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Rank-Based Decompositions of Morphological
Templates

Peter Sussner and Gerhard X. Ritt8enior Member, IEEE

Abstract—Methods for matrix decomposition have found anew image. The notion of templates and structuring elements,
numerous applications in image processing, in particular for when viewed as small images, are identical, only the operations
the problem of template decomposition. Since existing matrix of combining the weights with image pixels in order to obtain a

decomposition techniques are mainly concerned with the linear ixel value differ. In li luti th bini
domain, we consider it timely to investigate matrix decomposition €W PIXElvaiue differ. Ininéar convolutions, the combining op-

techniques in the nonlinear domain with applications in image €ration is a linear sum, while in the morphological convolution
processing. The mathematical basis for these investigations isthe nonlinear operation of maximum (or minimum) of the sum
the new theory of rank within minimax algebra. Thus far, only  of pixel values and corresponding template weights is applied.

minimax decompositions of rank 1 and rank 2 matrices into —4yitively, the problem of template decomposition is that
outer prOdUCt expansions are known to the Image processing

community. In this paper we derive a heuristic algorithm for the given a templatet, find a_ sequencg of Sma"er .templates
decomposition of matrices having arbitrary rank. t1, .-+, t, such that applying to an image is equivalent to
applyingty, ---, t,, sequentially to the image. In other words,

Index Terms—mage processing, matrix decomposition, matrix

rank, minimax algebra, morphology, template. t can be algebraically expressed in termsof- - -, t,,.

One purpose of template decomposition is to fit the support
of the template (i.e., the convolution kernel) optimally into an
. INTRODUCTION existing machine constrained by its hardware configuration.

ONVOLUTIONS are a fundamental tool in image profor example ERIM's CytoComputer [21] cannot deal with
cessing. Classical examples of two-dimensional (2-f§Mplates of size larger thah x 3 on each pipeline stage.
linear convolutions include image correlation, the mean filtefhus, & large template, intended for image processing on a

the discrete Fourier transform, and a multitude of edge maSktoComputer, has to be decomposed into a sequeritedf
filters. Nonlinear convolutions are used in such operations @&Smaller templates.
the median filter, the medial axis transform, and erosion and”A more important motivation for template decomposition is
dilation as defined in mathematical morphology. For large coff? SPeed up template operations. For large convolution masks,
volution masks or structuring elements, the computation cd8€ computation cost resulting from implementation can be pro-
resulting from implementation can be prohibitive. However, iRiPitive. However, in many instances, this cost can be signifi-
many instances, this cost can be significantly reduced by d@ntly reduced by decomposing the masks or templates into a
composing the templates representing the masks or structurd§guence of smaller templates. For instance, the linear convolu-
elements into a sequence of smaller templates. In additi¢ign of an image with a gray-valuedx n template requires?
such decomposition can often be made architecture specfigltiplications andr? — 1 additions to compute a new image
and, thus, resulting in optimal transform performance. In thixel value; while the same convolution computed with.an.
paper, we provide methods for decomposing morphologid@W template followed by an x 1 column template takes only
templates which are analogous to decomposition methods udgdnultiplications and(» — 1) additions for each new image
in the linear domain. Specifically, we define the notion of thaixel value. This cost saving may still hold for parallel architec-
rank of a morphological template and we present an algoritH#€S such as mesh connected array processors [11], where the
for decomposing such templates based on the rank notion. COStis proportional to the size of the template.

Linear convolutions using masks of templates and nonlinear e problem of decomposingorphological templatebas
morphological convolutions using structuring elements have tRgen investigated by a host of researchers. Zhuang and Har-
common characteristic that they require applying a template®ick [29] gave a heuristic algorithm based on tree search that

structuring element to an image, pixel by pixel, in order to yielg@n find an optimal two-point decomposition of a morpholog-
ical template if such a decomposition exists. A two-point de-

_ _ _ __composition consists of a sequence of templates each consisting
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convex morphological templates for 4-connected meshes. Hdwd factorization yields a proven method for determining a rank-
ever, all the above decomposition methods work only on binabpased decomposition of a linear template of arbitrary, unknown
morphological templates and do not extend to gray-scale moank [9], [17].
phological templates. In an earlier paper, we introduced a polynomial time algo-
A very successful general theory for the decomposition ofthm for the rank based decomposition of morphological tem-
templates, in both the linear and morphological domain, evolvgthtes of rank 2 [24]. This paper develops a heuristic algorithm
from the theory of image algebra [5], [6], [17], [20] which profor the rank-based decomposition of morphological templates
vides an algebraic foundation for image processing and conf-arbitrary rank.
puter vision tasks. In this setting, Ritter and Gader [6], [18] This paper is organized as follows: First, we introduce the
presented efficient methods for decomposing discrete Fourieader to the language of image algebra. This mathematical
transform templates. Zhu and Ritter [28] employ the general nifeory is suited to describe all image processing operands
trix product to provide novel computational methods for con&nd operations in a translucent manner. Since we focus on
puting the fast Fourier transform, the fast Walsh transform, theorphological or nonlinear image processing, we proceed with
generalized fast Walsh transform, as well as a fast wavelet traasbrief description of the algebraic structures defined in the
form. nonlinear domain. Relating matrices to rectangular templates,
In image algebra, template decomposition problems, for bott¢ establish a new rank method for the morphological decom-
linear and morphological template operations, can be reformpgsition of matrices and rectangular templates in Section IV.
lated in terms of corresponding matrix or polynomial factoM/e conclude with computational results and suggestions for
ization. Manseur and Wilson [14] used matrix as well as polyurther research.
nomial factorization techniques to decompose two-dimensional
linear templates of sizex x n into sums and products 6fx 3 [I. SOME IMAGE ALGEBRA BACKGROUND

templates. Li [12] was the first to investigate polynomial fac- Image algebra is heterogeneousr many-valuedigebra in

torizz_;ltion methods for_ morphological t_emplates. He providqﬁe sense of Birkhoff and Lipson [1], [17], with multiple sets

a uniform representation of morphological templates in terag onerands and operators. In a broad sense, image algebra is
of polynomials, thus reducing the problem of decomposing Ay athematical theory concerned with the transformation and
morphological template to the problem of factoring the correy, v is of images. Aithough much emphasis is focused on the
sponding polynomials. His approach provides for the decompgsysis and transformation of digital images, the main goal
sition of one-dlm_en5|onal (2-D) morphological templates IR the establishment of a comprehensive and unifying theory
factors of two-point templates. Crosby [2] extends Li's methogf image transformations, image analysis, and image under-

to 2—D.morphological templates. ) standing in the discrete as well as the continuous domain [17],
Davidson [4] proved that any morphological template has|gg) [20]. In this paper, we restrict our attention only to the

weak local decomposition for mesh-connected array process@isations and operations that are necessary for establishing the
Davidson’s existence theorem provides a theoretical foundatiQy ,its mentioned in the introduction. Hence. our focus is on

for morphological template decomposition, yet the algorith'ﬁ\orphological image algebra operations.
conceived in its constructive proof is not very efficient. Takriti anceforth. let X be a subset of the digital plane
and Gader formulate the general problem of template decog» _ {(i j),: i,j € 7}, whereZ denotes the set of in-

position as optimization problems [8], [26]. Susseeal.[22] tegers. For any seF, we denote the set of all functions
use a similar approach to solve the even more general problggl, X into F by FX. The setF of interest will be the real

of morphological template approximation. As proven in [23}, ,mbers with the symbol-cc appended. More precisely,
these problems are NP-complete. Therefore, researchersusyally.  — _ gy {=c}, whereR denotes the set of real

try to exploit the special structure of certain morphological temy, mbers. The algebraic system associated Hith,, will
plates in order to find decomposition algorithms. For examplge the |attice ordered semi-grogR V, +). We use the
— 00 7 .

Liand R.itter [.13] provide very simple matr?x techniques for deéymbolsv andA to denote the binary operations of maximum
composing binary as well as gray-scale linear and morphologsg minimum, respectively. For any real numbethe number
ical convex templates. A separable template is a template t?@} is defined as the largest integesuch that < x.

can be expressed in terms of two 1-D templates consisting o dmages and Templatestrom the image algeb_ra perspective,

row and a column template. Gader [7] uses matrix methods {afages are considered to be functions and templates are
decomposing any gray-scale morphological template into a SyfBved as functions whose values are images. In particular,

of a separable template and a totally nonseparable templat%\ﬂfﬁ_oo-valued imagea over the point seiX is a function

the original template is separable, then Gader's decompositipny _, R_.. (i.e.a € RX_), while anR_..-valued template
yields a separable decomposition. If the original template is no,, x is a functiont: }ZC’: R_o (.t € (RX.)X). For

separable, then his method yields the closest separable templatgtional convenience, we defibg ast(y) for aﬁ;,o cX.

to the original in the mean square sense. Our focus will be ortranslation invariantR_.-valued tem-

The strong decomposition of arank 1 template is an easy 1g5iktes oveiX since gray-scale structuring elements can be re-
bothin the linear and in the nonlinear domain [13]. O’Leary [15] ;74 by these templates. A templates (RX__)X is called

showed that any linear template of rahéan be factored exactly {yansiation invariantif and only if
into a product of3 x 3 linear templates. Templates of higher
rank are usually not as efficiently decomposable. However, the tytn(X+2) =ty (x) Vx,y,z€ X =72 1)
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whenevery + z andx + z are elements oK. The supportof ‘ Loy oy

atemplatet € (RX_)* at a pointy is denoted by5(t,) and ‘,

defined as follows: x-1% 6 |10 |7
S(ty) = {x € Xi ty(x) # —oc}. 2 TTry=|2[6]3

Atranslation invariant templateis calledrectangular if S(t,,) oy 37| 4

forms a rectangular discrete array. v

. X \X i i ; -
Example. Letr € (R—Oo) be the translation invariant tem Fig. 1. Support of the template at pointy. The hashed cell indicates the

plate which is determined at each pojne X by the following  |ocation of the target poing = (. ¥).
function values ok = (z1, z2) € X:

(2, ifx=y—(0,1) rz
6, fx=y ﬁT_ T—
3, if x=y+(0, 1 < _‘
ru(@) = ry(z+(1,0)+4, ifz;+1 :(a: ) ) T L RN a
r(x—(1,0)+1, ifz;—l== } 5 3 ER
L —00, else. \L o '

If y = (=, y), we can visualize the rectangular templatas

shown in Fig. 1. Fig. 2. Templater constitutes the additive maximum of the templateznd
Additive Maximum OperationsThe basic operations of ad—the templatet.

dition and maximum ofR__, induce pixelwise operations on L

R_..-valued images and templates [20], [19]. These operatio'ﬁlé)y morphological image-template products of the ferf ¢

can also be used to define lattice based convolution operat(9rrs?‘ @ ¢ [19]. X X e .

In particular, forming thedditive maximun{‘&4”) of an image Example: The templates, s, t € (RZ,)~ in Fig. 2 satisfy

a € RX_ and a template e (RX_)X results in the image © = 5 M t- _ ,
ald t € RX_, which is determined by the following function, SCM€ Properties of Image and Template Operatiohise
values: - following associative and distributive laws hold for an arbitrary

imagea € RX_ and arbitrary templates € (R*_)* and
(@l t)(y) =\ a(x) +ty(x). 4 se (RE)™

xeX
c aM(sMt)=(alMd s)M t,
Clearly, each template € (R*__)* defines a function

aM(svt)=(alM s)v(ald t). (7)
A aldt ®) ;ircr)lr(]ese results establish the importance of template decomposi-
The dual operation oadditive minimum(*[A") between im- ~ Strong Decompositions of Template&: sequence of tem-
ages and templates can be defined in a similar fashion by Mates(t, ---, t*) in (RX_)* is called a(strong) decompo-

terchanging the operationwith the operatiom. Using the ter- Sition (with respect to the operatiorid”) of a templatet €
minology of mathematical morphology, the additive maximurfR2..)* if t € (R*.,)* can be written in the form

operation expresses standard gray-scale dilation while the addi-
tive minimum operation expresses standard gray-scale erosion

[10]. In the special case wheke= 2, we speak of @eparableem-

The notion of additive minimum for combining an image Wiﬂblate if the support of! is a 1-D vertical array and the support
a template can be extended for combining templates.athe of t2 is a 1-D horizontal array

iti i X X
ditive maximunof a templatet € (R%_)* and a template Example: The template € (RX__)¥ given in Fig. 1 repre-

Z < (R.—W) 1S d?]fmed as th? templfatltlae (SBW) Swh'c,? sents a separable template since this template decomposes into a
etermineg/; o /¢, the composition ofy followed by /5. Specif- g ticq strip template € (RX_ )X and a horizontal strip tem-

ically, platet € (R*__)* as shown in Fig. 3.
_ Weak Decompositions of TemplateA: sequence of tem-
Mt = ty(z) + Vy,z€X. (6 . ; .
(5 O)y() = V (ix(z) +5y(x) v, ©) plates (t!, ---, t*) in (R¥_)* together with a strictly
. o o . _ increasing sequence of natural numbrs - - -, k,) is called
These relationships induce associative properties for image meak) decompositio(with respect to the operatiori2”) of
template operations which we provide after the following exany- templatet € (RX__)X if the templatet can be represented

ples. _ _ _ as follows:
Example: Many image processing techniques such as the

Rolling Ball Algorithm and algorithms for noise removal em- t = (t' &...-& t")v...v ("1 F &...& th). (9)

t=t'Mt>’™-- & t~. (8)

xeX
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4 Algebraic Structures and Operations in Minimax Al-
gebra: The mathematical theory of minimax algebra deals
sy= [ 0 ty=| 2 [ 6] 3 with algebraic structures such as bands, belts and blogs. For
exampleR_, together with the operations of maximum/()
! and addition forms a belt. Cuninghame-Green defines the

matrix rank for matrices over certain subsets of the Iitag...
Fig. 3. Pictorial representation of a column templatnd a row template. ~ For our purposes it suffices to considey the finite elements

of Rioo-
We say(s!, -- -, s*) is a weak decomposition of a rectangular Operations such as the maximunv{}, the minimum (‘A”),
templatet € (R*_ ) into separable templates if eashwhere and the addition oR induce entrywise operations &7 *", the
i=1,---, k, isseparable antl=s' v --- Vv s*, set of allm x n matrices oveR. Minimax algebra also defines

Correspondence Between Rectangular Templates and Mampound operations such &4™“—pronounced “additive max-
trices: Note that there is a natural bijectighfrom the space imum”—from R™** x R¥*™ into R™*™, an operation similar
of all m x n matrices oveR_., into the space of all rectan-to the regular matrix product known from linear algebra. (An

gularm x n templates iR*_)%. obvious dual of this operation is provided by the “additive min-
Lety = (z, y) € X be arbitrary anck = (z1, 2,) € X be imum” operation.) Given matriceA € R™** andB € R**",
such that the additive maximunC = A M B € R™*" is determined by
m n &
e \~2J’ ey \~2J (10) cijz\/(aik—i—bkj) Vi=1,---,m,¥Vj=1,---,n
The image of a matriA € (R_..)™*™ under¢ is defined to =1
X \X \whi ofi ‘ (13)
be the templaté € (R, )* which satisfies If A isamatrix inR™*" and ifu’ are column vectors iR™>**
b (21 +i— 1, 224 — 1) = ai; andv* are row vectors irR" for i = 1,---, k, then the
yitl Ty I following equivalence holds for the corresponding rectangular
Vi=1,---,m,Vj=1,--'n, templatep(A), the vertical strip templates(u‘), and the hori-

zontal strip templateg(v*):
ty(yla Ya) = —00
k k
Vo gl = Ux =1 0D o\ v e g(a) =\ (6T 6v). (1)

Henceforth, we restrict our attention to rectangular templates =t =t

whose target pixel is centered, i.e., rectangular templates of the inear Dependence of Vectors [3]A vectorv € R™ is said

above form. . _ to belinearly dependenon the vectorsvt, ... vk € R™if
The theory of minimax algebra [3] examines the algebrajhd only if there exists a (not necessarily unique) set of scalars
structures arising from the lattice operations “maximumg; ¢ R, i = 1, -- -, k, such that

“minimum,” and “addition” including the space of all matrices

over R_., together with the operation “additive maximum.” K 4

The natural correspondence between rectangular templates V= \/(ci +v). (1%)

int € (RX_)X and matrices oveR_, allows us to use a =1

minimax algebra approach in order to study the weak decom-Otherwise, the vector € R™ is calledlinearly independent

posability of rectangular templates into separable templates from the vectors/!, - - -, vk € R™. The vectors/!, ---, v* €
Example: Let A € R**® be the matrix andk, v the vectors R arelinearly independerif each one of them is linearly in-

dependent from the others.

6 10 7 4 _ . . _
A={2 6 3], u=[0], v=(2.6,3). 12 Example: Consider the following elements &F:
3 7 4 1 5 3 -6
_ _ 1 _ _E 2 _
The functiony mapsA to the square templatec (R*_ )% V= i V= ; VT Sl) - (16)

in Fig. 1, and it maps the column vectarto the column tem-

plates € (R¥_)X and the row vectox to the row template Sincev = [2 4+ v!] V [(=2) + v?], the vectorv is linearly
t € (R*_)¥ in Fig. 3. The reader may want to verify these(‘jependent ow! andv2.

mappings using (10) and (11). Rank of a Matrix: The (separable) rankof a matrix
A € R™*" is denoted by ranfd) and defined as the minimal

[ll. RANKS OF MATRICES IN MINIMAX ALGEBRA number+ of column vectorsu!, ---, u" € R™*! and row
In this section, we develop a new notion of matrix rank withiNectorsv', - --, v" € R"*” which permit a representation of

the mathematical framework of minimax algebra. We relate thi in the following form:
concept of matrix rank to the one given by Cuninghame-Green

[3] and derive the notion of the rank of a morphological tem- A — \/(ui & vH). (17)
plate.
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A representation of this form is calledrank decomposition ~ Theorem 2:If A € R™*" is a separable matrix and <
or separable decompositiaf A. We sayA is aseparable ma- o < m s an arbitrary index then each row vecidf) is linearly
trix (with respect to the operatidd) if rank(A) = 1. dependent on thigth row vectora(io) of A.

Rank of a Rectangular Templatéf t = ¢(A) forsomereal-  Assuming that every row vector of a given matéxis lin-
valued matrixA, then we define theank of the template € early dependent oa(1), the matrixA is separable and The-
(R¥_)* as the rank ofA.. orem 2 yields a strong decompositidn= w' & a(1), where

Our interest in matrix and template ranks in the nonlinear! € R™*1. We showed in an earlier paper [24] that Theorem
domain is motivated by the problem of morphological templat&can be generalized in a natural way to include matrices of rank
decomposition since the rank of a morphological template 2:

(RX__)* represents the minimal number of separable templatesTheorem 3: A matrix A € R™*" has rank 2 if and only if
whose maximum ig or, equivalently, the minimal number there are two row vectors &k on which all other row vectors
of column templates’ € (R*_)* and row templates’ € depend (linearly).

(R¥..)* such thatt = \/|_,(r* & s). Cuninghame-Green Theorem 3 provides for a straightforward algorithm to deter-

=1

provides a different definition of matrix rank in [3]. mine if a given matrixA € R™>*" is of rank< 2 in the minimax
algebra sense. Consider each tuple of row vectoss ahd test
1IV. MATRIX DECOMPOSITIONS INMINIMAX ALGEBRA all row vector ofA for linear dependence on this vector tuple.

If the matrix rank is indeed less than 3, then this algorithm also

.AS an |ntrod'u.ct|o.n to. the general problem of ra_nk-based m@émputes a tuple of vector pairs into which the matrix can be
trix decomposition in minimax algebra, we would like to prese ecomposed

a short review of some results which have been established €A similar theorem does not hold for matrices of separable

fore. The reader should bear in mind the consequences for Fgﬁkk > 3. This fact is expressed by the following theorem.
corresponding rectangular morphological templates._ Theorem 4: For every natural numbet > 3 there are
;I' heolrem L lIfamatnxA € R™" has areplresenrtr?xtllcm ~ matrices oveR_, which are weaklyid-decomposable into a
Vioy (' M 1; ) in tleXrTs of column vectors® € R and product of% vector pairs, but not all of whose row vectors are
fow vectorsv: & R /,.wherel =1,---, k, then4 can be linearly dependent on a singketuple of their row vectors.
expressed in the following form: We showed in a previous paper that the general problem of de-
termining rank decompositions of matrices is NP-complete [23].
(W' 2 v) (18) However, the N_P-completenes_s _of a Certgin problem_does r_10t
preclude the existence of an efficient algorithm for solving arbi-
trary instances of this problem. For matrices having relatively
wherew! € R™*! is given by small rank compared to their size, we suggest the following
heuristic algorithm (Algorithni{). This heuristic is based on

<=

A=

o~

1

LA . ) the following observations:
w; = /\(%’ —v;) Vi=1 -, m (19) Remark: Suppose thalA € R™*", whose rank is an un-
y=1 known integer-. Hence, A can be represented as the maximum

of matricesA! € R™*" wherel = 1, ---, randA! = x' My!
for some real-valued column vectat$ of lengthm and some
real-valued row vectorg® of lengthn. According to Theorem
2, the separability of the matriA! induces the equality of the

Similarly, givenA and thek column vectorsr’ € R™*, we
can compute row vectoss’ € R**" forl =1, -- -, k such that
k
A=V (W MW

. differencesal; — a!; foralli = 1,..-, m and for arbi-
wﬁ = /\(% —ul) Vi=1,---, n. (20) trary, but fixed! € {1, o r}andji, jo € {1,---,n}. On
ie1 the other hand, if the differences;, — a;;, are all equal for
1€l C{l,---, m}, it seems reasonable to assume that there
Remark: Theorem 1 implies that, for any matik € R™*"  exists an index such thatu;;, = al; = =} +4! anda;;, =
of separable rank, it suffices to know the row vectors’ € al. =z!+y! formosti € I provided that is relatively small
Rix? [ =1, ---, k which permit a weak decomposition Af andthat{a;;: ¢ =1, ---, m;j =1, ---, n}|isrelatively large
into k separable matrices in order to determine a representatigmpared te. This assumption and Lemmas 1 and 2 of the Ap-
of A in the form pendix play an important role in Algorith which intends to

determine- as well as column vectors € R™*! and row vec-
torsv! € R'*" such that

<=

A=\/(wMv), where weR™! Vi=1,--- k.
=1 ”
_ (21) A= \/(ul & v'). (22)
From now on we use the notatiei(), ¢ = 1,---, m to o1
denote theith row vector of an arbitrary matriA € R™>",
and we use the notatioa(j], j = 1, - - -, n, to denote thegth

k
. _ l i i i
column vector ofA Remark: Assume thatA = \/ (x' ¥ y*), wherez’ andy

=1
A theorem by Li and Ritter [13] allows for the following ele-are unknown real-valued vectors. Algoritikhconstructs vec-
gant reformulation. torsu’ andv! for{ = 1, ---, k such that! M v! < A. The
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. k N —oco foralj = 1,---,n. Lets = min{i
maximum \/( v!) reachesA, i.e., \/( M v = A, {iss -+ iy} mij, = I} Forallj =1, --, n such
if there eX|st setd’ andJ! forall I = 1 , k such that the that there exists an indéxe {iy, -- -, i,} satisfying
following conditions hold: m;; = I, change the value af; to a;; + a,;, — aij,,
wherei € {i1, -, i,}. Note that the value of}
I'x JECH{(, g): ol +of = ai} does not depend on the choice of an elemaithe
o set{éy, - -, i,y N{e =1, -, m: my; =1} since
I T (G, )+ uy < wj+0j} con{dition b) §1°}ST{EP 2 holds for all sueh J
k . . Step 4) (Extend horizontal markings vertically and create
U(I X J)=AL, e mpx AL - ng (23) column vectorax’ € R™*1): Define the column
=1 vectoru! € R™*! as follows:
Lemmas 1 and 2 of the Appendix provide some further insight n
into these matters. Additionally, by combining Lemmas 1 and 2 ul = /\ (ai; — 6]’») 27)
we establish a theorem (Theorem 8) that should lead to an even j=1
better understanding of AlgorithH.
Algorithm™: Let A € R™*™. This algorithm determines a Note that ; adopts a finite value for all
parametet: > rank/A) and progressively constructs column ¢ = 1,---,m, since A is a finite matrix and
vectorsu! € R™*! and row vectors’! € R1*™ such that fzjl is fin|te. Increase the values of all zero entries

of M to ! whenever;; — ¢} = u/.

k . . Step 5) (Final horizontal extension of markings and creation
A= \/(“ & V). (24) of final vectorsv! € R™*1): Forallj =1, ---, n
=1 such thatz! is finite, we equate/! with ¢!. Other-

wise, we define as\;”  (a;;—u}). Any remaining
zero entrym,;; |s settol if a;; = w;; + vj
Example: Let us firstillustrate how Algorithri{ works with
a simple example. Suppoge € R®*** is the following matrix:

Furthermore, this algorithm generates a malvixe R™*"
which has the following property:

1 {
mijzl:>u7;+vj=a7;j

Vi=1---,m;Vj=1---, m;¥Ii=1--- k. (25

6 3 4
A= 3 3 4. (28)
6 7 8

D G

Informally speaking, each entry:;; represents a label indi-
cating which index = 1, - --, k maximizes the sum! + vj

Initialize the matrixM € R™*" to be the zero matriR,,», A matrix M € R3*** is initialized as03x4. Then we execute
and let! = 0. As long as the matri®M has a zero entry, we Step 1-Step 5 for the parameter 1.

increment the parametéby 1, and perform the following steps.  Since a;3 — a;x = -1 for all ¢ = 1,2, 3, we set
Otherwisel = k and the algorithm stops. (i1, -+, 1p) = (1,2,3), 1 = 3, andj> = 4. The matrix
Step 1) (Find the most frequent tuple differenc®etermine M € R*>** now has form

a strictly increasing sequence of maximal length

. . . . 0 0 1 1

(41, @2, -+ -, 4p) such that there exist two different M={(0 0 1 1

o tp) S \ . ; = . (29)
column indicesj; and j» having the following 00 1 1
property:

Considering/\izl(az]L —a.3) and/\izl(a;g —a.3), We recog-

Qi = Girgo = Ginjy = Aiggy = *°° = Giygs = Gijo nize that
and My, 4, IOOI’mZ‘”’QIO\V/tIl,---,p. (26)
(a1 —a.3) =(8=3)A(B—-3)A(6-T)

S

Foranyt =1, ---, p satisfyingm;,;, = m;,, =0, Y

we setm;, j, = m;, j, = (. Ifeither one of the entries = —1=az — as;

my, 5, OF my,;, differs fromOforallt =1, ---, p,

then Semi”’l = My, j, = [forallt=1, -, p.
Step 2) (Extend the markings of found tuples horizontally): 3

Foralli € {i), ---,4,}andallj =1, ---, n, we (az2—a:3) =(6-3)AB-=3)A(6-7)

setm;; = [ if the following two conditions both ==1

hold: = —1=a3 — azs. (30)

and

a) mij, = L. . Therefore

b) aij — aij = ’/_\l(azj — )
Step 3) (Create preliminary row vectors® ¢ [R%Tjol): Ini- M= (31)

tialize the vectorv! € R™Z' by settingd! =

= O O
= O O
— = =
— = =
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Initially, all entries of the vectoi' are set to-co. Sincemiz =
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Since all entries oM are strictly greater than 0, Algorithfi

1, the parametes = 1. When executing STEP 3, these entrieBnishes yielding the following result:

adopt the following values:

@%=a31+a13—a33=6+3—7=2.

A= M vV M v?)

17%:@32—1—@13—@33:6—1—3—7:2. 0
U =ais+a13—aiz=a;3=3 Vi=1,2 3. = 2 M(2 2 3 4)
0y =au+ 13 — ais = (a4 —a) +as =1+3=4 0
Vi=1,2 3. (32) v[ -3 |M(8 6 3 4)
-2
Step 4 computes a vectat € Rsy; as follows:
p p 3x1 8 6 3 4
4 =153 3 4 (37)
ub= Aoy — ) 6678
’ Theorem 5: Algorithm 7 is a polynomial time algorithm.
=B-2)A6-2)AB3-3)A4-4)=0 Proof: Let us analyze Step 1 through Step 5 fAr ¢
4 R™*" and for fixed! € N.
ub = /\ (az; — %) Since there arén(n — 1)/2) different tuples of column in-
i1 T dicesj; andjz, m-(n(n—1)/2) subtractions are needed in order
to compute the differencesg;, — a;;, foralli =1, ---, m and
=(G-IPNAB-2AB-3)A4—-4) =0, forall j1, 72 =1, ---, n. Forfixedj; andjz, the comparison of
them real numbers;;, — a;;, takes(m(m — 1)/2) operations.
4 Hence, these comparison operations are of computational com-
ub = /\ (ag; — ) plexity O((1/4) - n*m?). All other operations of Step 1 and the
=1 v operations of Step 2 through Step 5 have smaller computational
complexity. Since the number of zero entriedfe R™*" de-
=06-2)A6-2)A(T—-3)A(8—4)=4. (33) creases when performing Step 1 through Step 5, Algorithm

Since the vecto¥! is finite, we havev! = v! in Step 5.

is a polynomial time algorithm.
Theorem 6: Given a matrixA € R™*", Algorithm H pro-

Now the parametelr changes to 2, since there are still somduces an integek, column vectorsi’ € R™*! and row vectors
zero entries of\/ left. These zeros of/ are eliminated in Step +* € R**™ for [ = 1, -- -, k such that

1, Sinceau — Q12 = Q91 — Qoo = 2 aﬂdmu =M12 = Mol =
Mmoo = 0. ThUS,

2 211
M=\|2 211
1 1 11

(34)

Note that Step 2—Step 5 effect no change in the mattpsince
M > 03.4. Step 3 and Step 4 create the following vectotsc
R4 andu? € R3*1:

0
—00), u=| -3
-2

(¢!
o
I
~
oo
[ep}

(35)

Step 5 produces a row vectef € R4 wherev? = 47 for
i = 1, 2. The entries)3 andv? are computed as follows:

= N\(ai—up) = (3-0) A (3= (B) A (7-(2)) = 3,

k
A=\/(um V) (38)
=1

Moreover, Algorithm?{ generates a matriv¥ € R™*"™ such
that the following relationship holds:

Proof: Suppose that Algorithii is applied to a matrix
A € R™*", yielding as an output an integkr column vectors
u! € R™*! and row vectors' € R*>*" foralll =1, ---, k, as
well as a matrixM € R™*",

Since the final matri™ belongs to the s€fl, - --, k}™*",
it suffices to show that the following properties hold foraly,
andl:

1) ul + v < ay;

2) m;; =1 = ui—i—vjl > a;j.

The first property immediately follows from the fact theit
equals\”_, (a;. — vl), since\"_, (ai. — v}) < a;; — vt

Suppose thatn;; = [ after completion of STEP 3. This
assumption implies that € {iy, - t

; |
ipyrandv; = v =
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aij+a.j, —aqj, . Inthis case, the following argumentation shows Theorem 8: Supposed > x M y for a matrixA € R™*",

the validity of property 2:

2 — O) + v

>:
~—~
£
I

l 1 _
u; +v; =

v
Il
—

(A%
=

(ai;; - (aiz + Asj; — aUl)) + U;

I
S
Sl
X

iy = Gsjy ) (@i + asj, — aij,)

(40)

[l
5]
<

s % e
v, = —o0orv, = N\ (ar: — aryy )+ asjy, < iz — aij, +asy,

forall: =1, -, n.

Clearlyw} + v} = ay, if the entrym;; of the matrixM
R™>™ has been set tbin Step 4 or in Step 5.

Theorem 7: Given a matrixA € R”*" of rank 1, Algorithm
‘H determines a column vectort € R™*! and a row vector
vl € RY*"?, such that

A=u'[2 v, (41)

Proof: By Theorem 2, each row vecte(:) of A, where
it =2, ---, n,islinearly dependent on the first row vectdl).
Hence, there exist; such that(:) = A; +a(l), which implies
that the following equalities hold:

a1 — a2 ==X 4+ a;1 — (A + ai2) = an — a2

Vi=2 -, n (42)

Hence, Step 1 of Algorithrit{ results in a matrixVI € R™>"
of the following form:

1 1 0 0
1 100

M = 43)

1 1.0 0 --- 0O
Since the differences. ; — a1, wherez ranges from 1 ten, are
all equal for arbitrary, but fixed € {1, ---, n}, all entries of

M are setto 1 in Step 2. Step 3 yields a row veétbr= a(1).
In Step 4, we compute a column vector as follows:

n

ub = A (ai; — 3})
j=1
n

= N (aij —ay)

[l
2w
&
=l
—
|
Q
[
—

(44)

Henceu! = a[1] — a;;. STEP 5 equatesg! with v!, and the
algorithm finishes yieldingA = u* M v*.

The inequality above holds for the following reason: Either J—

a column vectox € R™*! and a row vectoy € R**". Let
u, v, v denote the vectors!, v, v! constructed from the ma-
trix A in Algorithm H for an arbitrary, but fixed parameter
l. Let j1, j2 be as in AlgorithmH. If I C {1, ---, m} and
J C {1, ---, n} denote the sets

I:{i:ui—i-f/jl =x; +Yj = Qijq,
wi Oy = @i+ Yj, = iy}

and

m
{J Qij — Qjjy = /\ (azl — azjl) for somei € I} s

z=1
(45)
then
ajj 2w +v; =u; +0; 2 T +y;
Vi=1,---,m; Vjeld (46)
In particular, ifz; + y; = a;; for somei € {1, ---, m} and

somej € J, thenu; + v; = ayj.

Remark: Suppose thatA has representationA =
Vi, (x! ¥ Y, wherer = rankA). Theorem 8 pro-
vides conditions which guarantee thgt+ % coincides with
u! + v} for certaini and j, whereu' and v' are the vectors
constructed in Algorithm*. We obtain the desired result
A = V_ (u & V') if the following condition is satisfied:
For alli andj, there exists an indelxe {1, - - -, »} depending
on< andj such that

Qij = a?i + yﬁ = ui + vj 47
The interested reader may find the proof of Theorem 8 in the
Appendix.

Example: The following example shows that although Al-
gorithmH always determines a weak decomposition of a given
matrix A into outer products of column vectors and row vec-
tors, the number of these outer products is not always minimal.
In other words, there are instances when the parameteter-
mined by Algorithm? exceeds the rank of the matrix. Let
A € R**> be the following matrix.

—2 0 0 -1 4
531 0 8
A=l 354 27
310 -2 6
0
1
=| 3|®@(=5 00 -1 4)

Remark: An application of Gader’s algorithm to a separable
matrix will also yield a separable decomposition of the matrix
[7]. In view of Theorem 2, the separability of a matrix is easy
to recognize anyway. Thus, the intended use of Algori#tins
for matrices of rank>2. If the matrix is close to being separable
and an approximation in terms of a separable matrix is desired,
Gader’s algorithm should be chosen. Algoritiirns best suited
for finding exact outer product representations of matrices with
small rank.

|
(21

N |
SO R NN O

M(-3 1 0

-2 0).

(48)
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SinceA is weakly decomposable into three vector pairs, thexists: The probability that a wrong guess causes the failure of
rank of rankKA) < 3. Using Theorem 3, we can show thathe algorithm appears much smaller in the first case than in the
rank A) = 3. However, Algorithm yieldskt = 4 and com- second case. Further research is needed in order to determine the

putes the following column vectots', - - -, u* and row vectors criteria for optimal algorithm performance. Other suggestions
vl ..., vtsuchthatA = \/;_ u' & vi. for further research include the following.
Usefulness of algorithm for nonoptimal decomposition:
0 =7 The algorithm is guaranteed to determine an outer product
ul = 3 W= 0 representation. An application of the corresponding strip
517 -2 |7 templates to an arbitrary image will still lead to savings in
1 -2 computation time as long d&: - n)/(m + n) exceeds the
0 0 number of outer products determined.
3 1 4 1 Approximation capabilities:The execution of the al-
u’ = u = . . i .
417 37 gorithm may always be stopped at timeyielding an
0 -1 approximation of the given matrix, the given template
vi=(-2 0 -2 -3 2), v!’=(5 3 1 0 8), respectively, in terms of outer products.
Vi=(=2 0 0 -2 3), vi=(-2 0 0 —1 4). Generalizations and variationsthe algorithm may po-

tentially be adapted to produce decompositions of tem-
plates other than rectangular templates and/or decomposi-
tions into templates other than strip templates.

V. CONCLUSION APPENDIX

Computational ResultsWe have coded Algorithn#{ in We state and prove the two lemmas mentioned in this manu-
MATLAB [30] We randomly generated 100 matrices of Sizgcript and provide a proof of Theorem 8.

16 x 16 having integer values ranging from 0-255 and rank  |emma 1:Letx, u € R™*! andy, v € R!*". Suppose

forr =3, 4, 5. We succeeded in finding a rank decompositiothat there exists an indej € {1, -+, n} such thate; +y,; =
for the following percentages of the given matrices: w; + vy foralli € T € {1,---,m}.Ifforall j € J C
1)rank 3: 91%. {1, ---, n} there exists an indek € I such thatu;, +v; >
2)rank 4: 88%. z;; +y; then
3)rank 5: 74%.
The average CPU time on a Sun SPARC 4 workstation and w+v; >xi+y;  Viel, Vjeld (50)
the average amount of flops required for the rank decomposition
depend on the rank of the given matrix Proof:
1)rank 3:13.45s, 75885 flops.
2)rank 4:18.02 s, 110950 flops. ‘ o ‘ ‘ '
3)rank 5: 24.03 s, 146 710 flops. s+ vy = (= wiy) + (u; + ;)
Concluding RemarksNote that the intended use of Algo- =[(ui +v57) = (i + vyl + (wi; +v5)
rithm 7 is the problem of weakly decomposing a morpholog- 2 (i + ) = (i, +y)] + (@i, + )
ical m x n template intor outer products of column templates =z — x| + (25, +yy)
and row templates. Savings in computation time can only be =ity Yiel, Yjel (51)

achieved ifr < (m -n)/(m + n).
Asr approaches the limit af6? /(2-16) = 8 in this example,
" app /(2-16) b emma 2: Supposai, x € R™* v,y e R,
the success rate reveals a further decrease (about 43% for rank™. . 0
. X . and ji, j» € {1, --, m}. Furthermore, let a subsef of
6 matrices) while more and more operations are needed. Infor- .
. : X1 ... m} and a subset of {1, ---, n} be given such that
mally speaking, the decrease in the success rate of the algorithim . ot ' . .
. . . - v; andx; are finite for all j € J. If the following conditions
as the matrix rank increases can be explained as follows: s .
: gre satisfied them; +v; > x; +y; forall¢ =1, .-+, m and
The algorithm attempts to guess an outer product represer} a-
. . . . o ~forall j € J.
tion of the given matrix using a minimal number of vector pairs.
Differences of corresponding entry tuples provide clues which .
can be used in order to construct such a rank decomposition. As ~ %i T Vi =i + ¥ = Gij, Viel,
the rank of the matrix to be decomposed gets higher, it becomes  w; +v;, =%; +y;, = aij, Viel,
more likely that the same difference of corresponding entry tu- ., | vj, =@y Y OF U +vj, = T + Yj
pels is accidental, leading to a wrong guess in the outer product y
: Vite{l, ---,mi\,
representation. T : '
Wrong guesses are also more frequent in the situation where % +v; 2z +y;  Viel; Vje (52)
the discrete matrix values are densely distributed over a small
range than in the situation where the matrix values are sparsely Proof: It suffices to show that for arbitrary’ €

distributed over a wide range. However, the following payoff1, ---, m}\I and for arbitrary;j € J the relation
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wy + v; > =z + y; holds. Supposej’ denotesj; if
uy + vj, = ai;, andjp otherwise. We obtain the following
estimate for the difference; — u,;,, wherei is an arbitrary

1
element off: 5
[2]
wir — i = (uyr +vjr) = (wi +vj) 3]
2 (@ +yy) — (zi +yy) "
=y — (53)

Using this estimate, the inequality + v; > =y + y; now 5]
follows from the inequality; +v; > x; + y;. 6]
Proof of Theorem 8:Note thatu M v < A by construc-
tion of the vectorax andv. Furthermore, the sdty, ---, 7, } 7]

generated in STEP 1 of Algorithri{ contains the sef since
a;;, — a;;, = Uy, — vy, forall i € I. Let us first show that  [8]
ai; > w; +0; > x; +y;forall< € Iandforally € J. By
Lemma 1, it suffices to show that for gll€ J there exists an g
indexi; such thatu;, +v; > z;, + ;.
By the definition of J, each indexj € J entails an index [1°]
i; € I such thatm; ; is set tol in STEP 2 of Algorithm.
If s denotesmin{i € {i1,---, 4, my;, = I}, theny; = [11]
ai,; + asj, — a4, forall j € J. For an arbitrary, but fixed
elementj € J the inequalitiesi;: < a;,; + asj, — a;,; hold (12
for all 3 = 1, ---, n. Therefore, we are able to deduce the
following equalities: [13]
. A i i [14]
wiy + 85 =\ (i = 90) +9;
ir=
=(ai,; —9) +7; 1o}
=a;.; Vield 54
Qi j J € (54) [16]
SinceA > x M 1y, the conditions of Lemma 1 are satisfied,
yielding thatw,; + v; > «; +y; forall< € I and for allj € J. 1171

Provided that:; +77j1 = xy +y;, Oruy +T~Jj2 = Zy +Yj, for
alle’ € {1, ---, n}\I can be shown, an application of Lemma 2 [18]
concludes the proof of the theorem, sirige= v; forall j € J.
Let us fix an arbitrary row index’ ¢ I. By the definition of

n - . o [19]
uy as/\;_,(air; — ¥;), there exists a column indgk such that

wy = ayj — 0. Sincew; is finite, ¢, is finite and equals  [20]
vj. Therefore,j’ either equalgj, or is an element of the set
J’ which we define as the set of all column indigesuch that [21]
Aij — Qijy = /\Z;l(azj - aZjl) for somei € {ilv T LP} [22]
Note thatJ’ includesy;. The casg’ = j» leaves nothing to
show, sinces;; = a;/,, — ¥;,. Assuming thay’ € J’, we finish
the proof of the theorem as follows. We use the facts tat 03
u M vandthata;;, =w; +v;, foralli € {i;, -+, ip}. (23]
m [24]
aiy —ai, > N\ (0 — azy) = @iy — aij,
z=1
. . . 2
for somei € {i1, -- -, i} =
=y + Uy — avgy 2 (u +050) — (i +05,) [26]
for somei € {i1, -+, ip} [27]
= Uir +Ujy 2 airj,
(28]

= Ui + Ui = Gy

= Uy + U5, = Ty + Yy, - (55)
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