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Abstract—We describe a general coding strategy leading to
a family of universal image compression systems designed to
give good performance in applications where the statistics of
the source to be compressed are not available at design time

6000

or vary over time or space. The basic approach considered ]

uses a two-stage structure in which the single source code of z

traditional image compression systems is replaced with a family 2 ***°{ \( — LENA ON BRAIN CODEBOOK
of codes designed to cover a large class of possible sources. To& \ ’

illustrate this approach, we consider the optimal design and & "}

use of two-stage codes containing collections of vector quan- 2
tizers (weighted universal vector quantization), bit allocations

for JPEG-style coding (weighted universal bit allocation), and
transform codes (weighted universal transform coding). Further,

we demonstrate the benefits to be gained from the inclusion of ——— e
perceptual distortion measures and optimal parsing. The strategy 0.3 0
yields two-stage codes that significantly outperform their single-

stage predecessors. On a sequence of medical images, weightegdg. 1. Distortion-rate results for fixed-rate coding of a portrait (Lena) with
universal vector quantization outperforms entropy coded vector a standard full search VQ trained on brain images compared to fixed-rate
guantization by over 9 dB. On the same data sequence, weightedcoding of the same image with a standard full search VQ trained on portraits.
universal bit allocation outperforms a JPEG-style code by over In both cases, the training and test sets do not overlap.

2.5 dB. On a collection of mixed text and image data, weighted

universal transform coding outperforms a single, data-optimized o o )
transform code (which gives performance almost identical to that Coefficients but also to match the statistics observed in a

of JPEG) by over 6 dB. sequence of training images. Further, use of the DCT for

Index Terms—Adaptive coding, bit allocation, clustering, image image decomposition reflects an assumption that the majority
compression, JPEG, perceptual distortion measures, transform Of images to be compressed are “smooth,” “natural” images,
coding, two-stage coding, universal coding, vector quantization. for which the DCT is best suited. When the assumptions
upon which we build an image compression system fail,
performance suffers. A vector quantizer (VQ) designed for
) ] . one source and operated on another will not achieve the best

RADITIONAL image compression systems are designegssipie performance for the source in operation, as shown

_ using assumptions @ priori knowledge about the typesy,, 1he example in Fig. 1. Similarly, when JPEG is used to

of images to be compressed. For example, vector quantizg, ?npress images that fail to meet the “smooth,” “natural”

(VQ's) are designed us_ing tr_aining Sets_ O_f data believe? age assumption, poor performance results.
to be representative of incoming data. Similarly, the JPEG

. di tandard | desi hoi d .~ Unfortunately, in many image compression applications,
'mage coding standard employs design choices made us 8 statistics of the images to be compressed are not known
assumptions about the types of data to be compressed. JP esign time and may in fact vary over space or time.
guantization matrix, used in allocating the available rate amopg,,.

. . . - e encoder and decoder were “omniscient” and could
a collection of discrete cosine transform (DCT) coeff|C|ent?ﬁde endently identify the source in operation prior to codin
is typically designed not only to take advantage of the differ- P y P P 9

ina psvchovisual importances of different frequency domarke could employ a coding strategy that switched codes during
9 psy P q y me compression process. That is, both encoder and decoder

could independently switch among some collection of codes,
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fffffffffffffffffffffffffff codebook switches. The optimal scheduling variation on this

: : ; approach, called a variable dimension WUVQ (VDWUVQ)
@y 02} oHANNEL [ JO{G] )i- #..8 appears in Appendix B. A discussion of the weighted universal
! ENCODER | 3 DE,,COD,‘,:ER bit-allocation (WUBA) algorithm, which uses a collection

_ of quantization matrices for JPEG-style coding, appears in
Fig. 2. Two-stage code. Appendix C. In Appendix D, we demonstrate a weighted
universal perceptual image code (WUPIC), which shows the

a code from its collection and then using the chosen codeRgrformance achieved by replacing the traditional squared er-
decode the description in the second stage. The Rice machli§é distortion measure with a perceptually weighted distortion
used for image compression on the spacecraft Voyager,clgerion. Appendix E treats a weighted universal transform
an example of a lossless two-stage code. The Rice mach#ggle (WUTC), which uses an optimal collection of transforms
independently encodes each block of 16 image pixels using tAeaddition to an optimal collection of bit-allocations.

best of four memoryless entropy codes. The selected code is

specified using a 2-b prefix for each coded block [1], [2]. Two- Il. CobE DESIGN

stage codes employing a collection of quantizers can likewise| o .1 _ (z1,---,21) € X! represent ad-dimensional data

be des_igned for lossy source cc_)ding. For example, chang'\y&tor, typically comprised of the pixel values imé& x /1
strategies from frame to frame in an MPEG coded sequengege block. LetC! be some family of lengti-block codes,
(and describing those changes to the decoder) is a form\mere associated with any codé = Soa € C'is an
two-stage coding. . , encodera: &' — S that maps each input vectar € &*

A number of questions arise in the design of two-stagg , single binary codeworsl from binary prefix codeS and

codes. How many bits should be used in the first—stagedecode,ﬁ:S_> X!, that maps the binary codeworde S
description? Which codes should be included in the collectiop? 5 reproduction:! f7rom the reproduction alphabet’. Let

To answer these questions, we interpret the two-stage codea ,C) = d(z', B(a(z!))) be the total distortion achieved
a “quantizer” that quantizes the space of possible codes. Tl tcodinga:l with code C. Similarly, let r(z!,C) = |a(z!)|
is, given a collection of possible sources, a code type, aglnote the associated rate.

a target rate, associated with each source is an optimal cod®ayt consider a collection of such codeg);}, indexed

of the given type. Thus, associated with any class of possiliw a binary strings from a prefix codeS. Each codeC;
sources there exists an analogous class of codes, where e3Ghis collection is composed of an encodey : X! — S;

code in the class is the optimal code corresponding to a singlgi-, maps eachdimensional vector! to a binary codeword

source in the collection. By designing any single code with the € S;, and a decodes; : S; — X', which maps each binary

hopes of doing well across the images in our collection, W& 4avords- € S; to a reproduction vectat! € X', HereS;
effectively quantize the space of possible codes to rate zgo,q binaiy presfix code associated with code °
That is, we choose one code that will do well on average\ye wish to code each block af I-dimensional vectors

across the images in the collection. Since only one code,j&y, exactly one of the codes in this collection. For each such
used, no rate is required for describing the code in operatigR .k the encoder sends to the decoder the indef the

on a particular data block. In designing a collection of codegyge ysed for the block, then independently codes each of the
we effectively quantize the space of possible codes to SOM&_dimensional vectors with cod€s. Thus the value of

rate greater than zero. Thus, optimal two-stage code desigiliermines the (fixed) schedule according to which new codes

the space of possile code is desired for each image.Smaller values afe

codes in a rate-distortion optimal fashion. _useful for applications where allowing the coding strategy to

In Section II,'We present a descent algorithm for demgmr&ange within a single image yields superior performance.
two-stage algorithms that allow code changes evevectors. y,yever, for small values of., the side information used

We call the resulting codes “weighted universal” codes. ThE gescribe the code in use becomes more significant. Here
weighted universal code design algorithm, which is function,o assume that is a fixed constant; this assumption will be

ally equivalent to the generalized Lloyd algorithm (GLA)amoved in Section IlI. By coding* with codeCs, the total
or rather its entropy-constrained variation, arises as a dirget, - - neous distortion achieved is

consequence of the quantization interpretation. In Section I, ”
we _generalize. the fixgd dimension code char)ging strategy to (=™, C5) = Zd(wl‘,Cg)
achieve a variable dimension two-stage coding strategy that =
changes codes according to a variable schedule optimized to ] )
match changes in the source characteristics. while the total instantaneous rate is
Two-stage coding strategies are applicable to a wide range n . n .
of code types. A variety of sample applications are described, (@™, C5) = [8| + Z (i, Cs)-
compared and discussed in the appendixes. In Appendix A, =1
we describe the weighted universal VQ (WUVQ) algorithm,The total rate includes the rate associated with describing the
which employs a collection of VQ’s and a fixed schedule faselected code’; to the decoder.
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Fig. 3. First-stage quantizer.

The goal of code design is to find the prefix cofleand
the collection of codeqCs} s that minimize the expected
distortion subject to a constraint on the expected rate. This
minimization can be performed using the quantization interpre-
tation of two-stage weighted universal codes [3], in which the
collection of codegC;} is considered a quantizaticodebook
with “codewords” C; € C!. With this interpretation, each
data sequence' is “quantized” to one of the codewords,
say C5, with resulting distortion and rate given by (1) and
(2). To be precise, we define the “first-stage” quantizétas
distinct from the “second-stage” quantizefs;, 5 € S), as
composed of an encodér: X' — &S, which maps each data

3)

1319

1) Nearest Neighbor Encodin@ptimize the first-stage en-
coder for the given first-stage decodeand prefix code

S. For a given collection of codes, the optimal first-
stage encoded* is the first-stage encoder that satisfies
a*(z!") = arg Iningeg[d(xl"’,/§(§)) + Mr(z™, B(3)]

for every z!*. We call the optimal first-stage encoder
a nearest neighboencoder. Nearest neighbor encoders
can be implemented by encoding the incoming data
vector with each code in the collection and choosing
the code that yields the lowest Lagrangian performance.
Decoding to the Centroid:Optimize the first-stage
decoder for the given first-stage prefix code and
the newly redesigned first-stage encodeihe optimal
first-stage decodep* for a given first-stage encoder
& satisfies 5*(3) arg mingee E[d(X™,C) +
(X, C)|@(X™) = 3] for everys € S. By analogy

to the optimal decoder design in vector quantization,
we call the process of designing the optimal first-stage
decoderdecoding to the centroidFor eachs € S,
decoding to the centroid involves choosing or designing
a single codeC* € C! that gives optimal performance
for the set of datdz'": a(z'") = 3}. In practice, this is
accomplished using an optimal design algorithm for the
family ¢! of codes under consideration. Descriptions of
the design algorithms associated with a variety of code
classes appear in the appendixes.

Optimizing the Prefix Codeptimize the first-stage pre-
fix code S for the newly redesigned first-stage encoder
& and first-stage decode?. For variable-rate coding,

2)

block $x7{In}$ to a binary descriptios from the binary prefix the optimal prefix code&s* is the entropy code matched
codeS, and a decodef : S — C!, which maps each binary to probabilitiesP{a(X ") = 5}, with ideal codelengths
descriptions € S to its corresponding reproductiaf;. |5*| = —log P{a(X™) = 3}.

Fig. 3 illustrates the first-stage quantizer. The first-staggtice that the prefix code may be a fixed- or variable-length
quantizer's reproduction of a data bloek™ is the length- code, and the family! may be any family of block codes.

I block codeCsermy = fa(z")) € C' used to code the Thys the above algorithm could be used to design a collection

subblockszy, ..., a;, of xh?- In coding the blockz" with  of |ossless codes like the one used in the Rice machine or a

code/3(a(x")), the total distortion and rate are collection of fixed- or variable-rate quantizers, as is the focus
in the examples in this paper.

For any familyC’ of codes, the expected Lagrangian de-
creases or remains constant in each step of the above design
algorithm. Since Lagrangian performance is bounded below
by zero, it must decrease to a limit as the number of iterations
grows. In fact, if the decoding to the centroid operation yields
a global optimum or can itself be described as an iterative pro-

n

d('™, fle(™))) = Y (el Bagain (@aain (@),

i=1

@A) = 16+ Y fasen (@)

Now, minimizing the expected distortion cedure in which every step guarantees a global optimum, then
E[d(X™, Ba(X™)] subject  to a constraint the above procedure guarantees a locally optimal collection of
on the expected rate E[r(X™ S(a(X™)))] is codes. This criterion is met in all of the cases considered in
equivalent to minimizing the expected Lagrangiathis paper.

E[d(Xln,B(d(Xln))) + )\T(le/}(d(xln)))] for some The optimal design algorithm for a collection of codes
positive value of\ determined by the rate constraint. employs a single codebook optimization algorithm within the
The optimal design is achieved using an iterative descdramework provided by the GLA. Our algorithm is not the first
technique formally equivalent to the GLA [4], or rather it40 use the GLA with another optimization algorithm nested
entropy-constrained variation [5]. The algorithm is initialinside. For example, Buzet al. [6] use the GLA to cluster
ized with an arbitrary prefix codé and first-stage decoderlinear predictors for speech, using the prediction error as the
{B(5): 5 € S} such thatj3(s) € ¢! for all 5 € S. Each distortion measure and the Levinson algorithm to optimize
iteration in the algorithm is accomplished in the three steplse predictors. Rabineet al. [7] use the GLA to cluster
enumerated below. hidden Markov models for speech, using the log likelihood
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as the distortion measure and the Baum-Welch algorithmin variable dimension two-stage codes, each incoming data
to optimize the models; Safranek and Johnston [8] use thieeam is partitioned into variable length first-stage vectors.
GLA to cluster entropy codes for subband image codin@he encoder then describes these first-stage vectors, one by
using bit rate as the distortion measure and the Huffmame, to the decoder. To describe a first-stage vector, the
algorithm to optimize the entropy codes; Chou [9] uses tlencoder first describes the length of the first-stage vector, then
GLA to cluster probability mass functions for classificatiorlescribes the index of the code with which the component
tree design, using the Kullback-Leibler divergence as thectors of that first-stage vector will be encoded, and finally
distortion measure and conditional expectation to calculagescribes the component vectors using the chosen code. The
the pmfs; and Chan and Gersho [10] use the GLA to clustgptimal partition is the partition that minimizes the distortion
vector quantizers for residual VQ, using the overall distortiogubject to a constraint on the rate, which now includes the rate
as the distortion measure and a nested GLA to optimize th§sociated with describing the length of each first-stage vector.
individual quantizers. Our algorithm may be the first, howevethe use of optimally chosen first-stage vector dimensions
to incorporate bit rates from both the first and second staggfows variable dimension codes to better carve the data into
into the design. This is necessitated by the fact that both tﬁg component subsources, Coding each with an appropriate|y
first and second stages contribute to the rate in two-stag@tched code.
universal coding. Let z!,..-,2% be an incoming data sequence &f

The number of bits contributed by the first stage in a@imensional vectors. This data sequence will be broken into
optimal two-stage universal code is suggested by theory Erorst-stage vectors of varying length, say. - - - , yx, of lengths
pp. 1119-1120, Case 1 and Th. 6] to be some constant pl§;-dimensional vectorsly |, - - -, |yx|. The number of first-
(k/2)log n, wherek is the number of parameters in the familysi4ge vectors and their lengths are subject only to the constraint
of codesC’, i.e., the number of codewords in each€ C' a1 the sum of the lengths must equal the initial data length
times the dimension of gach codgword. In other words, th Sy;| = N). Using 2 to denote the sequenad, -
number of codebooks in an optimal two-stage code shoy {y:} < ! mean thaf{y;} partitionsz{" and satisfies the

grow as”.k/Q' Experimental results showing that this formulgy, e constraint. Usgy: }| to denote the number of elements
is approximately followed in practice are shown in [3]. in the partition. Since the first-stage vector length is allowed

As compared to traditional one-stage codes, two-stage Coges a1y it must be described to the decoder along with the

eXh'.b't a growth in computational corT_]pIexny roughly pro irst- and second-stage code information. The encoder uses
portional to the number of codebooks in the two-stage co

Thi lexity | it f h imal i entropy codey to describe that length, whele(m)| is

IS comp ?X'ty Increase resu ts from t € optima encodiNge rate associated with describing a first-stage vector length
procedure, in which the data must effectively be quantized  Notice that if |v(m)] is zero for lengthn and infinity
with all codebooks prior to coding in order to choose thgt

ontimal second-stage code. The complexity arowth associa erwise, the variable dimension code will behave exactly
w[|)tr|1 oina from agone—sta{ e code Ft)o );){vgo-ga o cod:a }ﬁ’é its fixed dimension counterpart. Thus, an optimal variable

going 9 . ge * dimension two-stage code can only exceed an optimal fixed
analogous to the complexity growth associated with going
from a ra_lte_zero \_/Q_to a h|ghgr_rate VQ. While the growth Iirg:;ain is achieved at the expense of the additional complexity
complexity is not insignificant, it is far smaller than the growt ecessary for obtaining the optimal partition

in complexity associated with many “adaptive” codes that : . . . . :

incorporate some level of system design in the encoder. (Whéle;— hee ggggalise:%?nalgo\r/'::ir;igor: \(/)a:'igf glanAe n?tlgrnatti\\l/vgl

the design of two-stage codes is computationally expensiv g . g ) ' y
chieving descent on the Lagrangian performance. The system

this design occurs off-line, and does not affect the run time”. itialized with bit first.st erfirst-st
experienced by the system user.) For many applications {rdniualized with an arbitrary first-stage encoderfirst-stage

g coders, and pair of entropy codeg andS. Each iteration

{
”‘T]\ﬁ

mension two-stage code in performance. This performance

significant performance improvements achieved by two-sta h hni h q foll
codes make the additional complexity worthwhile. As a the te(? nique t_en pro_cee saslo ow§. )
example of the rate of complexity growth, for a collection 1) Optimal Parsing:Optimally parse the incoming data se-

of K I-dimensional, ratez, fixed-rate VQ's and the squared- quence for the given first-stage encodefirst-stage de-
error distortion measure, encoding a sequente with a coder/3, and prefix codes andsS. The optimal parsing
two-stage code requires approximatel§(2 In 2% + n) satisfies{y; } = arg ming, ; o [Zi d(z, B((z:))) +

additions andK In 2'® multiplications as compared to the My (|2 D) 4 vz, Bla(z)].
2 In 2! additions andn 2'% multiplications required in a  2) Nearest Neighbor EncodingOptimize the first-stage
one-stage code of ratB. Of course, the complexity can be encoder for the given parsinfy; }, first-stage decoder
considerably reduced by using tree structures or other means. 3, and prefix codesy and S. The optimal first-stage
encodera” follows the nearest neighbor law" (y;) =
arg minge s[d(yi, B(5)) + Mv(lw)| + (v, ()],
Ill. VARIABLE DIMENSION TWO-STAGE CODES which maps each incoming blogk to the index of the
The above weighted universal codes use fixed first-stage second stage codg(s) that encodes; to the lowest
vector dimensionn. In this section, we consider two-stage value of the Lagrangian performance measure.
codes in which the first-stage vector dimension is allowed to3) Decoding to the CentroidOptimize the first-stage de-
vary. coder for the given parsingy;}, prefix codesy and
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S, and first-stage encodet. The optimal first-stage JPEG) by over 2.5 dB. (See Appendix C, Fig. 9.) The per-
decoder}* satisfies3*(3) = arg mincc E[d(Y;,C)+ formance gains associated with the same type of experiments
Ay (Y: D)+ (Y;, C))|a(Y;) = 5], which assigns to each using codes optimized for the perceptual distortion measure
5 € S the blocklength-codeC € ¢! that minimizes the described in Appendix D are even more extreme, with the
expected Lagrangian given th&} mapped tos in the two-stage bit allocation scheme (WUPIC) achieving up to
second step. 5 dB improvement in perceptual distortion over the perfor-
4) Optimizing the Prefix Code®ptimize the prefix codes mance of a one-stage bit allocation scheme. (See Appendix
~ ands for the given parsingy; }, first-stage encodet, D, Fig. 11.) On a collection of mixed text and image data,
and first-stage decodet. The optimal prefix codes* weighted universal transform coding outperforms a single-
andS* are the entropy code matched to the probabilitiestage transform code by over 6 dB. (See Appendix E, Fig. 13.)
P{v(y;) = m} and P{a(y;) = §}, and thus the ideal The performance of the optimal single-stage transform code is
codelengths ardy*(m)| = —logP{|y;| = m} and almostidentical to the performance of the JPEG image coding
|5*| = —log P{a(y;) = §}, respectively. standard when used with a quantization matrix optimized for
The 0pt|ma| partition in Step 1 is accomp|ished usingWe given training set. Also included in the appendixes is an
the dynamic programming argument of variable dimensigixample of a variable dimension two-stage code (VDWUVQ).
VQ [11], [12]. The argument proceeds as follows. Lefhe VDWUVQ yields performance improvements of up to
J, = Inin{yi}<m§” ¥ [d(yi,ﬁ(d(yi))) + My(Jw)| + 48 dB over the performance of thg fixed di_mension WUYQ,
7,(%/}(&(%))))1 be the score of the best partition of théhereby demonstrating the potential benefits of the variable

partial data sequence , - - - <. If B is the maximum allowed dimension approach. (See Appendix B, Fig. 6.)
first-stage vector length, then far< n < N
J,= min  {Ju_,+min [d(iif_b+17/§(§)) V. DISCUSSION AND CONCLUSIONS
bc{L, B} 5CS The guantization interpretation of two-stage codes [3] yields
+ M2 D)+ (@, BN} (1) an iterative descent technique for designing a wide variety
of optimal two-stage data compression systems. We here
where J, = 0 and J,, = o~ for n<0. Let b, be the demonstrate the application of that basic approach in a number
minimizing vector lengthb in (1). Thenby is the last first- of different systems. (See the appendixes.) The resulting two-
stage vector length in the optimal partition ef”. The stage codes replace the single code of a traditional one-stage
optimal partition ofz{™ can be found by backtrackingy;} = compression system with a family of codes designed to do well
{- --bN_|,,N|_|,,N_‘bN‘|,bN_|,,N|,bN}. While partitioning and across a wide variety of data types. The described technique
encoding have been described as separate processes, thega@ame used to design optimal collections of a wide variety of
be accomplished simultaneously (at the expense of greaterles, such as noiseless codes, vector quantizers, JPEG-style
storage requirements) by tracking not only the optimal petodes, transform codes, and so on. Given a target rate and a
formance and last first-stage vector length at each tinheit code type, the design algorithm can be used to find both the
also the encoding information for that first-stage vector.  number of codes needed to cover the space of possible sources
As a final remark, if the minimization in (1) is taken oveand the optimal collection of codes to be used.
a restricted sef3,, of vector lengths dependent on then a  The computational expense associated with going from a
constrained partition results. For example, to obtain a binappe-stage code to a two-stage code is roughly proportional to
tree segmentation of the dat&", then3,, can includeb = 2¢ the number of codes in the two-stage system. This expense
if and only if » mod2? = 0,4 = 0,1,2, ---. In such cases, the results from the optimal encoding process, which effectively
prefix code~ should also depend on. involves quantizing the data with every code in the collection
in order to choose the code with the best performance. The
computational cost of a two-stage code can be controlled
in a number of ways. First, the choice of the second-stage
Two-stage codes containing collections of vector quantizede type and coding dimension should take into account the
ers (WUVQ), bit allocations (WUBA), and transform codegsomputational constraints of the system: a collection of simple
(WUTC) are just a few examples of the types of codesdes may yield better performance than any single more
that can be designed using the design algorithm describedcomplex code. Second, the complexity of an optimal two-stage
Section Il. The resulting codes yield significant performanamde is easily capped at design time by choice of the maximal
improvements when compared to one-stage codes of the samamber of codes in the collection. Further, the complexity can
type and optimized for the same training set. While the detalte reduced considerably by the use of tree structures or other
of the algorithms and their experimental performance resuftsst search techniques. Finally, two-stage codes are ideally
are left to the appendixes, a few performance highlights aseited for parallel implementation where available.
summarized below. Universal source coding theory demonstrates the perfor-
On a sequence of medical images, the performance ronce benefits of two-stage codes as the coding dimension
WUVQ exceeds that of ECVQ by 7-8 dB. (See Appendigrows without bound. In this paper, we focus on the per-
A, Fig. 5.) On the same data sequence, WUBA outperformf@mance of two-stage codes for practical applications where
single-stage bit allocation scheme (functionally equivalent tmmputation, and therefore coding dimension, are forced to

IV. EXAMPLES
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be low. On a number of image data sets, the performance of,,
two-stage codes with coding dimensions ranging between 4
and 64 pixels yield as much as 10 dB performance improve- WUVQ (fixed-rate) - g -
ment over their corresponding one-stage coding counterparts,, ‘ 5 //* .
(See Appendixes A-E.) Further, these performance gains are | //
observed even in data sets where the space of images to be ‘
coded is quite homogeneous (e.g., the medical brain scanss.
used in Appendixes A-D). The above performance gain c&h
be attributed to the fact that while the images themselvés
bear a strong resemblance to each other, on the vector scalg|
at which the images are coded there exists a great deal
of statistical variation between data blocks. Thus, two-stage L7
coding is an attractive option for a wide variety of practical s-
data compression applications. )

-9

APPENDIX A

RATE (bpp)
WEIGHTED UNIVERSAL VECTOR QUANTIZATION

4. SQNR versus rate results for fixed-rate coding of the medical test

The weighted universal code design algorithm may t'gé%uence.

applied to a wide variety of code types. A simple example is

the vector quantizer (VQ). In using a VQ for lossy data com-

pression, an incoming data stream is broken into contiguous?® ‘ ' ! ' ' ' ' '
vectors of some dimensidnand each data vector is mapped to
the closest reproduction value in a fixed VQ codebook. In the i il
WUVQ algorithm, we employ a famil’* of I-dimensional ~ 2°f o ]
fixed- or variable-rate VQ’s. The code is designed offline, Z
using the iterative descent algorithm described in Section II. .-
In this case, decoding to the centroid is accomplished usi@ﬁ’ 2 , - variable-rate WUVQ
the GLA (for fixed-rate coding) or its entropy-constrainedx 7 ~ variable-rate WUVQ

.. . . L . Z. / with fixed-rate codebooks
variation (for variable-rate coding). The resulting design algog1 fe ECVQ

rithm may be described as a nested GLA. This nested process | , |
easily generalizes to design a large array of two-stage VQ's 4
by replacing either or both of the uses of the GLA by other o ) |
VQ design algorithms. Alternative VQ design algorithms that p
may be considered include tree-structured VQ, deterministic ,
annealing, fast codebook search algorithms, and so on. of J ‘ ) ) J : ) )
Once a WUVQ has been designed, copies of the code are © 02 04 08 08 1 214 18 18
given to both encoder and decoder. Thus both encoder and RATE (bpp)
decoder have identical copies of the first-stage binary €derig. 5. SQNR versus rate results for variable-rate coding of the medical test
and a collection of VQs—the first-stage decod@i(s): 5 € sequence.
S}. To encode a giverin-vector, the encoder breaks that
vector inton [-dimensional sub-vectors, and calculates faeported as entropy. SQNR is calculated-ds$) log,,(D/ D),
eachs € S the Lagrangian performance (;53(5) on the whereD is the current distortion)), is the zero rate distortion
collection ofl-vectors. The index of the code yielding the bestf a standard full-search VQ, and distortion is measured by
Lagrangian performance is described to the decoder in e squared error fidelity criterion. The codes considered use
first-stage description. The second-stage description contaenyector dimension of = 4 and the WUVQ makes an
the binary description of eadkhvector using the code describedndependent code choice for each two-by-two block of four-
in the first stage. The decoder reverses the process by ugiigensional vectors, giving = 4. Fixed-rate systems consist
the code described in the first stage to decodenthectors of up to 512 codebooks with up to 16 codewords per codebook.
described in the second-stage description. Codebook sizes for first- and second-stage codebooks in the
Figs. 4 and 5 show the performance of fixed- and variablease of variable-rate coding were initialized to 256 and 4,
rate WUVQ on a sequence of medical images, comparingspectively.
that performance to the performance of standard full searchFig. 4 shows the fixed-rate coding results. Each curve
VQ and ECVQ respectively. The experiments use twentgpresents a constant value of the second-stageRatnd
256 x 256 MR images as a training set and five 256 is labeled with the appropriat® value. The lower dashed
256 MR images as a test set. The two sets do not overlaprve is a standard full search VQ, which is equivalent
Performance results are reported as signal-to-quantizatibm-a fixed-rate WUVQ with first-stage rate equal to zero.
noise ratio (SQNR), and the rate of variable-rate codes F#y. 5 shows the corresponding entropy-constrained results.

=
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: : : : : : ‘ of entropy. VDWUVQ shows its greatest improvement over
WUVQ at very low rates, below 0.1 b/pixel, with an SQNR
up to 4.8 dB higher. Both VDWUVQ and WUVQ achieve
their greatest gains over standard full-search VQ at slightly
higher rates. VDWUVQ shows up to 11 dB improvement
over standard VQ. Allowing first-stage vector lengths up to
74— VDWUVQ (max dim 236) -~ ~ | 256 vectors improves performance by about another dB at the

& 12 ; ‘ . expense of increased computation. Fig. 7 shows the resulting
= fo———— VDWUVQ (max dim 16) . . . .
2 o0 K P J/  image coding performance. Fig. 8 demonstrates the sizes and
24 A wuvQ - | shapes of the first-stage vectors used by the VDWUVQ
/ P 2 algorithm in the previous figure.
6H P R
4, ! 5 e e .
FE APPENDIX C
Zf’ 7 | WEIGHTED UNIVERSAL BIT-ALLOCATION
%" 01 oz 08 04 05 08 07 08 09 1 While vector quantizers guarantee asymptotically optimal
RATE (bpp) performance as the vector dimension goes to infinity, the

Fig. 6. Comparison of variable-rate SQNR results on a collection of medic%tpmpu'[atlon_aI complexny of a VQ grOV_VS eXponent|ally _'n
brain scans. the vector dimension. Thus for complexity reasons, practical

VQ's are typically implemented with very small vectors. Much

. . ) ) OL the advantage associated with high-dimensional vector
In this case, we consider both fixed-rate first-stage codes wit L . . ) ; o
uantization comes from the high-dimensional code’s ability

f|xed—.rate second-stag(_a codgs of varying rates and vanalﬂoe '%xploit correlation between data samples. Transform codes,
rate first-stage codes with variable-rate second-stage codes a

compare the resulting performance to that of an ECVQ. mﬂlch decorrelate data prior to coding, achieve much of the

both fixed-rate and variable-rate coding, significant gains aigvantage of high-dimensional vector codes at low complexity.

. hieving this performance requires efficient allocation of
?heer?;?ssgj[fg ' dg]dz(ier?'o?;ing-rraai Sﬁ&‘,g%\?;ig&ggrz@ ﬁ?é available rate among the transform coefficients. Thus, bit
> 9 . .~ dllocation, which is typically implemented with the use of
and 7-8 dB gain of variable-rate WUVQ over ECVQ. Since

ECVQ already represents a substantial improvement 0vqeurantlzatmn matrices, is a key step in a wide array of transform

; .~ ‘codes.
entropy-coded standard VQ, variable-rate WUVQ aCh'eveSUnfortunater, the optimal bit allocation, like the optimal

more than 9 dB gain over entropy-coded standard VQ. . : .
. ; vector quantizer, is source dependent. For example, images
Notice that the demonstrated performance improvements . ~. . . i .
. . : . containing large amounts of high-frequency information re-
gained by going from single- to multi-codebook systems are . .
. . . Uire that more rate be allocated to the high frequency coef-
achieved despite the homogeneity of the data set—a sequ 1CE (s than do images made uo primarily of low-frequenc
of sagittal MR brain scans. By allowing the codebook tQ g PP y q y

- : ; nformation. An approach common to many transform codes
changewithin a given image, we are able to code eac . : . . .
. . : ._(including the JPEG image coding standard) involves breaking
component of the image (in this case components mig

include bone, fat, gray matter, etc.) with a code matched ?é[] incoming data sequence into blocks, performing an_inde-
the statistics of that component. pendent transfor_m on e_ach of th_ose blocks, gnd then co<_j|ng_ the
blocks using a single bit allocation (e.g., a single quantization
matrix). The performance of this type of scheme can be
improved by replacing the single bit allocation by a collection
of bit allocations. While a single bit allocation can be designed
While variable dimension two-stage codes may be devistml do well on average across a particular data sequence, no
for any two-stage code, we here demonstrate the techniquesargle bit allocation strategy can track local variation in data
the variable dimension WUVQ (VDWUVQ) [13] and comparestatistics. A code that incorporates a variety of bit allocation
the resulting performance with that of WUVQ and standamptions and allows the bit allocation to change from image to
full-search VQ on the medical brain scan sequence. image or even from data block to data block can better track
All of the vector quantizers use vectors of dimensiea 4. local variation in source statistics.
The vectors are Peano scan ordered (e.g., [14]). The firstThe WUBA [15], [16] is a two-stage DCT-based transform
stage vectors in VDWUVQ are allowed to contain up to 16ode in which the familyC! of codes is a family of bit
[-dimensional vectors while the first-stage vectors in WUV@Illocations. By designing a collection of quantization matrices
contain exactly fouf—dimensional vectors. All multicodebookthat is optimal for a given class of possible images (rather
systems consist of at most 256 codebooks, each with no mdran a single quantization matrix that is optimal on average
than four codewords. over that class), WUBA allows us to achieve the advantage
Fig. 6 shows the performance of variable-rate VDWUV@f a changing bit allocation strategy. Since the design pro-
and WUVQ with varying values ofA and the performance cedure occurs offline before the coding process begins, the
of standard full-search VQ. All rates are reported in terntate-distortion gains are achieved without the computational

APPENDIX B
VARIABLE DIMENSION WUVQ
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Fig. 7. From left to right: Standard VQ at 0.25 b/pixel and SQMR6.75 dB; WUVQ at 0.184 b/pixel and SQNR 11.6 dB; and VDWUVQ at
0.166 b/pixel and SQNR= 13.2 dB.

Fig. 8. First-stage vector sizes and shapes for the 0.166 b/pixel image. The left shows the size of the first-stage vector in which each pixel daslcoded, (
= size 1, white= size 16). The right image gives a random shade to each first-stage vector in order to demonstrate first-stage vector shapes.

expense of computing new bit allocations during the codingatrix [¢,, .|, where the(w,v)th componentF, ,, is divided
process. by the corresponding quantization matrix componént,,
Suppose that we are given some generic scheme for &mmncating to obtain the integett,, ., = |F. /@, + 1/2].
coding z* with bit allocationC € C'. Then for anyC € C' This truncation represents the lossy step in the quantization
andz™ € X d(z%, C) andr(z!, C), respectively, describe process. The encoder then losslessly describes the resulting
the distortion and rate associated with codirfgusing bit- quantized sequence to the decoder using a colledt#n, }
allocation C. Thus, we can use the weighted universal cod# entropy codes. The decoder simply reverses the process,
design strategy to design a collection of bit-allocations. In thistrieving [M,, ] from its binary representation, and then
case, decoding to the centroid may be accomplished by awoaling back up to achieve a frequency domain reproduction
number of optimal bit-allocation design algorithms. A simpl{aﬁuyv], Whereﬁu,y = M, Q... We find the spatial domain
DCT-based transform code and its corresponding optimal bieproductioni; ; by taking an inverse DCT otF., .].
allocation design algorithm are described below. In this case, as in JPEG, bit-allocation is controlled by the
The following DCT-based transform code is similar to thguantization matrix@,. ., which determines how coarsely or
JPEG algorithm but is simplified to permit an optimal centroifinely a particular component will be quantized and, therefore,
calculation. In this scheme, we codex88 data blockg! = how much rate will be used in describing that component.
64). Each data block is treated independently. Each data bloEke algorithm differs from the JPEG algorithm in several
passes first through a two-dimensional (2-D) DCT transforrdetails. First, we remove the differential encoding of the
The encoder: R%* — S maps the resulting 64-dimensionaDC component so that each source block may be treated
real data block into a binary string. This mapping occurs imdependently. Second, we remove the run-length encoder
two steps. The data block first passes through a quantizatfoom the lossless coding step, so that the quantizer may code
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Fig. 9. Comparison of SQNR results on a collection of five MR brain scans.
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n =4 andl = 4, respectively, and up to 12 dB improvement
over ECVQ with! = 4. This improvement can be attributed
to the higher effective coding dimensioi = 64) of the
WUBA scheme. (The WUVQ and ECVQ are implemented at
far lower dimensions than the WUBA due to the prohibitive
computational expense associated with high dimensional full
search vector quantizers.) The performance curves for the
WUBA and single bit-allocation systems can both be expected
to shift slightly to the left if they use a lossless code more
efficient than independent entropy coding, such as zerotree
coding or run-length followed by Huffman coding as in JPEG.
Fig. 10 compares the images resulting from quantizing the data
at around 0.2 b/pixel.

APPENDIX D
WEIGHTED UNIVERSAL PERCEPTUAL IMAGE CODING

It is well known that improvements in the mean squared
guantization error of an image coder do not necessarily trans-

each component within a given frequency block independentlgte into improvements in visual quality, since the amount of
We make these modifications to simplify the optimal biguantization error perceivable by the human visual system is

allocation design.

frequency and signal dependent. For example, humans are least

Given the independence imposed by the above modifrlerant of quantization noise at mid-frequencies, especially
cations to the JPEG algorithm and assuming an additivthen such quantization noise is imposed on smooth, mid-
distortion measure in the frequency domain, changing théminance regions of an image. Low amplitude quantization
(u,v)th component in the quantization matrix affects onlyoise in these regions may be perceived more easily than high
the rate and distortion associated with thev)th component amplitude quantization noise in other regions.
of the data blocks encoded with the given sequence. InModels of human visual perception have recently been
designing a quantization matrix for a given sequence afed to improve the visual quality of coded images, e.g.,
training data, we may therefore consider each quantizatifdj, [17]. (See [18] for an extensive review.) Image coders
matrix component independently. We choose each componbated on such models are callpdrceptual image coders
Q..» to minimize the Lagrangian performance on thewv)th  Most perceptual image coders to date are transform or subband
transform coefficients from the training sequence. The optimabders that choose a single quantization matrix in such a
entropy code for each component is the entropy code matchealy that the resulting quantization noise is least perceptible.
to that component’s statistics. We therefore achieve a simplghough the quantization matrix may be image-dependent,
design process for optimizing a bit-allocation system for this approach is limited, because it makes it impossible to
particular set of training data. The resulting quantization tabléde more quantization noise in some regions of the image,
represents a good starting value from which we can designd less in others.
the quantization and Huffman tables for the JPEG algorithm. A more recent approach to perceptual image coding involves
A simple variation on the entropy-constrained variation of th@pplying a prequantization step to the images before coding
GLA can then be used to iteratively update the quantizatithem with an ordinary image coder [18]. The prequantization
and Huffman tables for the given training set. Here, we stigitep sets to zero all frequency components in the image that
with the earlier described procedure for simplicity. The resufiill below the quantization matrix thresholds. Because the
is a strategy for optimizing the multiple quantization matriceguantization matrix can vary over the image according to the
supported in JPEG and an efficient means of describing thgserceptual model and the image content, this scheme makes it
quantization matrices. (Entropy coding the indices of chosgossible to hide extra “quantization noise” in those regions
quantization matrices from a fixed collection of possibilitiesf the image that will tolerate it. Unfortunately, the extra
requires far fewer bits than repeated full descriptions efuantization noise can be hidden only in those regions whose

guantization matrices.)

frequency components fall below threshold.

In Fig. 9, we compare the performance of the WUBA The basic difficulty faced in both of these approaches is
algorithm to the performance of a single bit-allocation othat maximally hiding quantization noise in a way that varies
the same training and test sets used in the previous sectwith the image in space and frequency seems to necessitate the
WUBA contains 64 bit-allocations and uses = 1 and description of an unacceptably large amount of side informa-
[ = 64. All rates are reported in terms of entropy. WUBAtion to transmit the spatially varying quantization matrices.
achieves up to 2.5 dB improvement over single bit-allocatiofhis difficulty is overcome by WUPIC, in which the side
systems. Further, WUBA achieves up to 5 dB improvemeirtformation is optimized by entropy-constrained clustering and
over WUVQ with first- and second-stage vector dimensiortoding of the quantization matrices.
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Fig. 10. Left: original image, coded image using a single bit-allocation at 0.45 b/pixel. Right: coded image using WUBA with 64 bit-allocati&ny/pix@l3

To be precise, WUPIC is simply WUBA (described in
Appendix C), for which the squared error distortion measure
is replaced by an input-weighted squared error distortion 34r
measure d(Fu.o, Fuv) = Suw Wao(Fuw — Fuu)?, Where
Fuu is the (u, v)th transform or subband coeﬁicierﬁ,u,v is
its reproduction, andy, ., is a weight that depends, through |
a perceptual model, on local image characteristics. Indeed, if
a perceptual model choosé, . as the quantization matrix 2 2
desired for a particular block of the image, therp ., is set to Z
Q;ﬁ. in that block. Because the decoder makes no explicit uéy;e
of the distortion measure, the weighting, which may vary from 24}
block to block, need not be explicitly transmitted. However,
the distortion measure will affect the design of the quantization |
matrices, and will affect the encoding. In this way, the desired |
perceptual quantization is performed. Quantization errors will
be hidden in those regions of the image that can most toleratess; : ‘ 03 5 05 06
them, from a perceptual point of view. RATE (bpp)

The perceptual model used in the experiments reported here _ _ _ o
is a typical three-part model, consisting of base threshol%lgir.ll- Comparison of perceptual image coders with 1 and 64 quantization
luminance masking, and texture masking components. Thatr?s, 1ces:

Wy, = Qu%, WhereQ, ., = B, ,L(F)I'(F). In particular,

we take the base threshold matfi®, ,] to be the example texture:

36 T T T

32r

WUPIC

single PIC

JPEG quantization matrix described with the standard [19]: T(F) = { (1 Jrl\gm/m)fl/z ?f AC < 16022
16 11 10 16 24 40 51 617 1=/ if AC> 1607
12 12 14 19 26 58 60 55 The WUPIC experiments use the same training and test
14 13 16 24 40 57 69 56 sets, and the same transform (DCT) and vector dimensions
B 14 17 22 29 51 87 80 62 (n = 1,1 = 64), as the WUBA experiments. Fig. 11 compares
T |18 22 37 56 68 109 103 77 |’ the test set performance of WUPIC with 64 quantization
24 35 55 64 81 104 113 92 matrices to the performance of a perceptual image coder with
49 64 78 87 103 121 120 101 a single, perceptually optimal quantization matrix. In this case,
72 92 95 98 112 100 103 99 | distortion is reported as signal-to-perceptual quantization noise

) ) , , ratio (SPQNR), the ratio of the expected perceptual distortion
We take the luminance masking functibi7) to be afunction ¢ 4 gntimal rate-zero quantizer to the expected perceptual
of the DC component (DC #,0/8 in an 8 x 8 DCT) such istortion of the given quantizer (in dB). The results show a 5
that perceptual sensitivity is unmodified at mid-gray (BC yg jmprovement in perceptual distortion over a range of rates
128), but ramps down linearly (in dB) te6 dB at full white  , o4ing from 1 to 64 quantization matrices. This contrasts to
(DC = 255) and to-24 dB at full black (DC= 0), as follows: 16" 5°gB improvement in mean square error (MSE) shown
10(6/20/(PC—128)/128,  if D > 198 in the WUBA experiments (Fig. 9). Apparently, the perceptual
(F) = { 10(24/20)128-DC)/128, i D < 198 distortion measure allows multiple codebook systems to gain
an even greater advantage over single codebook systems,
and finally we take the the texture masking functibF) to perhaps because the images appear more diverse under the
be a function of the AC energy (A& X,.z0 20 J—“EL’,U) such perceptual metric than under the squared error, and hence
that the perceptual sensitivity is unmodified with no texturdeave more to gain by using multiple codebooks. Fig. 12 shows
(AC = 0), but ramps down to aroun€10.4 dB with increasing images coded to about 0.4 b/pixel using 1 and 64 quantization
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Fig. 12. The images are coded at 0.38-0.39 b/pixel using the perceptual distortion measure and (left) one and (right) up to 64 quantization ma-
trix/entropy code pairs.

matrices, respectively, with the above perceptual distortion .
measure.

251
APPENDIX E

WEIGHTED UNIVERSAL TRANSFORM CODING

While WUBA allows algorithms like JPEG to achieve
good performance at low complexity by designing a locallyz

optimal collection of bit-allocations, the algorithm still suf- o;msf g/f * ]
fers from the smooth, natural image assumption inherent g R single TC

the JPEG algorithm. That is, while the DCT does a good | g’hl% single BA (JPEG) |
job decorrelating the samples of images with primarily low- %<—¥K”7 wWUVQ

frequency information, its performance on images with large |y ,~—————FECVQ

guantities of high-frequency information is less satisfactory. 3’ i
The Karhunen—Leve transform (KLT) is a data-dependent /

transform that achieves optimal decorrelation (all off-diagonal | I . ; ‘ ‘ ‘ ‘ ‘ ;
terms of the transformed data’s covariance matrix are iden- ° %% %4 08 O-SRAT:E (bpp;'z 146 182

tically equal to zero) and optimal energy compaction [20].
(Other suboptimal data-dependent decompositions, suchFasi13. Comparison of SQNR results on a collection of combined text and
wavelet packets, might also be considered.) To date, the K@My scale images.
has not been popular in data compression algorithms due to
its data-dependence. Relying solely on traditional techniques)n this case,C' represents a family of transform codes,
the transform would have to either be chosen in advaneach of which contains its own transform and bit allocation.
(which means that the statistics of the data have to be kno®ecoding to the centroid is accomplished as follows. Given
in advance) or computed during the encoding process ahat the KLT maximizes the coding gain over all orthogonal
communicated to the decoder, which is expensive both tiransform codes (e.g., [23, App. C]), we here set the transform
terms of computational complexity and in terms of rate. Givetode’s transform to the KLT matched to the statistics of
these difficulties with using the optimal transform, source codlee data to be coded. Using this choice, we accomplish the
designers have, to date, relied primarily on nonoptimal, dataptimal decorrelation and energy compaction for the source in
independent transform codes, such as the DCT used in JPB@eration. The KLT is calculated as follows. For a given index
The strategy of course achieves less success with imageket V; be the correlation matrix associated with these vectors,
that fail to match the assumptions upon which the choice bé., V; = (1/n) ¥, E[(X)(X])|&(X™) = 5]. Then the
transform was based. Thus, for example, performance of tnansform?’; has, in the first row, the eigenvector correspond-
JPEG algorithm is less satisfactory on low correlation, highg to the largest eigenvalue df;, in the second row, the
contrast images, such as images of text [21]. eigenvector corresponding to the second largest eigenvalue,
Here, we use the weighted universal code design algand so on. Given a transform, the optimal bit-allocation may
rithm to design multicodebook transform codes for whiche accomplished by an optimal bit-allocation design algorithm
the performance on every source in some broad class soich as the one described in the previous section.
sources approaches the performance that would be achievelh Fig. 13, we compare the performance of a WUTC to the
if the optimal transform code were used for every sourgeerformance of a single transform code. The WUTC contains
encountered. The resulting algorithm is the WUTC. [22]. 64 transform codes, and uses- 1,1 = 64 for all experiments.
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raw the lines of
work?
~—Matt Miller,

Fig. 14. Results of optimal single transform coding and optimal universal transform coding on a single mixed text and image file. From left to right:
original image; image coded with optimal transform coding using a single transform and bit allocation and rate of 0.20 b/pixel; and image coded with

universal transform coding using 64 transform codes and rate 0.23 b/pixel.

Each system is trained on a single 2048 pixeR048 pixel
image scanned from a page IBFEE Spectrum Magazinand

(13]

tested on another page from the same issue. Each page [hgs

roughly equal amounts of text and gray scale material. All rates
are reported in terms of entropy. WUTC achieves up to 2 dB
improvement over WUBA, up to 3 dB improvement over a sing 5
gle bit-allocation system (effectively equivalent to JPEG), uEJ
to 6 dB improvement over WUVQ, and up to 10 dB improve 16]
ment over ECVQ. The performance curves for all transform
coding systems should shift slightly to the left with applicatiofi?]
of a more efficient lossless code than the given independent
entropy codes. Fig. 14 shows the performance of the WUT@]
and the performance of an optimal single transform code.
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