5 error filter having the following
impulse response (diffusion weights)

(15)

where denotes the (0,0)th coefficient. The magnitude re-
sponse of this filter is shown in Fig. 6. The magnitude response
of the corresponding is shown in Fig. 7. The
magnitude of the power spectrum of the halftoning noise
for Lenna using the conventional error diffusion is shown
in Fig. 8. Contour plots are used for this and latter power
spectrums, since they nicely discriminate between the low-
energy region (shown as the blank space) and high-energy
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Fig. 5. Mean absolute phase error using the error filters of example 1.

Fig. 6. Magnitude response of the error filter of (15).

noiselike region (with dense variations, shown as various
contours). The shape of the halftoning noise is indeed in
agreement with the magnitude response of .
In Fig. 7, the magnitude response profile along a few radial
directions, such as and 0, has the following shape. It
increases from zero at low frequency, to a high value at mid-
frequency, and then falls to a lower value at high frequency.
This shape is in agreement with the error spectrum shown
in [6, Fig. 6] and [4, Fig. 13]. This shape gives rise to
band pass halftoning noise in these directions (see Fig. 8).
Such a halftone is expected to have alternate stripes of these
orientations. In uniform regions of the image, such perceptible
stripes are the worm artifacts. To illustrate our point, we once
again present an example.

Example 2: Consider the following two error filters:

(16)

Fig. 7. Magnitude response of1 �H(!x; !y) of (15).

Fig. 8. Power spectrum of the halftoning noise for (15).

which results in having prominent bandpass
shape at horizontal and vertical frequencies, and

(17)

which produces having no bandpass nature.
Applying these error filters on the same image results in
the halftones, which are shown in Fig. 9. The corresponding
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(a)

(b)

Fig. 9. Halftone using the error filters of example 2: (a)h4 and (b)h5.

halftoning noise power spectrums are shown in Fig. 10. While
produces very prominent worms in horizontal and vertical

directions, produces almost no worms.
We conclude that, since a bandpass shape of

in error diffusion results in worms, such a shape should be
avoided.

C. Choosing the Error Filter for Iterative Error Diffusion

In conventional error diffusion, the error is fully diffused
to future pixels. Let this be referred to asdiffusion in space.
Such a diffusion has the ability to retain the average intensity
over space. This property is termed differently by researchers
as no error leakage [21] and mean preservable. If the error is

(a)

(b)

Fig. 10. Power spectrum of the halftoning noise for example 2: (a)h4 and
(b) h5.

not fully diffused, the remaining part of the error is not com-
pensated by neighboring pixels; the error keeps accumulating
at every pixel.

In iterative error diffusion, diffusion occurs also in time
(iteration). An error filter having and remaining
coefficients 0 will diffuse the error fully in time. In such a case,
a pixel intensity is indeed preserved over time (that is, over the
average of various output halftones produced in consecutive
iterations). For example, a gray value of 0.9 would produce
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Fig. 11. Input image of Lenna.

Fig. 12. Halftone using the error filter of (15).

nine white dots and one black dot in a period of ten iterations.
However, averaging in space is acceptable since the human eye
does the same. Averaging in time does not serve the purpose
since a viewer looks only at any individual iteration output.
It may be concluded that diffusion in space is preferred for
halftoning than diffusion in time. The coefficient at the origin,

, is capable of diffusion in time only, which is not
desirable. Such a diffusion can be avoided by making this
coefficient zero. Having a nonzero coefficient at the origin
leads to a halftoning noise with considerable low frequency
energy, which is easily perceived by the human eye.

It may be noted here that due to the presence of diffusion
in time, absolute convergence is not expected in iterative
error diffusion, merely the average halftone over space-time
is converged.

Fig. 13. Halftone using the error filter of (18) after 10 iterations, starting
with the error diffusion error.

Fig. 14. Magnitude response of1 �H(!x; !y) of (18).

The error filter we choose is a zero phase filter. Because
of the opposite quadrant symmetry property of 2-D zero
phase filters, two parts of the filter and
will have same coefficients except for the coefficient at the
origin which will be present only in the second part (which
we take as zero). The filter should be lowpass with unity gain
at zero frequency. Let the desired shape of the halftoning
noise be given. Equating this shape to , the
required shape of the magnitude response of may
be obtained easily since now it is zero phase. A procedure to
design the error filter having a shape conforming to the image
spectrum is suggested in [24].
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Fig. 15. Power spectrum of the halftoning noise for Fig. 13.

Fig. 16. Mean absolute phase error for Figs. 12, 13, and 18.

IV. RESULTS AND CONCLUSION

In order to compare our simulations with the conventional
error diffusion, we used a zero phase version of the error filter
of (15) for the proposed iterative error diffusion algorithm. Its
impulse response is

(18)

Fig. 11 shows the input image Lenna, retaining almost all the
features of the gray tone. In contrast, all halftones have a
dot density of one dot per pixel. Fig. 12 shows the halftone
obtained from the conventional error diffusion method using
the error filter of (15). Fig. 13 shows the halftone obtained
from the proposed iterative error diffusion method using the
zero phase error filter, after ten iterations. The starting error
values are the errors obtained from the conventional error

Fig. 17. Halftone using the error filter of (18) after ten iterations, starting
with random error.

Fig. 18. Halftone using the error filter of (18) after one iteration, starting
with the error diffusion error.

diffusion method. The effect of using the zero phase filter
can be observed in all the regions which have fine details.
One example is the lines in the upper parts of the hat which
were all missing in Fig. 12. Similarly in the lower parts of
the hat which has a scarf tied around the hat, the folds of
the scarf are very prominent in Fig. 13. There is a line going
along the rim of the hat which is not visible in Fig. 12 but it
can be clearly seen in Fig. 13. Fig. 13 reproduces even very
thin edges compared to the other halftone. All these examples
establish that the zero phase error filter is much more truthful
in reproducing the fine details of the actual image. Due to
the zero phase response, this effect is symmetric, unlike the
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(a) (b)

Fig. 19. Fraction of changed pixels versus iteration number for the iterative error diffusion, starting with (a) the error diffusion error and (b) random error.

sharpening associated with the error diffusion where edges are
amplified along one direction only. Also the periodic worms
in the uniform regions of Fig. 12 are replaced by more random
patterns in Fig. 13. The drawbacks of the error diffusion, edge
blurring, and worm artifact, are eliminated using a properly
shaped zero phase error filter.

The magnitude response of for the error filter
of (18) is shown in Fig. 14. The halftoning noise magnitude
spectrum for the halftone of Fig. 13 is shown in Fig. 15. The
halftoning noise shape is identical to the magnitude response,
as predicted by (8). Fig. 16 compares the radially averaged
absolute phase error for the halftone of Fig. 13, with that
for the error diffusion halftone of Fig. 12. The plot also
includes the mean absolute phase error for the halftone of
Fig. 18 described later. Note the consistently low level of mean
absolute phase error obtained by the zero phase error filter.

Another example shown in Fig. 17 is the halftone obtained
after ten iterations using the same filter, but with starting
values of uniform white noise. In a cursory glance Fig. 17
looks similar to Fig. 13, on closer observation one finds that
the remaining worms of Fig. 13 have vanished in Fig. 17.
The reason behind this is the use of signal-independent noise,
which tends to break the worms. Otherwise, the final results
are in general independent of the starting error value.

Since any iterative halftoning algorithm may be compu-
tationally unattractive for implementation (such as variable
number of iterations), one may wish to use the proposed
algorithm for a fixed number of passes. Fig. 18 shows the
halftone obtained after a single iteration with the identical
error filter and starting error values as in Fig. 13. Though
not as good as the halftone in Fig. 13, it is in our opinion
better than the conventional error diffusion halftone of Fig. 12.
This example shows that, even a single pass of the iterative
error diffusion approach produces results that we feel are better
than the error diffusion approach. Note, however, that Fig. 18
actually requires two passes, the first one being conventional
error diffusion to generate the starting error values. It turns
out that an overall single pass, such as starting with random
noise, does not produce an acceptable result.

Fig. 19 shows the plots of the fraction of changed halftone
pixels between two consecutive iterations (used as the con-
vergence criterion), versus the iteration number, for different

starting quantization error values. The plots are obtained after
averaging the results of five 512 512 images. The fraction
decays relatively slowly for the second case (random starting
error), but settles at a smaller value than the first case. Since the
starting point in the first case (starting with the error diffusion
error) is a good halftone in itself, the convergence is faster.
On the other hand, the starting point in the second case is
signal independent noise; therefore, it takes more iterations
to converge. The settling of the fraction at a smaller value
is in accordance with the observed better performance in the
second case.

It is seen that the iterative error diffusion algorithm, using a
zero phase error filter, produces substantially better halftones
(in our opinion) that reproduces even the thin edges of the
input. We therefore conclude that the phase response of the
error filter is important in order to obtain perceptually good
halftones.
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