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Motion-Compensated Prediction
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Abstract—Overlapped block motion compensation or B-frames
are examples of multihypothesis motion compensation where sev-
eral motion-compensated signals are superimposed to reduce the
bit-rate of a video codec. This paper extends the wide-sense sta-
tionary theory of motion-compensated prediction (MCP) for hy-
brid video codecs to multihypothesis motion compensation. The
power spectrum of the prediction error is related to the displace-
ment error probability density functions (pdf’s) of an arbitrary
number of hypotheses in a closed-form expression. We then study
the influence of motion compensation accuracy on the efficiency
of multihypothesis motion compensation as well as the influence
of the residual noise level and the gain from optimal combination
of hypotheses. For the noise-free limiting case, doubling the
number of (equally good) hypotheses can yield a gain of up to1 2

bits/sample, while doubling the accuracy of motion compensation
(such as going from integer-pel to1 2-pel accuracy) can addition-
ally reduce the bit-rate by up to 1 bit/sample independent of . For
realistic noise levels, it is shown that the introduction of B-frames
or overlapped block motion compensation can provide larger gains
than doubling motion compensation accuracy. Spatial filtering of
the motion-compensated candidate signals becomes less important
if more hypotheses are combined. The critical accuracy beyond
which the gain due to more accurate motion compensation is small
moves to larger displacement error variances with increasing noise
and increasing number of hypotheses . Hence, sub-pel accurate
motion compensation becomes less important with multihypoth-
esis MCP. The theoretical insights are confirmed by experimental
results for overlapped block motion compensation, B-frames, and
multiframe motion-compensated prediction with up to eight hy-
potheses from ten previous frames.

Index Terms—B-frame, hybrid coding, motion compensation,
multiframe prediction, multihypothesis motion-compensated pre-
diction, overlapped block motion compensation, sub-pel accuracy,
video compression.

I. INTRODUCTION

M OTION-COMPENSATED coding schemes achieve
compression by exploiting the similarities between

successive frames of a video signal. Often, with such schemes,
motion-compensated prediction (MCP) is combined with
intraframe encoding of the prediction error employing an 8 × 8
discrete cosine transform. Successful applications range from
digital video broadcasting at several megabytes per second
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down to bit-rates as low as 10 kbps for videophones or Internet
video-on-demand applications. Several standards, such as
ITU-T Recommendations H.261 [1] and H.263 [2], [3], or ISO
MPEG-1 and MPEG-2 [4] are based on this scheme. The new
MPEG-4 standard follows the same approach [5], [6].

Most of the work for the design and optimization of video
codecs is carried out experimentally. A theoretical treatment of
motion-compensated video coding requires many assumptions
and simplifications for the analysis of a complicated system
processing real-world signals. Nevertheless, even an approxi-
mate theory can provide useful insights in the underlying mech-
anisms and give guidance for the design of state-of-the-art video
codecs. A good theoretical framework leads motion-compen-
sated video coding away from heuristics and toward an engi-
neering science.

In 1987, the first comprehensive rate-distortion analysis of
MCP was presented [7]. It relates the power spectral density

of the prediction error to the accuracy of motion
compensation captured by the probability density function (pdf)
of the displacement error. The fundamental equation derived in
[7] is

(1)

where
horizontal frequency;
vertical frequency;
spatial power spectrum of the input video
signal;
frequency response of the “loop filter”;
two-dimensional (2-D) Fourier transform of
the displacement error pdf;
power spectrum of residual noise that cannot
be predicted by motion compensation;
real part of a complex number.

The fundamental equation (1) captures the effect that even in-
accurate motion compensation still works well for the low spa-
tial frequency components of the signal. Low frequency com-
ponents do not vary rapidly. For high spatial frequency compo-
nents, however, a very good accuracy is required since a small
offset can lead to a 180phase shift and thus an increase in-
stead of a reduction of the prediction error. Therefore, the loop
filter should appropriately attenuate high frequency
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components and effectively switch off motion compensation for
high frequencies.

Based on (1), it is shown in [7] that with integer-pel accuracy
of the displacement estimate the additional gain by MCP over
optimum intraframe encoding is limited to∼0.8 bits/sample in
moving areas. Larger gains require fractional-pel accuracy. For

-pel accuracy, as included in MPEG and in H.263, the gain is
limited to∼1.8 bits/sample. Also, the theory explains why a loop
filter is essential for good compression performance. An op-
timum loop filter can be derived from (1), resulting
in a minimum of the prediction error spectrum of

(2)

Shortly afterwards, the theory was complemented and con-
firmed by experimental results [8]. In particular, it was shown
that signal components that do not obey the paradigm of a
piecewise constant translation limit the performance of MCP. It
was found that, for a motion compensation block size of 16 ×
16 and typical broadcast TV signals, -pel accuracy appears
to be sufficient, while for videophone signals -pel accuracy
is desirable. For videophone signals, bilinear interpolation was
found to perform almost as well as the best Wiener spatial
interpolation/prediction filter, and an additional loop filter is
not required. These results also appeared in a journal paper
[9] and are summarized in [10]. Recent textbooks discuss
motion compensation based on (1) and (2) or simplifications
of it, e.g., [11], [12]. Similar analyses have been carried out by
Ribas-Corbera and Neuhoff [14]–[17]. In particular, they have
considered the rate-constrained motion compensation problem
in detail that was introduced in [18] and [19]. Vandendorpe
et al. have extended the power spectrum versus displacement
accuracy analysis to interlaced video [13].

Many codecs today employ more than one motion-compen-
sated prediction signal simultaneously to predict the current
frame. The term “multihypothesis motion compensation” has
been coined for this approach [20]. A linear combination
of multiple prediction hypotheses is formed to arrive at the
actual prediction signal. Examples are the combination of
past and future frames to predict B-frames in the MPEG or
H.263 coding schemes [2]–[4], or the combination of three mo-
tion-compensated signals employing “remote motion vectors”
in the “Advanced Prediction Mode” of ITU-T Recommenda-
tion H.263 [2], [3]. Both schemes have been experimentally
shown to yield a significant coding gain over the classical
“single-hypothesis” motion compensation [3], [20]–[25].
While theoretical motivations for multihypothesis motion
compensation have been presented [20], [24], its rate-distortion
efficiency in terms of motion compensation accuracy and
number of hypotheses employed has not yet been analyzed.
It is therefore the goal of this paper to extend (1) and (2) to
multihypothesis motion-compensated prediction, to compute
performance bounds and to compare these to the established
performance bounds for classical single-hypothesis motion
compensation. Section II introduces two performance measures
for motion-compensated hybrid coders. Section III reviews the

Fig. 1. Block diagram of an MCP hybrid coding scheme.

results that are needed to treat multihypothesis motion compen-
sation as a linear prediction problem. Section IV introduces the
power spectral density model for inaccurate motion compensa-
tion which is numerically evaluated in Section V. Section VI
finally compares the theory to established experimental results
for overlapped block motion compensation, B-frames, and
multiframe motion-compensated prediction.

II. PERFORMANCEMEASURES FORMOTION-COMPENSATED

HYBRID CODERS

A motion-compensated hybrid coder combines differential
pulse code modulation along an estimated motion trajectory of
the picture contents with intraframe encoding of the prediction
error (Fig. 1). The displacement estimate is trans-
mitted in addition to the intraframe-encoded prediction error.
At the receiver, the intraframe source decoder generates the re-
constructed prediction error, which differs from by some
reconstruction error. The transmitter contains a replication of
the receiver in order to generate the same prediction value.

It has been pointed out by several authors that the motion-
compensated prediction error signalis only weakly correlated
spatially, e.g., [7]–[12], [26]–[28]. Thus, the potential for redun-
dancy reduction in the intraframe source encoder is relatively
small. This finding suggests that the prediction error variance

(3)

is a useful measure that is related to the minimum achievable
transmission bit-rate for a given signal-to-noise ratio [29]. In
(3), is the expectation operator. The minimization of pre-
diction error variance (3) is widely used to obtain the displace-
ment vector and control the coding mode in practical systems.
A more refined measure is the rate difference

(4)

In (4), and are the power spectral den-
sities of the prediction errorand the signal, respectively. Un-
like (3), the rate difference (4) takes the spatial correlation (or
spectral flatness) of the prediction errorand the original signal

into account. It represents the maximum bit-rate reduction (in
bits/sample) possible by optimum encoding of the prediction
error , compared to optimum intraframe encoding of the signal

for Gaussian wide-sense stationary signals for the same mean
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squared reconstruction error [29]. A negative corresponds
to a reduced bit-rate compared to optimum intraframe coding,
while a positive is a bit-rate increase due to motion com-
pensation, as it can occur for inaccurate motion compensation.
The maximum bit-rate reduction can be fully realized at high
bit-rates, while for low bit-rates the actual gain is smaller [7].
Note that we neglect the rate required for transmitting the dis-
placement estimate in addition to the prediction error
. The optimum balance between rates for the prediction error

signal and displacement vectors strongly depends on the total
bit-rate, as discussed, e.g., in [19]. For high rates, it is justified
to neglect the rate for the displacement vectors, while for low
rates it is essential to take it into account. Throughout this paper,
we shall employ as our performance measure.

III. M ULTIHYPOTHESISMOTION COMPENSATION AS ALINEAR

PREDICTION PROBLEM

Let be a scalar 2-D signal sampled on an orthogonal
grid with horizontal spacing and vertical spacing . Let

be a vector-valued signal (column vector of length)
sampled at the same positions. For the problem of multihy-
pothesis motion compensation, we interpretas the vector of
multiple motion-compensated frames available for prediction,
and as the current frame to be predicted.

Assume that and are generated by a jointly wide-sense sta-
tionary random process with the real-valued scalar power spec-
tral density , the power spectral density ma-
trix , and the cross spectral density vector

. Power spectra and cross spectra are defined ac-
cording to

(5)

where
and complex column vectors;

transposed complex conju-
gate of ;
sampling locations;
matrix of space-discrete
cross correlation func-
tions between the com-
ponents of and which
(for wide-sense stationary
random processes) does
not depend on and but
only on the relative hori-
zontal and vertical shifts
and ;
2-D band-limited dis-
crete-space Fourier trans-
form shown in (6).

(6)
As in [9], we do not require the origin to
coincide with one of the samples. Thus, (6) is slightly more

general than the conventional definition of the-periodic dis-
crete-space Fourier transform, e.g. see [30]. We restrict the re-
gion of support of the Fourier transform to the baseband and do
not consider baseband replications. This restriction greatly sim-
plifies dealing with fractional-pel shifts in the following without
sacrificing generality.

It is well-understood how to predict a scalar signalfrom the
vector-valued signal, such that the mean square of the predic-
tion error

(7)

is minimized. Nevertheless, we present a brief summary here
to have the important results handy. In (7), the asterisk
denotes generalized 2-D convolution, i.e.,

, where the result is calculated
for all values ,
with and the sampling grids of and , re-
spectively. is a row vector of impulse responses. The
power spectral density of the prediction error is

(8)

In (8), is a row vector of com-
plex transfer functions. We shall omit the independent variables

, when there is no danger of confusion. The above equa-
tion thus can be written more compactly as

(9)

Note that in (9), and are real-valued, and are
complex row and column vectors, respectively, andis a pos-
itive definite matrix.

The prediction error power spectrum is minimized sepa-
rately at each frequency by the optimum transfer function

(10)

as can be verified by inserting into (9)
and observing that increases by when
deviates from the global minimum (10).

The corresponding minimum prediction error power spectral
density is found by inserting (10) into (8) or (9)

(11)

Since the optimum multiple input filter minimizes the pre-
diction error power spectrum separately at each spatial fre-
quency , it simultaneously minimizes the prediction
error variance (3) and the rate difference (4).

IV. POWER SPECTRAL MODELS FORINACCURATE MOTION

COMPENSATION

Since we are interested in performance bounds of multihy-
pothesis motion compensation, we shall assume that optimum
filters according to (10) are used and (11) holds. Then, the
only remaining problem is an appropriate statistical model of
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and that yields , and . As in [7] and
[9]–[11], we assume that an imagepossesses an isotropic spa-
tial power spectrum

(12)

The power spectrum is normalized to an overall signal variance
. It corresponds to an isotropic exponentially decaying

autocorrelation function. is a parameter that captures the cor-
relation between adjacent pixels. For the numerical results, we
shall set to correspond to an average correlation factor of 0.93
that can be measured between horizontally or vertically adjacent
pels in a typical video signal. We now assume that an individual
frame of a video sequence is a noisy, shifted version of, such
that its power spectrum is

(13)

We will come back to the noise with power spectrum
in the following discussion. For now, it suffices

to say that is typically white noise with a variance .
Obviously, multihypothesis motion-compensated prediction

should work best if we compensate the true displacement of the
scene exactly for each candidate prediction signal. Less accurate
compensation will degrade the performance. However, even for
exact motion compensation, there will be residual signal com-
ponents that are present in one frame, but not in the other.

To capture the limited accuracy of motion compensation, we
associate a displacement error with the th compo-
nent of the vector of motion-compensated candidate sig-
nals . The horizontal displacement error is normal-
ized relative to the horizontal sampling interval, the vertical
displacement error relative to . Further, we assume that
the “clean” video signal can be predicted up to some residual
noise from , if its associated displacement error would
vanish. Fig. 2 illustrates this model. Since the current frame

contains additional noise uncorrelated from, the
“noisy” video signal can be predicted up to residual
from , if the displacement error .

The displacement error reflects the inaccuracy of the dis-
placement vector used for the motion compensation. Even the
best displacement estimator will never be able to measure the
displacement vector field without error. More fundamentally,
the displacement vector field can never be completely accurate
since it has to be transmitted as side information with a lim-
ited bit-rate. The “noise” comprises all signal com-
ponents that cannot be described by a translatory displacement
model. This includes not only camera noise and quantization
noise due to source coding of the signal, but also illumination
changes, resolution changes due to zoom and varying distance
between camera and object, sampling artifacts, and so on. We
deliberately split up the noise into separate components,with
power spectral density and with power spec-
trum . In this fashion, we can model signal com-

Fig. 2. Statistical model of multihypothesis motion-compensated prediction.

ponents that are associated with, but statistically indepen-
dent from , as well as signal components that are associated
with , but independent from each of the.

Assuming that all the are uncorrelated with
signal , and that is uncorrelated with , the
model in Fig. 2 yields

(14)

and

(15)

with the abbreviation

...

...

(16)

is an diagonal matrix with elements
if the individual noise components

are uncorrelated which shall be assumed in the following.
We now interpret the displacement errors

as random variables which are statistically indepen-
dent from and . With that, we rewrite (14)
and (15) as

(17)

and

(18)

We observe that (see (19) at the bottom of the next page). Thus,
the th component of is the 2-D Fourier trans-
form of the continuous 2-D pdf of the dis-
placement error . Since the integral of a proper pdf is
one, . Toward higher frequencies, de-
cays quickly for inaccurate motion compensation and slowly for
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accurate motion compensation. For the expected value in (18),
we obtain

...
...

...
. . .

...

(20)
Equation (20) holds under the assumption that the displacement
errors and are mutually statistically inde-
pendent for . Note that we do not require that the indi-
vidual horizontal and vertical components and are in-
dependent. Combining (11), (17)–(19), and (20) we obtain the
fundamental equation of multihypothesis MCP (see (21) at the
bottom of the page) with

(22)

Knowing the pdf’s of the displacement errors and
the spectral noise-to-signal power ratios , we can use
(21) and (4) to calculate the maximum rate difference due to
multihypothesis motion compensation.

If we do not use the optimum filters (10), but some other sub-
optimum transfer function , we can combine (9), (17)–(19),
and (20) to obtain (23), shown at the bottom of the page. Note
that for and , we obtain the fundamental equa-
tions of motion-compensated prediction (1) and (2) as special
cases of (23) and (21).

In analogy to the single-hypothesis case discussed in the in-
troduction, (21) and (23) capture the effect that motion compen-
sation is easy for low spatial frequency components of the video
signal but difficult for high spatial frequencies. Since high-fre-
quency components change rapidly, a high motion compensa-
tion accuracy is required. If motion compensation is inaccu-
rate, then in (21) and (23) for high frequencies, and

results in (21), and, assuming additionally that
, then in (23). Obviously,

the optimum filter is a low pass filter that removes high fre-
quency components fromthat are too noisy or that change too
rapidly for the given displacement error.

V. NUMERICAL RESULTS

Let us now use the results in Section IV to evaluate some
interesting cases numerically. [7] studies the case of a flat noise
power spectrum

(24)

and single-hypothesis motion-compensated prediction with an
isotropic Gaussian displacement error pdf of variance

(25)

Can we do better if we combine several hypotheses even though
they have the same displacement pdf (25) and noise spectrum
(24)? Fig. 3–5 show the rate difference (4) as a function of

...

...

...
...

(19)

...
...

...
...

. . .
...

...
(21)

...
...

...
...

. . .
...

(23)
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displacement error variance for different residual noise levels
RNL dB. Before interpreting these curves, a
comment on the horizontal axis calibration is in order.

The horizontal axes in Figs. 3–5 are calibrated by
to support an easier interpretation of the

diagrams. Consider a perfect displacement estimator that
always estimates the true displacement. Then, the displacement
error is entirely due to rounding. In moving areas
with sufficient variation of motion, the displacement error is
uniformly distributed between and where
for integer-pel accuracy, for -pel accuracy,
for -pel accuracy, etc. The minimum displacement error
variance in moving areas is

(26)

It turns out that the precise shape of the displacement error pdf
has hardly any influence on the variance of the motion-com-
pensated prediction error, , as long as the displacement
error variance does not change. A uniform pdf and a
Gaussian pdf yield essentially the same variances. Thus,
for a given cannot be smaller than in
moving areas. On the other hand, a good displacement esti-
mator can probably come close to that value. Note that this
requires more sophisticated motion compensation than the
blockwise constant displacement common today [1], [2].
Buschmann [31] shows that for typical CIF videoconfer-
encing sequences and blockwise constant displacement, an
additional displacement error variance of about 10% of the
displacement variance is introduced for blocks,
and of 5% of for 8 × 8 blocks. For example, for
blocks, he measures displacement error variances that cor-
respond to ,
and for integer-pel, half-pel, and
quarter-pel accuracy, respectively, (as opposed to the theoret-
ical ).

A. Noise-Free Case

Fig. 3 shows the rate difference (4) as a function of
for the practically noise-free case with

RNL dB. Note that we should avoid setting be-
cause we then cannot invert the matrix in (21) at .
For , Fig. 3 shows again the known result that the gain
due to integer-pel accurate motion compensation is limited to

0.8 bits/sample [7]. For -pel accuracy, the gain is limited
to 1.8 bits/sample. For each refinement of the accuracy by a
factor of 2, the bit-rate decreases by about 1 bit/sample. This
also holds for the multihypothesis curves .

Doubling the number of hypotheses decreases the bit-rate by
bits/sample in the part of the diagram, where the curves in

Fig. 3 are straight and parallel. Thus, quadrupling the number
of hypotheses provides as much gain as refining the displace-
ment accuracy horizontally and vertically by a factor of two for
the noise-free case. Note that we can also interpret a refinement
of the resolution of the displacement vector from integer-pel to

-pel, or from -pel to -pel as quadrupling the number
of hypotheses for motion compensation. For example, for the

Fig. 3. Rate difference compared to optimum intraframe coding due to
multihypothesis motion-compensated prediction as a function of displacement
error variance for combining different numbers of hypothesesN . Residual
noise level RNL= �60 dB.

Fig. 4. Rate difference compared to optimum intraframe coding due to
multihypothesis motion-compensated prediction as a function of displacement
error variance for combining different numbers of hypothesesN . Residual
noise level RNL= �24 dB.

Fig. 5. Rate difference compared to optimum intraframe coding due to
multihypothesis motion-compensated prediction as a function of displacement
error variance for combining different numbers of hypothesesN . Residual
noise level RNL= �12 dB.



GIROD: MULTIHYPOTHESIS MOTION-COMPENSATED PREDICTION 179

refinement from integer-pel to -pel, we obtain three addi-
tional polyphase representations of the same image (pel to
the right, line up, pel to the right and line up), each
with integer-pel resolution.

At -pel or integer-pel accuracy, the curves in Fig. 3 are
no longer straight and the rate differences become somewhat
smaller. E.g., going from to hypotheses decreases
the bit-rate by 0.3 bits/sample at integer-pel accuracy.

B. Influence of Residual Noise

Fig. 3 suggests that almost arbitrary bit-rate savings are pos-
sible by using more and more accurate motion compensation.
This would indeed be the case if the hypothesis signals were
noise-free. More realistic numerical results for the range of ac-
curate motion compensation are obtained by taking into account
the noise components . Figs. 4 and 5 illustrate
the efficiency of single-hypothesis and multihypothesis motion
compensation as a function of displacement error variance for
residual noise levels RNL dB and RNL dB. The
observations that were reported in [9], [10] for single-hypothesis
motion compensation can be extended to multihypothesis mo-
tion compensation as well. Beyond a certain “critical accuracy,”
the possibility of further improving prediction by more accurate
motion compensation is small. The critical point is at a low dis-
placement error variance for low noise variances and at a high
displacement error variance for high noise variances. Doubling
the number of hypotheses reduces the effect of residual noise
by up to bits/sample for the noise-free case, but the gain is
usually much smaller with noise. For example, when going from

to at RNL dB, the gain is less than 0.1
bits/sample. This is due to the fact that the noise power spectra

are significantly larger than for all but
the lowest frequencies and most of the spectrum is suppressed
by the optimum filter . When combining more hypotheses, the
independent noise components are more effec-
tively suppressed, such that more of the spectrum is recovered
for motion compensated prediction. Ultimately, for small dis-
placement error variance and large , i.e., the
noise component associated with the current frame cannot
be reduced by prediction. Therefore, we observe diminishing
returns and ultimately a saturation for increasing. Because
of the combination of these diminishing returns and more ef-
ficient prediction with increasing for larger , the critical
accuracy moves to larger displacement error variances with in-
creasing . For example, for RNL dB, half-pel accuracy
is required to reach a rate within 0.03 bits/sample of the lowest
rate for , while for , this is the case already for
integer-pel accuracy. This implies that accurate motion compen-
sation is less important with a multihypothesis scheme.

If we again estimate the maximum gain possible by introduc-
tion of B-frames instead of P-frames, but now for the high-noise
case RNL dB and -pel accuracy, we can read a
difference of 0.07 bits/sample between and
from Fig. 5. This is a significantly smaller gain (only about )
than for the noise-free case (Fig. 3). Interestingly, increasing the
number of hypotheses from to is more effective
than increasing the accuracy from integer-pel to-pel for the

Fig. 6. Performance estimate for overlapped block motion compensation. At
point A,N = 1 hypothesis is used; at point B,N = 2. At the block corner C,
N = 4. The gains given are relative to single hypothesis MCP for a residual
noise level RNL= �24 dB.

high noise case dB and also for RNL dB.
Only for the academic case RNL dB is there a slight ad-
vantage of going from integer-pel to -pel accuracy over com-
bining four integer-pel motion hypotheses. For the high noise
case RNL dB, even an increase from to
is more effective than increasing the accuracy from integer-pel
to -pel. For practically interesting cases, we conclude that
combining two predictions in B-frames or utilizing OBMC as
described in [24] or as practiced in the H.263 Advanced Pre-
diction Mode [2], [3] can yield as good or better a performance
increase than the refinement from integer to -pel accuracy.
Of course, in an efficient codec, we should combine both.

C. Averaging Hypotheses

So far, we studied the case when an optimum filter (10) is
used. How important is that? Can we “get away” with simply av-
eraging the hypotheses and not filtering spatially? This case
with is shown in Figs. 6–8. The
dashed lines correspond to averaging the hypotheses while the
solid lines correspond to optimum filtering according to (10).
For the noise-free case RNL dB, we can observe a
gain due to spatial filtering only for inaccurate motion com-
pensation. However, with the more realistic RNL dB
(Fig. 7) and RNL dB (Fig. 8), spatial filtering becomes
increasingly important. Interestingly, spatial filtering is less im-
portant if the number of hypothesesincreases. For example,
in Fig. 7, about 0.13 bits/sample are lost if spatial filtering is
omitted for and integer-pel accuracy, while this loss
is negliable for and . This is because aver-
aging several hypotheses reduces the noisesuch that higher
frequency components can benefit from motion-compensated
prediction if the displacement error variance is small enough.
Note that for inaccurate motion compensation, the bit-rate re-
quired for the prediction error can actually be higher than for
the original signal if spatial filtering is omitted. Nevertheless,
averaging several equally good hypotheses always reduces the
bit-rate. When comparing Figs. 6–8, we can also conclude that
in a practical codec (with reasonably accurate motion compen-
sation), the major purpose of an optimumwill typically be
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Fig. 7. Rate difference compared to optimum intraframe coding due to
multihypothesis motion-compensated prediction as a function of displacement
error variance for combining different numbers of hypothesesN . Residual
noise level RNL= �60 dB. Solid lines assume an optimum filter F, dashed
curves show the case where hypotheses are simply averaged.

Fig. 8. Rate difference compared to optimum intraframe coding due to
multihypothesis motion-compensated prediction as a function of displacement
error variance for combining different numbers of hypothesesN . Residual
noise level RNL= �24 dB. Solid lines assume an optimum filter F, dashed
curves show the case where hypotheses are simply averaged.

that of noise reduction, while the gain by taking into account
the displacement error pdf’s is relatively small (Fig. 6).

VI. COMPARISON WITH EXPERIMENTAL RESULTS

A. Overlapped Block Motion Compensation

We can use the curves in Figs. 6–8 to obtain an insight into
the performance of overlapped block motion compensation
(OBMC) as, for example, described by Orchard and Sullivan
[24]. In their work, 16 × 16 tessalating blocks are extended to
32 × 32 windows with a 2:1 overlap horizontally and vertically.
Thus, at each pixel there are four distinct motion-compensated
versions of the previous frame, i.e., four hypotheses. The
windows taper off, i.e., a linear combination of these four
hypotheses is formed with spatially slowly varying weights,
such that in the center of a block only one hypothesis is
used, in the middle between two horizontally or vertically

Fig. 9. Rate difference compared to optimum intraframe coding due to
multihypothesis motion-compensated prediction as a function of displacement
error variance for combining different numbers of hypothesesN . Residual
noise level RNL= �12 dB. Solid lines assume an optimum filter F, dashed
curves show the case where hypotheses are simply averaged.

TABLE I
VARIANCES OF THE

MOTION-COMPENSATEDPREDICTION ERROR FORTHREE DIFFERENT

SEQUENCESUSING FORWARD PREDICTION, BACKWARD PREDICTION, AND

BIDIRECTIONAL PREDICTION FROM THEPREVIOUS AND THE SUCCESSIVE

FRAME FORBLOCKSIZES16� 16 AND 8� 8. VALUES ARE STATED IN dB AS

PSNR= 10 log 255 =�

adjacent blocks two hypotheses are averaged, while at the
corner in between four blocks, four hypotheses are averaged.
In their experiments, Orchard and Sullivan carried out motion
compensation with integer-pel accuracy, and we assume that
the line applies. Since the dashed curves in
Fig. 7 are approximately equidistant around that line, refining
the estimate by incorporating Buschmann's results [31] (see
Section V) does not change the resulting numbers significantly.
Orchard and Sullivan did not use the rate difference measure (4)



GIROD: MULTIHYPOTHESIS MOTION-COMPENSATED PREDICTION 181

for performance evaluation, but prediction error variance (3).
To compare the numbers, we simply convert between (3) and
(4) assuming that bits/sample corresponds to 6.02 dB
in prediction error variance. This is justified since the prediction
error spectrum is basically flat in all the cases compared. We
use the numbers for RNL dB (Fig. 7) to illustrate the
argument in Fig. 9. At point A in the middle of a block, there is
no gain by overlapped neighboring blocks, since only a single
hypothesis is used. In the middle of the edges (points B), two
estimates are combined based on the displacement vectors of
the adjacent blocks with roughly equal accuracy, thus the case

with a gain of 2.2 dB applies. At the block corners, four
displacement vectors from neighboring blocks are combined
with roughly equal accuracy, hence the case with a gain
of about 4.2 dB applies. This is consistent with the experimental
observation reported in [24] that OBMC improves prediction
most effectively at the edges and especially in the corners of
a block. The overall gain results from a combination of the
spatially varying gain due to OBMC and can be estimated to
be around dB dB by averaging
the above figures in an interpolation argument. Orchard and
Sullivan measured a best performance for “standard” OBMC
(i.e., without state variable conditioning) of 1.3 dB (1.7 dB
within the training set). At the block corners, where our model
computes a maximum gain of 4.2 dB, [24] reports dB
(within the training set). Considering that the numbers are
strongly dependent on the choice of the parameter RNL, the
performance figures predicted by our model calculations are
encouragingly close to the experimental results reported in [24].
If we repeat the OBMC performance estimate for RNL
dB (Fig. 8), we estimate a smaller gain of 1.3 dB.

B. B-Frames

We now compare the numerical results of our analysis with
experimental results for unidirectionally predicted P-frames and
bidirectionally predicted B-frames. The prediction error vari-
ances in Table I were obtained by averaging over ten lumi-
nance frames of the video sequencesSalesman, Flowergarden,
andKiel Harbour which were processed in the noninterlaced
Common Intermediate Format (352 pels288 lines, 30 fps).
Motion compensation uses a block size of 16 × 16 or 8 × 8 pels
without block overlap. For half-pel accuracy, bilinear interpola-
tion is used. Forward prediction uses only the previous (original)
frame for prediction, whereas backward prediction uses the fol-
lowing (original) frame. Bidirectional prediction simply aver-
ages the forward and backward prediction signals. The motion
estimator uses an exhaustive search in a 16 × 16 search window,
half-pel displacements are obtained by refinement of the best
integer-pel displacement vector. We discuss the results obtained
for blocksize 16 × 16 in the following, the findings for blocksize
8 × 8 are similar.

For Salesman, the gain obtained by -pel accuracy over
integer-pel accuracy is about 0.6 dB for both forward and
backward prediction. The gain by using bidirectional pre-
diction for integer-pel accuracy is more than twice as large.
This confirms the insight obtained from the model calcula-
tions that increasing the number of hypotheses from

Fig. 10. Prediction gain for integer-pel accuracy of motion compensation
measured forN = 2; 3; 4; 8 hypotheses over single hypothesis prediction
[32]. The dashed lines are model calculations for different residual noise levels
RNL = �12 . . . � 21 dB.

to can be more effective than increasing the accu-
racy from integer-pel to pel for sufficiently high RNL.
Similar observations are made for the Flowergarden and the
Kiel Harbour sequences. For Flowergarden, -pel accu-
racy yields a gain of 1.3 and 1.4 dB for forward and back-
ward prediction with integer-pel accuracy, respectively, while
bidirectional prediction yields more than 4 dB improvement.
Compared to the Salesman sequence, frame-to-frame changes
in the Flowergarden sequence can be modeled more accu-
rately by locally constant displacements from frame to frame,
hence the relative gains are larger. The prediction error vari-
ance values for Salesman include the stationary background,
hence the overall PSNR values are greater than for Flow-
ergarden, where the entire picture is moving. Kiel Harbour
is a sequence particularly suitable for motion compensation,
since its motion only consists of a zoom. A -pel accu-
racy gains about 2.3 dB, while bidirectional prediction gains
more than 3 dB for integer-pel accuracy. As predicted by
the theory, the gain by -pel accuracy over integer-pel ac-
curacy is much smaller when combined with bidirectional
prediction in all cases. In one case, we even measure a minor
loss when combining both. In general, the relative gains ob-
served in our experiments are well within the range of the
model calculations.
C. Multiframe Prediction

Finally, we compare the theoretical results to a multiframe
motion-compensated prediction method that has been presented
in more details in [32]. The motion-compensated block-based
predictor searches in up to ten previous frames for an optimal
combination of hypotheses. Fig. 10 shows the gains in pre-
diction error variance relative to single-hypothesis motion-com-
pensated prediction with integer-pel accuracy for the Foreman
sequence (QCIF resolution, 7.5 fps, 10 s). A blocksize of 16 × 16
was used, hypotheses are simply averaged. The multihypoth-
esis predictor gains 1.7 dB averaging hypotheses, and
more than 3 dB, if hypotheses are combined. Fig. 10
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also shows the theoretical predictions using (23) for different
residual noise levels RNL. The findings reported in [32] are con-
sistent with our theory.

VII. CONCLUSION

In this paper, we have extended the wide-sense stationary
theory of motion-compensated prediction to multihypothesis
motion compensation. The power spectrum of the prediction
error is related to the displacement error pdf’s of an arbitrary
number of the hypotheses and a vector of residual noise spectra
that captures the components of the motion-compensated
hypothesis signal that do not obey the paradigm of translatory
motion. The theory can be used to study the influence of motion
compensation accuracy on the efficiency of multihypothesis
motion compensation as well as the influence of the residual
noise level and the gain from optimal combination of
hypotheses. Several important conclusions can be drawn from a
numerical evaluation of the theory, some of which have already
been reported in previous experimental studies, while others
are new.

• An optimum combination of hypotheses always lowers
the bitrate for increasing . If each hypothesis is equally
good in terms of displacement error pdf, doublingcan
yield a gain of 0.5 bits/sample if there is no residual noise.

• Doubling the accuracy of motion compensation, such as
going from integer-pel to -pel accuracy, can reduce
the bitrate by up to 1 bit/sample independent offor the
noise-free case.

• If realistic residual noise levels are taken into account, the
gains possible by doubling the number of hypotheses,,
decreases with increasing. We observe diminishing re-
turns and, ultimately, saturation.

• If the power of residual noise components increases,
quadrupling and ultimately doubling the number of
hypotheses becomes more effective than doubling the
accuracy of motion compensation. As a consequence,
the introduction of B-frames or overlapped block motion
compensation can provide a larger gain than an increase
from integer-pel to -pel accuracy.

• The critical accuracy beyond which the gain due to more
accurate motion compensation is small moves to larger
displacement error variances with increasing noise and in-
creasing number of hypotheses. Hence, sub-pel accu-
rate motion compensation becomes less important with
multihypothesis MCP.

• Spatial filtering of the motion-compensated candidate sig-
nals becomes less important if more hypotheses are com-
bined.

In order to make the problem of multihypothesis motion
compensated prediction analytically tractable, we had to make
several simplifying assumptions, such as the stationarity and
the mutual independence of several of the random variables
involved, the spatial constancy of the displacement error, the
Gaussian statistics of the video signal itself, or the high bitrate
and the optimal performance of the encoder. Also, we neglected
the rate for transmitting displacement vectors. Mostly, these
assumptions make the gain obtainable by motion-compensated

coding larger rather than smaller, and we usually interpret the
theoretical results as performance limits of a practical coder.
Experimental results obtained with actual video sequences
often show significantly smaller gains, especially for low bitrate
coding. Nevertheless, the theoretical analysis can isolate the
various effects that determine the efficiency of multihypothesis
motion-compensated prediction and thus provide insight into
successful algorithms like OBMC or B-frames and guidance
for new multihypothesis schemes.
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