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Abstract—We describe a general coding strategy leading to
a family of universal image compression systems designed to
give good performance in applications where the statistics of
the source to be compressed are not available at design time
or vary over time or space. The basic approach considered
uses a two-stage structure in which the single source code of
traditional image compression systems is replaced with a family
of codes designed to cover a large class of possible sources. To
illustrate this approach, we consider the optimal design and
use of two-stage codes containing collections of vector quan-
tizers (weighted universal vector quantization), bit allocations
for JPEG-style coding (weighted universal bit allocation), and
transform codes (weighted universal transform coding). Further,
we demonstrate the benefits to be gained from the inclusion of
perceptual distortion measures and optimal parsing. The strategy
yields two-stage codes that significantly outperform their single-
stage predecessors. On a sequence of medical images, weighted
universal vector quantization outperforms entropy coded vector
quantization by over 9 dB. On the same data sequence, weighted
universal bit allocation outperforms a JPEG-style code by over
2.5 dB. On a collection of mixed text and image data, weighted
universal transform coding outperforms a single, data-optimized
transform code (which gives performance almost identical to that
of JPEG) by over 6 dB.

Index Terms—Adaptive coding, bit allocation, clustering, image
compression, JPEG, perceptual distortion measures, transform
coding, two-stage coding, universal coding, vector quantization.

I. INTRODUCTION

T RADITIONAL image compression systems are designed
using assumptions ora priori knowledge about the types

of images to be compressed. For example, vector quantizers
(VQ’s) are designed using training sets of data believed
to be representative of incoming data. Similarly, the JPEG
image coding standard employs design choices made using
assumptions about the types of data to be compressed. JPEG’s
quantization matrix, used in allocating the available rate among
a collection of discrete cosine transform (DCT) coefficients,
is typically designed not only to take advantage of the differ-
ing psychovisual importances of different frequency domain
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Fig. 1. Distortion-rate results for fixed-rate coding of a portrait (Lena) with
a standard full search VQ trained on brain images compared to fixed-rate
coding of the same image with a standard full search VQ trained on portraits.
In both cases, the training and test sets do not overlap.

coefficients but also to match the statistics observed in a
sequence of training images. Further, use of the DCT for
image decomposition reflects an assumption that the majority
of images to be compressed are “smooth,” “natural” images,
for which the DCT is best suited. When the assumptions
upon which we build an image compression system fail,
performance suffers. A vector quantizer (VQ) designed for
one source and operated on another will not achieve the best
possible performance for the source in operation, as shown
by the example in Fig. 1. Similarly, when JPEG is used to
compress images that fail to meet the “smooth,” “natural”
image assumption, poor performance results.

Unfortunately, in many image compression applications,
the statistics of the images to be compressed are not known
at design time and may in fact vary over space or time.
If the encoder and decoder were “omniscient” and could
independently identify the source in operation prior to coding,
we could employ a coding strategy that switched codes during
the compression process. That is, both encoder and decoder
could independently switch among some collection of codes,
always using the best code for the image in operation. Since
real systems cannot be omniscient, an encoder that switches
codes to match unknown or varying source statistics must use
overhead bits to describe which code will be employed on
each data block. The resulting compression system, illustrated
in Fig. 2, is a two-stage or multicodebook code. Using this
approach, the encoder describes data in two stages. In the first
stage, the encoder describes a code from its collection. In the
second stage, the encoder describes the data using the code
described in the first-stage description. The decoder reverses
the process, using the first-stage code description to choose
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Fig. 2. Two-stage code.

a code from its collection and then using the chosen code to
decode the description in the second stage. The Rice machine,
used for image compression on the spacecraft Voyager, is
an example of a lossless two-stage code. The Rice machine
independently encodes each block of 16 image pixels using the
best of four memoryless entropy codes. The selected code is
specified using a 2-b prefix for each coded block [1], [2]. Two-
stage codes employing a collection of quantizers can likewise
be designed for lossy source coding. For example, changing
strategies from frame to frame in an MPEG coded sequence
(and describing those changes to the decoder) is a form of
two-stage coding.

A number of questions arise in the design of two-stage
codes. How many bits should be used in the first-stage
description? Which codes should be included in the collection?
To answer these questions, we interpret the two-stage code as
a “quantizer” that quantizes the space of possible codes. That
is, given a collection of possible sources, a code type, and
a target rate, associated with each source is an optimal code
of the given type. Thus, associated with any class of possible
sources there exists an analogous class of codes, where each
code in the class is the optimal code corresponding to a single
source in the collection. By designing any single code with the
hopes of doing well across the images in our collection, we
effectively quantize the space of possible codes to rate zero.
That is, we choose one code that will do well on average
across the images in the collection. Since only one code is
used, no rate is required for describing the code in operation
on a particular data block. In designing a collection of codes,
we effectively quantize the space of possible codes to some
rate greater than zero. Thus, optimal two-stage code design
is in some way analogous to optimal quantizer design in the
sense that the optimal two-stage system’s collection of codes
is the collection of codes that “quantizes” the space of possible
codes in a rate-distortion optimal fashion.

In Section II, we present a descent algorithm for designing
two-stage algorithms that allow code changes everyvectors.
We call the resulting codes “weighted universal” codes. The
weighted universal code design algorithm, which is function-
ally equivalent to the generalized Lloyd algorithm (GLA),
or rather its entropy-constrained variation, arises as a direct
consequence of the quantization interpretation. In Section III,
we generalize the fixed dimension code changing strategy to
achieve a variable dimension two-stage coding strategy that
changes codes according to a variable schedule optimized to
match changes in the source characteristics.

Two-stage coding strategies are applicable to a wide range
of code types. A variety of sample applications are described,
compared and discussed in the appendixes. In Appendix A,
we describe the weighted universal VQ (WUVQ) algorithm,
which employs a collection of VQ’s and a fixed schedule for

codebook switches. The optimal scheduling variation on this
approach, called a variable dimension WUVQ (VDWUVQ)
appears in Appendix B. A discussion of the weighted universal
bit-allocation (WUBA) algorithm, which uses a collection
of quantization matrices for JPEG-style coding, appears in
Appendix C. In Appendix D, we demonstrate a weighted
universal perceptual image code (WUPIC), which shows the
performance achieved by replacing the traditional squared er-
ror distortion measure with a perceptually weighted distortion
criterion. Appendix E treats a weighted universal transform
code (WUTC), which uses an optimal collection of transforms
in addition to an optimal collection of bit-allocations.

II. CODE DESIGN

Let represent an-dimensional data
vector, typically comprised of the pixel values in a
image block. Let be some family of length-block codes,
where associated with any code is an
encoder that maps each input vector
to a single binary codeword from binary prefix code and
a decoder that maps the binary codeword
to a reproduction from the reproduction alphabet Let

be the total distortion achieved
by coding with code Similarly, let
denote the associated rate.

Next consider a collection of such codes, , indexed
by a binary string from a prefix code . Each code
in this collection is composed of an encoder ,
which maps each-dimensional vector to a binary codeword

, and a decoder , which maps each binary
codeword to a reproduction vector . Here
is the binary prefix code associated with code.

We wish to code each block of -dimensional vectors
with exactly one of the codes in this collection. For each such
block, the encoder sends to the decoder the indexof the
code used for the block, then independently codes each of the

-dimensional vectors with code . Thus the value of
determines the (fixed) schedule according to which new codes
can be used on data vectors. We may set equal to the
number of -dimensional vectors in a single image if exactly
one code is desired for each image.Smaller values ofare
useful for applications where allowing the coding strategy to
change within a single image yields superior performance.
However, for small values of , the side information used
to describe the code in use becomes more significant. Here
we assume that is a fixed constant; this assumption will be
removed in Section III. By coding with code , the total
instantaneous distortion achieved is

while the total instantaneous rate is

The total rate includes the rate associated with describing the
selected code to the decoder.
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Fig. 3. First-stage quantizer.

The goal of code design is to find the prefix codeand
the collection of codes that minimize the expected
distortion subject to a constraint on the expected rate. This
minimization can be performed using the quantization interpre-
tation of two-stage weighted universal codes [3], in which the
collection of codes is considered a quantizationcodebook
with ‘‘codewords’’ . With this interpretation, each
data sequence is ‘‘quantized’’ to one of the codewords,
say , with resulting distortion and rate given by (1) and
(2). To be precise, we define the ‘‘first-stage’’ quantizer(as
distinct from the ‘‘second-stage’’ quantizers , ), as
composed of an encoder , which maps each data
block $xˆ{ln}$ to a binary description from the binary prefix
code , and a decoder , which maps each binary
description to its corresponding reproduction .

Fig. 3 illustrates the first-stage quantizer. The first-stage
quantizer’s reproduction of a data block is the length-

block code used to code the
subblocks of . In coding the block with
code , the total distortion and rate are

Now, minimizing the expected distortion
subject to a constraint

on the expected rate is
equivalent to minimizing the expected Lagrangian

for some
positive value of determined by the rate constraint.

The optimal design is achieved using an iterative descent
technique formally equivalent to the GLA [4], or rather its
entropy-constrained variation [5]. The algorithm is initial-
ized with an arbitrary prefix code and first-stage decoder

such that for all Each
iteration in the algorithm is accomplished in the three steps
enumerated below.

1) Nearest Neighbor Encoding:Optimize the first-stage en-
coder for the given first-stage decoderand prefix code

For a given collection of codes the optimal first-
stage encoder is the first-stage encoder that satisfies

for every We call the optimal first-stage encoder
a nearest neighborencoder. Nearest neighbor encoders
can be implemented by encoding the incoming data
vector with each code in the collection and choosing
the code that yields the lowest Lagrangian performance.

2) Decoding to the Centroid:Optimize the first-stage
decoder for the given first-stage prefix code and
the newly redesigned first-stage encoderThe optimal
first-stage decoder for a given first-stage encoder

satisfies
for every By analogy

to the optimal decoder design in vector quantization,
we call the process of designing the optimal first-stage
decoderdecoding to the centroid. For each
decoding to the centroid involves choosing or designing
a single code that gives optimal performance
for the set of data In practice, this is
accomplished using an optimal design algorithm for the
family of codes under consideration. Descriptions of
the design algorithms associated with a variety of code
classes appear in the appendixes.

3) Optimizing the Prefix Code:Optimize the first-stage pre-
fix code for the newly redesigned first-stage encoder

and first-stage decoder For variable-rate coding,
the optimal prefix code is the entropy code matched
to probabilities with ideal codelengths

Notice that the prefix code may be a fixed- or variable-length
code, and the family may be any family of block codes.
Thus the above algorithm could be used to design a collection
of lossless codes like the one used in the Rice machine or a
collection of fixed- or variable-rate quantizers, as is the focus
in the examples in this paper.

For any family of codes, the expected Lagrangian de-
creases or remains constant in each step of the above design
algorithm. Since Lagrangian performance is bounded below
by zero, it must decrease to a limit as the number of iterations
grows. In fact, if the decoding to the centroid operation yields
a global optimum or can itself be described as an iterative pro-
cedure in which every step guarantees a global optimum, then
the above procedure guarantees a locally optimal collection of
codes. This criterion is met in all of the cases considered in
this paper.

The optimal design algorithm for a collection of codes
employs a single codebook optimization algorithm within the
framework provided by the GLA. Our algorithm is not the first
to use the GLA with another optimization algorithm nested
inside. For example, Buzoet al. [6] use the GLA to cluster
linear predictors for speech, using the prediction error as the
distortion measure and the Levinson algorithm to optimize
the predictors. Rabineret al. [7] use the GLA to cluster
hidden Markov models for speech, using the log likelihood
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as the distortion measure and the Baum–Welch algorithm
to optimize the models; Safranek and Johnston [8] use the
GLA to cluster entropy codes for subband image coding,
using bit rate as the distortion measure and the Huffman
algorithm to optimize the entropy codes; Chou [9] uses the
GLA to cluster probability mass functions for classification
tree design, using the Kullback–Leibler divergence as the
distortion measure and conditional expectation to calculate
the pmfs; and Chan and Gersho [10] use the GLA to cluster
vector quantizers for residual VQ, using the overall distortion
as the distortion measure and a nested GLA to optimize the
individual quantizers. Our algorithm may be the first, however,
to incorporate bit rates from both the first and second stages
into the design. This is necessitated by the fact that both the
first and second stages contribute to the rate in two-stage
universal coding.

The number of bits contributed by the first stage in an
optimal two-stage universal code is suggested by theory [3,
pp. 1119–1120, Case 1 and Th. 6] to be some constant plus

where is the number of parameters in the family
of codes i.e., the number of codewords in each
times the dimension of each codeword. In other words, the
number of codebooks in an optimal two-stage code should
grow as Experimental results showing that this formula
is approximately followed in practice are shown in [3].

As compared to traditional one-stage codes, two-stage codes
exhibit a growth in computational complexity roughly pro-
portional to the number of codebooks in the two-stage code.
This complexity increase results from the optimal encoding
procedure, in which the data must effectively be quantized
with all codebooks prior to coding in order to choose the
optimal second-stage code. The complexity growth associated
with going from a one-stage code to a two-stage code is
analogous to the complexity growth associated with going
from a rate zero VQ to a higher rate VQ. While the growth in
complexity is not insignificant, it is far smaller than the growth
in complexity associated with many “adaptive” codes that
incorporate some level of system design in the encoder. (While
the design of two-stage codes is computationally expensive,
this design occurs off-line, and does not affect the run time
experienced by the system user.) For many applications the
significant performance improvements achieved by two-stage
codes make the additional complexity worthwhile. As an
example of the rate of complexity growth, for a collection
of -dimensional, rate- fixed-rate VQ’s and the squared-
error distortion measure, encoding a sequence with a
two-stage code requires approximately
additions and multiplications as compared to the

additions and multiplications required in a
one-stage code of rate Of course, the complexity can be
considerably reduced by using tree structures or other means.

III. V ARIABLE DIMENSION TWO-STAGE CODES

The above weighted universal codes use fixed first-stage
vector dimension In this section, we consider two-stage
codes in which the first-stage vector dimension is allowed to
vary.

In variable dimension two-stage codes, each incoming data
stream is partitioned into variable length first-stage vectors.
The encoder then describes these first-stage vectors, one by
one, to the decoder. To describe a first-stage vector, the
encoder first describes the length of the first-stage vector, then
describes the index of the code with which the component
vectors of that first-stage vector will be encoded, and finally
describes the component vectors using the chosen code. The
optimal partition is the partition that minimizes the distortion
subject to a constraint on the rate, which now includes the rate
associated with describing the length of each first-stage vector.
The use of optimally chosen first-stage vector dimensions
allows variable dimension codes to better carve the data into
its component subsources, coding each with an appropriately
matched code.

Let be an incoming data sequence of-
dimensional vectors. This data sequence will be broken into
first-stage vectors of varying length, say of lengths
(in -dimensional vectors) The number of first-
stage vectors and their lengths are subject only to the constraint
that the sum of the lengths must equal the initial data length

Using to denote the sequence
let mean that partitions and satisfies the
above constraint. Use to denote the number of elements
in the partition. Since the first-stage vector length is allowed
to vary, it must be described to the decoder along with the
first- and second-stage code information. The encoder uses
an entropy code to describe that length, where is
the rate associated with describing a first-stage vector length
of Notice that if is zero for length and infinity
otherwise, the variable dimension code will behave exactly
like its fixed dimension counterpart. Thus, an optimal variable
dimension two-stage code can only exceed an optimal fixed
dimension two-stage code in performance. This performance
gain is achieved at the expense of the additional complexity
necessary for obtaining the optimal partition.

The optimal design algorithm for variable dimension two-
stage codes is again a variation on the GLA, iteratively
achieving descent on the Lagrangian performance. The system
is initialized with an arbitrary first-stage encoderfirst-stage
decoder and pair of entropy codes and Each iteration
of the technique then proceeds as follows.

1) Optimal Parsing:Optimally parse the incoming data se-
quence for the given first-stage encoderfirst-stage de-
coder and prefix codes and The optimal parsing
satisfies

2) Nearest Neighbor Encoding:Optimize the first-stage
encoder for the given parsing first-stage decoder

and prefix codes and The optimal first-stage
encoder follows the nearest neighbor law,

which maps each incoming block to the index of the
second stage code that encodes to the lowest
value of the Lagrangian performance measure.

3) Decoding to the Centroid:Optimize the first-stage de-
coder for the given parsing prefix codes and
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and first-stage encoder The optimal first-stage
decoder satisfies

which assigns to each
the blocklength-code that minimizes the

expected Lagrangian given that mapped to in the
second step.

4) Optimizing the Prefix Codes:Optimize the prefix codes
and for the given parsing first-stage encoder

and first-stage decoder The optimal prefix codes
and are the entropy code matched to the probabilities

and and thus the ideal
codelengths are and

, respectively.

The optimal partition in step 1 is accomplished using
the dynamic programming argument of variable dimension
VQ [11], [12]. The argument proceeds as follows. Let

be the score of the best partition of the
partial data sequence If is the maximum allowed
first-stage vector length, then for

(1)

where and for Let be the
minimizing vector length in (1). Then is the last first-
stage vector length in the optimal partition of The
optimal partition of can be found by backtracking:

While partitioning and
encoding have been described as separate processes, they can
be accomplished simultaneously (at the expense of greater
storage requirements) by tracking not only the optimal per-
formance and last first-stage vector length at each timebut
also the encoding information for that first-stage vector.

As a final remark, if the minimization in (1) is taken over
a restricted set of vector lengths dependent on then a
constrained partition results. For example, to obtain a binary
tree segmentation of the data then can include
if and only if mod In such cases, the
prefix code should also depend on

IV. EXAMPLES

Two-stage codes containing collections of vector quantiz-
ers (WUVQ), bit allocations (WUBA), and transform codes
(WUTC) are just a few examples of the types of codes
that can be designed using the design algorithm described in
Section II. The resulting codes yield significant performance
improvements when compared to one-stage codes of the same
type and optimized for the same training set. While the details
of the algorithms and their experimental performance results
are left to the appendixes, a few performance highlights are
summarized below.

On a sequence of medical images, the performance of
WUVQ exceeds that of ECVQ by 7–8 dB. (See Appendix
A, Fig. 5.) On the same data sequence, WUBA outperforms a
single-stage bit allocation scheme (functionally equivalent to

JPEG) by over 2.5 dB. (See Appendix C, Fig. 9.) The per-
formance gains associated with the same type of experiments
using codes optimized for the perceptual distortion measure
described in Appendix D are even more extreme, with the
two-stage bit allocation scheme (WUPIC) achieving up to
5 dB improvement in perceptual distortion over the perfor-
mance of a one-stage bit allocation scheme. (See Appendix
D, Fig. 11.) On a collection of mixed text and image data,
weighted universal transform coding outperforms a single-
stage transform code by over 6 dB. (See Appendix E, Fig. 13.)
The performance of the optimal single-stage transform code is
almost identical to the performance of the JPEG image coding
standard when used with a quantization matrix optimized for
the given training set. Also included in the appendixes is an
example of a variable dimension two-stage code (VDWUVQ).
The VDWUVQ yields performance improvements of up to
4.8 dB over the performance of the fixed dimension WUVQ,
thereby demonstrating the potential benefits of the variable
dimension approach. (See Appendix B, Fig. 6.)

V. DISCUSSION AND CONCLUSIONS

The quantization interpretation of two-stage codes [3] yields
an iterative descent technique for designing a wide variety
of optimal two-stage data compression systems. We here
demonstrate the application of that basic approach in a number
of different systems. (See the appendixes.) The resulting two-
stage codes replace the single code of a traditional one-stage
compression system with a family of codes designed to do well
across a wide variety of data types. The described technique
can be used to design optimal collections of a wide variety of
codes, such as noiseless codes, vector quantizers, JPEG-style
codes, transform codes, and so on. Given a target rate and a
code type, the design algorithm can be used to find both the
number of codes needed to cover the space of possible sources
and the optimal collection of codes to be used.

The computational expense associated with going from a
one-stage code to a two-stage code is roughly proportional to
the number of codes in the two-stage system. This expense
results from the optimal encoding process, which effectively
involves quantizing the data with every code in the collection
in order to choose the code with the best performance. The
computational cost of a two-stage code can be controlled
in a number of ways. First, the choice of the second-stage
code type and coding dimension should take into account the
computational constraints of the system: a collection of simple
codes may yield better performance than any single more
complex code. Second, the complexity of an optimal two-stage
code is easily capped at design time by choice of the maximal
number of codes in the collection. Further, the complexity can
be reduced considerably by the use of tree structures or other
fast search techniques. Finally, two-stage codes are ideally
suited for parallel implementation where available.

Universal source coding theory demonstrates the perfor-
mance benefits of two-stage codes as the coding dimension
grows without bound. In this paper, we focus on the per-
formance of two-stage codes for practical applications where
computation, and therefore coding dimension, are forced to
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be low. On a number of image data sets, the performance of
two-stage codes with coding dimensions ranging between 4
and 64 pixels yield as much as 10 dB performance improve-
ment over their corresponding one-stage coding counterparts.
(See Appendixes A–E.) Further, these performance gains are
observed even in data sets where the space of images to be
coded is quite homogeneous (e.g., the medical brain scans
used in Appendixes A–D). The above performance gain can
be attributed to the fact that while the images themselves
bear a strong resemblance to each other, on the vector scale
at which the images are coded there exists a great deal
of statistical variation between data blocks. Thus, two-stage
coding is an attractive option for a wide variety of practical
data compression applications.

APPENDIX A
WEIGHTED UNIVERSAL VECTOR QUANTIZATION

The weighted universal code design algorithm may be
applied to a wide variety of code types. A simple example is
the vector quantizer (VQ). In using a VQ for lossy data com-
pression, an incoming data stream is broken into contiguous
vectors of some dimensionand each data vector is mapped to
the closest reproduction value in a fixed VQ codebook. In the
WUVQ algorithm, we employ a family of -dimensional
fixed- or variable-rate VQ’s. The code is designed offline,
using the iterative descent algorithm described in Section II.
In this case, decoding to the centroid is accomplished using
the GLA (for fixed-rate coding) or its entropy-constrained
variation (for variable-rate coding). The resulting design algo-
rithm may be described as a nested GLA. This nested process
easily generalizes to design a large array of two-stage VQ’s
by replacing either or both of the uses of the GLA by other
VQ design algorithms. Alternative VQ design algorithms that
may be considered include tree-structured VQ, deterministic
annealing, fast codebook search algorithms, and so on.

Once a WUVQ has been designed, copies of the code are
given to both encoder and decoder. Thus both encoder and
decoder have identical copies of the first-stage binary code
and a collection of VQs—the first-stage decoder

To encode a given -vector, the encoder breaks that
vector into -dimensional sub-vectors, and calculates for
each the Lagrangian performance of on the
collection of -vectors. The index of the code yielding the best
Lagrangian performance is described to the decoder in the
first-stage description. The second-stage description contains
the binary description of each-vector using the code described
in the first stage. The decoder reverses the process by using
the code described in the first stage to decode thevectors
described in the second-stage description.

Figs. 4 and 5 show the performance of fixed- and variable-
rate WUVQ on a sequence of medical images, comparing
that performance to the performance of standard full search
VQ and ECVQ respectively. The experiments use twenty
256 256 MR images as a training set and five 256
256 MR images as a test set. The two sets do not overlap.
Performance results are reported as signal-to-quantization-
noise ratio (SQNR), and the rate of variable-rate codes is

Fig. 4. SQNR versus rate results for fixed-rate coding of the medical test
sequence.

Fig. 5. SQNR versus rate results for variable-rate coding of the medical test
sequence.

reported as entropy. SQNR is calculated as
where is the current distortion, is the zero rate distortion
of a standard full-search VQ, and distortion is measured by
the squared error fidelity criterion. The codes considered use
a vector dimension of and the WUVQ makes an
independent code choice for each two-by-two block of four-
dimensional vectors, giving Fixed-rate systems consist
of up to 512 codebooks with up to 16 codewords per codebook.
Codebook sizes for first- and second-stage codebooks in the
case of variable-rate coding were initialized to 256 and 4,
respectively.

Fig. 4 shows the fixed-rate coding results. Each curve
represents a constant value of the second-stage rateand
is labeled with the appropriate value. The lower dashed
curve is a standard full search VQ, which is equivalent
to a fixed-rate WUVQ with first-stage rate equal to zero.
Fig. 5 shows the corresponding entropy-constrained results.
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Fig. 6. Comparison of variable-rate SQNR results on a collection of medical
brain scans.

In this case, we consider both fixed-rate first-stage codes with
fixed-rate second-stage codes of varying rates and variable-
rate first-stage codes with variable-rate second-stage codes and
compare the resulting performance to that of an ECVQ. In
both fixed-rate and variable-rate coding, significant gains are
demonstrated. Indeed, at bit rates around 0.25–0.50 b/pixel,
there is a 4–5 dB gain of fixed-rate WUVQ over standard VQ,
and 7–8 dB gain of variable-rate WUVQ over ECVQ. Since
ECVQ already represents a substantial improvement over
entropy-coded standard VQ, variable-rate WUVQ achieves
more than 9 dB gain over entropy-coded standard VQ.

Notice that the demonstrated performance improvements
gained by going from single- to multi-codebook systems are
achieved despite the homogeneity of the data set—a sequence
of sagittal MR brain scans. By allowing the codebook to
change within a given image, we are able to code each
component of the image (in this case components might
include bone, fat, gray matter, etc.) with a code matched to
the statistics of that component.

APPENDIX B
VARIABLE DIMENSION WUVQ

While variable dimension two-stage codes may be devised
for any two-stage code, we here demonstrate the technique on
the variable dimension WUVQ (VDWUVQ) [13] and compare
the resulting performance with that of WUVQ and standard
full-search VQ on the medical brain scan sequence.

All of the vector quantizers use vectors of dimension
The vectors are Peano scan ordered (e.g., [14]). The first-
stage vectors in VDWUVQ are allowed to contain up to 16
-dimensional vectors while the first-stage vectors in WUVQ

contain exactly four–dimensional vectors. All multicodebook
systems consist of at most 256 codebooks, each with no more
than four codewords.

Fig. 6 shows the performance of variable-rate VDWUVQ
and WUVQ with varying values of and the performance
of standard full-search VQ. All rates are reported in terms

of entropy. VDWUVQ shows its greatest improvement over
WUVQ at very low rates, below 0.1 b/pixel, with an SQNR
up to 4.8 dB higher. Both VDWUVQ and WUVQ achieve
their greatest gains over standard full-search VQ at slightly
higher rates. VDWUVQ shows up to 11 dB improvement
over standard VQ. Allowing first-stage vector lengths up to
256 vectors improves performance by about another dB at the
expense of increased computation. Fig. 7 shows the resulting
image coding performance. Fig. 8 demonstrates the sizes and
shapes of the first-stage vectors used by the VDWUVQ
algorithm in the previous figure.

APPENDIX C
WEIGHTED UNIVERSAL BIT-ALLOCATION

While vector quantizers guarantee asymptotically optimal
performance as the vector dimension goes to infinity, the
computational complexity of a VQ grows exponentially in
the vector dimension. Thus for complexity reasons, practical
VQ’s are typically implemented with very small vectors. Much
of the advantage associated with high-dimensional vector
quantization comes from the high-dimensional code’s ability
to exploit correlation between data samples. Transform codes,
which decorrelate data prior to coding, achieve much of the
advantage of high-dimensional vector codes at low complexity.
Achieving this performance requires efficient allocation of
the available rate among the transform coefficients. Thus, bit
allocation, which is typically implemented with the use of
quantization matrices, is a key step in a wide array of transform
codes.

Unfortunately, the optimal bit allocation, like the optimal
vector quantizer, is source dependent. For example, images
containing large amounts of high-frequency information re-
quire that more rate be allocated to the high frequency coef-
ficients than do images made up primarily of low-frequency
information. An approach common to many transform codes
(including the JPEG image coding standard) involves breaking
an incoming data sequence into blocks, performing an inde-
pendent transform on each of those blocks, and then coding the
blocks using a single bit allocation (e.g., a single quantization
matrix). The performance of this type of scheme can be
improved by replacing the single bit allocation by a collection
of bit allocations. While a single bit allocation can be designed
to do well on average across a particular data sequence, no
single bit allocation strategy can track local variation in data
statistics. A code that incorporates a variety of bit allocation
options and allows the bit allocation to change from image to
image or even from data block to data block can better track
local variation in source statistics.

The WUBA [15], [16] is a two-stage DCT-based transform
code in which the family of codes is a family of bit
allocations. By designing a collection of quantization matrices
that is optimal for a given class of possible images (rather
than a single quantization matrix that is optimal on average
over that class), WUBA allows us to achieve the advantage
of a changing bit allocation strategy. Since the design pro-
cedure occurs offline before the coding process begins, the
rate-distortion gains are achieved without the computational
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Fig. 7. From left to right: Standard VQ at 0.25 b/pixel and SQNR= 6.75 dB; WUVQ at 0.184 b/pixel and SQNR= 11.6 dB; and VDWUVQ at
0.166 b/pixel and SQNR= 13.2 dB.

Fig. 8. First-stage vector sizes and shapes for the 0.166 b/pixel image. The left shows the size of the first-stage vector in which each pixel was coded, (black
= size 1, white= size 16). The right image gives a random shade to each first-stage vector in order to demonstrate first-stage vector shapes.

expense of computing new bit allocations during the coding
process.

Suppose that we are given some generic scheme for en-
coding with bit allocation Then for any
and and , respectively, describe
the distortion and rate associated with codingusing bit-
allocation Thus, we can use the weighted universal code
design strategy to design a collection of bit-allocations. In this
case, decoding to the centroid may be accomplished by any
number of optimal bit-allocation design algorithms. A simple
DCT-based transform code and its corresponding optimal bit-
allocation design algorithm are described below.

The following DCT-based transform code is similar to the
JPEG algorithm but is simplified to permit an optimal centroid
calculation. In this scheme, we code 88 data blocks

Each data block is treated independently. Each data block
passes first through a two-dimensional (2-D) DCT transform.
The encoder maps the resulting 64-dimensional
real data block into a binary string. This mapping occurs in
two steps. The data block first passes through a quantization

matrix where the th component is divided
by the corresponding quantization matrix component
truncating to obtain the integer
This truncation represents the lossy step in the quantization
process. The encoder then losslessly describes the resulting
quantized sequence to the decoder using a collection
of entropy codes. The decoder simply reverses the process,
retrieving from its binary representation, and then
scaling back up to achieve a frequency domain reproduction

where We find the spatial domain
reproduction by taking an inverse DCT of

In this case, as in JPEG, bit-allocation is controlled by the
quantization matrix which determines how coarsely or
finely a particular component will be quantized and, therefore,
how much rate will be used in describing that component.
The algorithm differs from the JPEG algorithm in several
details. First, we remove the differential encoding of the
DC component so that each source block may be treated
independently. Second, we remove the run-length encoder
from the lossless coding step, so that the quantizer may code
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Fig. 9. Comparison of SQNR results on a collection of five MR brain scans.

each component within a given frequency block independently.
We make these modifications to simplify the optimal bit
allocation design.

Given the independence imposed by the above modifi-
cations to the JPEG algorithm and assuming an additive
distortion measure in the frequency domain, changing the

th component in the quantization matrix affects only
the rate and distortion associated with the th component
of the data blocks encoded with the given sequence. In
designing a quantization matrix for a given sequence of
training data, we may therefore consider each quantization
matrix component independently. We choose each component

to minimize the Lagrangian performance on the th
transform coefficients from the training sequence. The optimal
entropy code for each component is the entropy code matched
to that component’s statistics. We therefore achieve a simple
design process for optimizing a bit-allocation system for a
particular set of training data. The resulting quantization table
represents a good starting value from which we can design
the quantization and Huffman tables for the JPEG algorithm.
A simple variation on the entropy-constrained variation of the
GLA can then be used to iteratively update the quantization
and Huffman tables for the given training set. Here, we stick
with the earlier described procedure for simplicity. The result
is a strategy for optimizing the multiple quantization matrices
supported in JPEG and an efficient means of describing those
quantization matrices. (Entropy coding the indices of chosen
quantization matrices from a fixed collection of possibilities
requires far fewer bits than repeated full descriptions of
quantization matrices.)

In Fig. 9, we compare the performance of the WUBA
algorithm to the performance of a single bit-allocation on
the same training and test sets used in the previous section.
WUBA contains 64 bit-allocations and uses and

All rates are reported in terms of entropy. WUBA
achieves up to 2.5 dB improvement over single bit-allocation
systems. Further, WUBA achieves up to 5 dB improvement
over WUVQ with first- and second-stage vector dimensions

and respectively, and up to 12 dB improvement
over ECVQ with This improvement can be attributed
to the higher effective coding dimension of the
WUBA scheme. (The WUVQ and ECVQ are implemented at
far lower dimensions than the WUBA due to the prohibitive
computational expense associated with high dimensional full
search vector quantizers.) The performance curves for the
WUBA and single bit-allocation systems can both be expected
to shift slightly to the left if they use a lossless code more
efficient than independent entropy coding, such as zerotree
coding or run-length followed by Huffman coding as in JPEG.
Fig. 10 compares the images resulting from quantizing the data
at around 0.2 b/pixel.

APPENDIX D
WEIGHTED UNIVERSAL PERCEPTUAL IMAGE CODING

It is well known that improvements in the mean squared
quantization error of an image coder do not necessarily trans-
late into improvements in visual quality, since the amount of
quantization error perceivable by the human visual system is
frequency and signal dependent. For example, humans are least
tolerant of quantization noise at mid-frequencies, especially
when such quantization noise is imposed on smooth, mid-
luminance regions of an image. Low amplitude quantization
noise in these regions may be perceived more easily than high
amplitude quantization noise in other regions.

Models of human visual perception have recently been
used to improve the visual quality of coded images, e.g.,
[8], [17]. (See [18] for an extensive review.) Image coders
based on such models are calledperceptual image coders.
Most perceptual image coders to date are transform or subband
coders that choose a single quantization matrix in such a
way that the resulting quantization noise is least perceptible.
Although the quantization matrix may be image-dependent,
this approach is limited, because it makes it impossible to
hide more quantization noise in some regions of the image,
and less in others.

A more recent approach to perceptual image coding involves
applying a prequantization step to the images before coding
them with an ordinary image coder [18]. The prequantization
step sets to zero all frequency components in the image that
fall below the quantization matrix thresholds. Because the
quantization matrix can vary over the image according to the
perceptual model and the image content, this scheme makes it
possible to hide extra “quantization noise” in those regions
of the image that will tolerate it. Unfortunately, the extra
quantization noise can be hidden only in those regions whose
frequency components fall below threshold.

The basic difficulty faced in both of these approaches is
that maximally hiding quantization noise in a way that varies
with the image in space and frequency seems to necessitate the
description of an unacceptably large amount of side informa-
tion to transmit the spatially varying quantization matrices.
This difficulty is overcome by WUPIC, in which the side
information is optimized by entropy-constrained clustering and
coding of the quantization matrices.
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Fig. 10. Left: original image, coded image using a single bit-allocation at 0.45 b/pixel. Right: coded image using WUBA with 64 bit-allocations at 0.35 b/pixel.

To be precise, WUPIC is simply WUBA (described in
Appendix C), for which the squared error distortion measure
is replaced by an input-weighted squared error distortion
measure, where

is the th transform or subband coefficient, is
its reproduction, and is a weight that depends, through
a perceptual model, on local image characteristics. Indeed, if
a perceptual model chooses as the quantization matrix
desired for a particular block of the image, then is set to

in that block. Because the decoder makes no explicit use
of the distortion measure, the weighting, which may vary from
block to block, need not be explicitly transmitted. However,
the distortion measure will affect the design of the quantization
matrices, and will affect the encoding. In this way, the desired
perceptual quantization is performed. Quantization errors will
be hidden in those regions of the image that can most tolerate
them, from a perceptual point of view.

The perceptual model used in the experiments reported here
is a typical three-part model, consisting of base threshold,
luminance masking, and texture masking components. That is,

where In particular,
we take the base threshold matrix to be the example
JPEG quantization matrix described with the standard [19]:

We take the luminance masking function to be a function
of the DC component (DC = in an 8 8 DCT) such
that perceptual sensitivity is unmodified at mid-gray (DC
128), but ramps down linearly (in dB) to dB at full white
(DC 255) and to dB at full black (DC 0), as follows:

if
if

and finally we take the the texture masking function to
be a function of the AC energy (AC such
that the perceptual sensitivity is unmodified with no texture
(AC 0), but ramps down to around10.4 dB with increasing

Fig. 11. Comparison of perceptual image coders with 1 and 64 quantization
matrices.

texture:

if
if

The WUPIC experiments use the same training and test
sets, and the same transform (DCT) and vector dimensions

as the WUBA experiments. Fig. 11 compares
the test set performance of WUPIC with 64 quantization
matrices to the performance of a perceptual image coder with
a single, perceptually optimal quantization matrix. In this case,
distortion is reported as signal-to-perceptual quantization noise
ratio (SPQNR), the ratio of the expected perceptual distortion
of an optimal rate-zero quantizer to the expected perceptual
distortion of the given quantizer (in dB). The results show a 5
dB improvement in perceptual distortion over a range of rates
by going from 1 to 64 quantization matrices. This contrasts to
the 2.5 dB improvement in mean square error (MSE) shown
in the WUBA experiments (Fig. 9). Apparently, the perceptual
distortion measure allows multiple codebook systems to gain
an even greater advantage over single codebook systems,
perhaps because the images appear more diverse under the
perceptual metric than under the squared error, and hence
have more to gain by using multiple codebooks. Fig. 12 shows
images coded to about 0.4 b/pixel using 1 and 64 quantization
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Fig. 12. The images are coded at 0.38–0.39 b/pixel using the perceptual distortion measure and (left) one and (right) up to 64 quantization ma-
trix/entropy code pairs.

matrices, respectively, with the above perceptual distortion
measure.

APPENDIX E
WEIGHTED UNIVERSAL TRANSFORM CODING

While WUBA allows algorithms like JPEG to achieve
good performance at low complexity by designing a locally
optimal collection of bit-allocations, the algorithm still suf-
fers from the smooth, natural image assumption inherent to
the JPEG algorithm. That is, while the DCT does a good
job decorrelating the samples of images with primarily low-
frequency information, its performance on images with large
quantities of high-frequency information is less satisfactory.
The Karhunen–Lo`eve transform (KLT) is a data-dependent
transform that achieves optimal decorrelation (all off-diagonal
terms of the transformed data’s covariance matrix are iden-
tically equal to zero) and optimal energy compaction [20].
(Other suboptimal data-dependent decompositions, such as
wavelet packets, might also be considered.) To date, the KLT
has not been popular in data compression algorithms due to
its data-dependence. Relying solely on traditional techniques,
the transform would have to either be chosen in advance
(which means that the statistics of the data have to be known
in advance) or computed during the encoding process and
communicated to the decoder, which is expensive both in
terms of computational complexity and in terms of rate. Given
these difficulties with using the optimal transform, source code
designers have, to date, relied primarily on nonoptimal, data-
independent transform codes, such as the DCT used in JPEG.
The strategy of course achieves less success with images
that fail to match the assumptions upon which the choice of
transform was based. Thus, for example, performance of the
JPEG algorithm is less satisfactory on low correlation, high
contrast images, such as images of text [21].

Here, we use the weighted universal code design algo-
rithm to design multicodebook transform codes for which
the performance on every source in some broad class of
sources approaches the performance that would be achieved
if the optimal transform code were used for every source
encountered. The resulting algorithm is the WUTC. [22].

Fig. 13. Comparison of SQNR results on a collection of combined text and
gray scale images.

In this case, represents a family of transform codes,
each of which contains its own transform and bit allocation.
Decoding to the centroid is accomplished as follows. Given
that the KLT maximizes the coding gain over all orthogonal
transform codes (e.g., [23, App. C]), we here set the transform
code’s transform to the KLT matched to the statistics of
the data to be coded. Using this choice, we accomplish the
optimal decorrelation and energy compaction for the source in
operation. The KLT is calculated as follows. For a given index

let be the correlation matrix associated with these vectors,
i.e., Then the
transform has, in the first row, the eigenvector correspond-
ing to the largest eigenvalue of in the second row, the
eigenvector corresponding to the second largest eigenvalue,
and so on. Given a transform, the optimal bit-allocation may
be accomplished by an optimal bit-allocation design algorithm
such as the one described in the previous section.

In Fig. 13, we compare the performance of a WUTC to the
performance of a single transform code. The WUTC contains
64 transform codes, and uses for all experiments.
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Fig. 14. Results of optimal single transform coding and optimal universal transform coding on a single mixed text and image file. From left to right:
original image; image coded with optimal transform coding using a single transform and bit allocation and rate of 0.20 b/pixel; and image coded with
universal transform coding using 64 transform codes and rate 0.23 b/pixel.

Each system is trained on a single 2048 pixel2048 pixel
image scanned from a page ofIEEE Spectrum Magazineand
tested on another page from the same issue. Each page has
roughly equal amounts of text and gray scale material. All rates
are reported in terms of entropy. WUTC achieves up to 2 dB
improvement over WUBA, up to 3 dB improvement over a sin-
gle bit-allocation system (effectively equivalent to JPEG), up
to 6 dB improvement over WUVQ, and up to 10 dB improve-
ment over ECVQ. The performance curves for all transform
coding systems should shift slightly to the left with application
of a more efficient lossless code than the given independent
entropy codes. Fig. 14 shows the performance of the WUTC
and the performance of an optimal single transform code.
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