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Rank-Based Decompositions of Morphological
Templates

Peter Sussner and Gerhard X. Ritter, Senior Member, IEEE

Abstract—Methods for matrix decomposition have found
numerous applications in image processing, in particular for
the problem of template decomposition. Since existing matrix
decomposition techniques are mainly concerned with the linear
domain, we consider it timely to investigate matrix decomposition
techniques in the nonlinear domain with applications in image
processing. The mathematical basis for these investigations is
the new theory of rank within minimax algebra. Thus far, only
minimax decompositions of rank 1 and rank 2 matrices into
outer product expansions are known to the image processing
community. In this paper we derive a heuristic algorithm for the
decomposition of matrices having arbitrary rank.

Index Terms—Image processing, matrix decomposition, matrix
rank, minimax algebra, morphology, template.

I. INTRODUCTION

CONVOLUTIONS are a fundamental tool in image pro-
cessing. Classical examples of two-dimensional (2-D)

linear convolutions include image correlation, the mean filter,
the discrete Fourier transform, and a multitude of edge mask
filters. Nonlinear convolutions are used in such operations as
the median filter, the medial axis transform, and erosion and
dilation as defined in mathematical morphology. For large con-
volution masks or structuring elements, the computation cost
resulting from implementation can be prohibitive. However, in
many instances, this cost can be significantly reduced by de-
composing the templates representing the masks or structuring
elements into a sequence of smaller templates. In addition,
such decomposition can often be made architecture specific
and, thus, resulting in optimal transform performance. In this
paper, we provide methods for decomposing morphological
templates which are analogous to decomposition methods used
in the linear domain. Specifically, we define the notion of the
rank of a morphological template and we present an algorithm
for decomposing such templates based on the rank notion.

Linear convolutions using masks of templates and nonlinear
morphological convolutions using structuring elements have the
common characteristic that they require applying a template or
structuring element to an image, pixel by pixel, in order to yield
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a new image. The notion of templates and structuring elements,
when viewed as small images, are identical, only the operations
of combining the weights with image pixels in order to obtain a
new pixel value differ. In linear convolutions, the combining op-
eration is a linear sum, while in the morphological convolution
the nonlinear operation of maximum (or minimum) of the sum
of pixel values and corresponding template weights is applied.

Intuitively, the problem of template decomposition is that
given a template , find a sequence of smaller templates

such that applying to an image is equivalent to
applying sequentially to the image. In other words,

can be algebraically expressed in terms of .
One purpose of template decomposition is to fit the support

of the template (i.e., the convolution kernel) optimally into an
existing machine constrained by its hardware configuration.
For example ERIM’s CytoComputer [21] cannot deal with
templates of size larger than on each pipeline stage.
Thus, a large template, intended for image processing on a
CytoComputer, has to be decomposed into a sequence of
or smaller templates.

A more important motivation for template decomposition is
to speed up template operations. For large convolution masks,
the computation cost resulting from implementation can be pro-
hibitive. However, in many instances, this cost can be signifi-
cantly reduced by decomposing the masks or templates into a
sequence of smaller templates. For instance, the linear convolu-
tion of an image with a gray-valued template requires
multiplications and additions to compute a new image
pixel value; while the same convolution computed with an
row template followed by an column template takes only

multiplications and additions for each new image
pixel value. This cost saving may still hold for parallel architec-
tures such as mesh connected array processors [11], where the
cost is proportional to the size of the template.

The problem of decomposingmorphological templateshas
been investigated by a host of researchers. Zhuang and Har-
alick [29] gave a heuristic algorithm based on tree search that
can find an optimal two-point decomposition of a morpholog-
ical template if such a decomposition exists. A two-point de-
composition consists of a sequence of templates each consisting
of at most two points. A two-point decomposition may be best
suited for parallel architectures with a limited number of local
connections since each two-point template can be applied to
an entire image in a multiply-shift-accumulate cycle [11]. Xu
[27] has developed an algorithm, using chain code information,
for the decomposition of convex morphological templates for
two-point system configurations. Again using chain-code infor-
mation, Park and Chin [16] provide an optimal decomposition of
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convex morphological templates for 4-connected meshes. How-
ever, all the above decomposition methods work only on binary
morphological templates and do not extend to gray-scale mor-
phological templates.

A very successful general theory for the decomposition of
templates, in both the linear and morphological domain, evolved
from the theory of image algebra [5], [6], [17], [20] which pro-
vides an algebraic foundation for image processing and com-
puter vision tasks. In this setting, Ritter and Gader [6], [18]
presented efficient methods for decomposing discrete Fourier
transform templates. Zhu and Ritter [28] employ the general ma-
trix product to provide novel computational methods for com-
puting the fast Fourier transform, the fast Walsh transform, the
generalized fast Walsh transform, as well as a fast wavelet trans-
form.

In image algebra, template decomposition problems, for both
linear and morphological template operations, can be reformu-
lated in terms of corresponding matrix or polynomial factor-
ization. Manseur and Wilson [14] used matrix as well as poly-
nomial factorization techniques to decompose two-dimensional
linear templates of size into sums and products of
templates. Li [12] was the first to investigate polynomial fac-
torization methods for morphological templates. He provides
a uniform representation of morphological templates in terms
of polynomials, thus reducing the problem of decomposing a
morphological template to the problem of factoring the corre-
sponding polynomials. His approach provides for the decompo-
sition of one-dimensional (1-D) morphological templates into
factors of two-point templates. Crosby [2] extends Li’s method
to 2-D morphological templates.

Davidson [4] proved that any morphological template has a
weak local decomposition for mesh-connected array processors.
Davidson’s existence theorem provides a theoretical foundation
for morphological template decomposition, yet the algorithm
conceived in its constructive proof is not very efficient. Takriti
and Gader formulate the general problem of template decom-
position as optimization problems [8], [26]. Sussneret al. [22]
use a similar approach to solve the even more general problem
of morphological template approximation. As proven in [23],
these problems are NP-complete. Therefore, researchers usually
try to exploit the special structure of certain morphological tem-
plates in order to find decomposition algorithms. For example,
Li and Ritter [13] provide very simple matrix techniques for de-
composing binary as well as gray-scale linear and morpholog-
ical convex templates. A separable template is a template that
can be expressed in terms of two 1-D templates consisting of a
row and a column template. Gader [7] uses matrix methods for
decomposing any gray-scale morphological template into a sum
of a separable template and a totally nonseparable template. If
the original template is separable, then Gader’s decomposition
yields a separable decomposition. If the original template is not
separable, then his method yields the closest separable template
to the original in the mean square sense.

The strong decomposition of a rank 1 template is an easy task
both in the linear and in the nonlinear domain [13]. O’Leary [15]
showed that any linear template of rankcan be factored exactly
into a product of linear templates. Templates of higher
rank are usually not as efficiently decomposable. However, the

LU factorization yields a proven method for determining a rank-
based decomposition of a linear template of arbitrary, unknown
rank [9], [17].

In an earlier paper, we introduced a polynomial time algo-
rithm for the rank based decomposition of morphological tem-
plates of rank 2 [24]. This paper develops a heuristic algorithm
for the rank-based decomposition of morphological templates
of arbitrary rank.

This paper is organized as follows: First, we introduce the
reader to the language of image algebra. This mathematical
theory is suited to describe all image processing operands
and operations in a translucent manner. Since we focus on
morphological or nonlinear image processing, we proceed with
a brief description of the algebraic structures defined in the
nonlinear domain. Relating matrices to rectangular templates,
we establish a new rank method for the morphological decom-
position of matrices and rectangular templates in Section IV.
We conclude with computational results and suggestions for
further research.

II. SOME IMAGE ALGEBRA BACKGROUND

Image algebra is aheterogeneousor many-valuedalgebra in
the sense of Birkhoff and Lipson [1], [17], with multiple sets
of operands and operators. In a broad sense, image algebra is
a mathematical theory concerned with the transformation and
analysis of images. Although much emphasis is focused on the
analysis and transformation of digital images, the main goal
is the establishment of a comprehensive and unifying theory
of image transformations, image analysis, and image under-
standing in the discrete as well as the continuous domain [17],
[19], [20]. In this paper, we restrict our attention only to the
notations and operations that are necessary for establishing the
results mentioned in the introduction. Hence, our focus is on
morphological image algebra operations.

Henceforth, let be a subset of the digital plane
, where denotes the set of in-

tegers. For any set , we denote the set of all functions
from into by . The set of interest will be the real
numbers with the symbol appended. More precisely,

, where denotes the set of real
numbers. The algebraic system associated with will
be the lattice ordered semi-group . We use the
symbols and to denote the binary operations of maximum
and minimum, respectively. For any real number, the number

is defined as the largest integersuch that .
Images and Templates:From the image algebra perspective,

images are considered to be functions and templates are
viewed as functions whose values are images. In particular,
an -valued image over the point set is a function

(i.e. ), while an -valued template
on is a function (i.e. ). For

notational convenience, we define as for all .
Our focus will be ontranslation invariant -valued tem-

plates over since gray-scale structuring elements can be re-
alized by these templates. A template is called
translation invariantif and only if

(1)
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whenever and are elements of . Thesupportof
a template at a point is denoted by and
defined as follows:

(2)

A translation invariant templateis calledrectangular, if
forms a rectangular discrete array.

Example: Let be the translation invariant tem-
plate which is determined at each point by the following
function values of :

if

if

if

if

if

else.

(3)

If , we can visualize the rectangular templateas
shown in Fig. 1.

Additive Maximum Operations:The basic operations of ad-
dition and maximum on induce pixelwise operations on

-valued images and templates [20], [19]. These operations
can also be used to define lattice based convolution operators.
In particular, forming theadditive maximum(“ ”) of an image

and a template results in the image
, which is determined by the following function

values:

(4)

Clearly, each template defines a function

(5)

The dual operation ofadditive minimum(“ ”) between im-
ages and templates can be defined in a similar fashion by in-
terchanging the operationwith the operation . Using the ter-
minology of mathematical morphology, the additive maximum
operation expresses standard gray-scale dilation while the addi-
tive minimum operation expresses standard gray-scale erosion
[10].

The notion of additive minimum for combining an image with
a template can be extended for combining templates. Thead-
ditive maximumof a template and a template

is defined as the template which
determines , the composition of followed by . Specif-
ically,

(6)

These relationships induce associative properties for image and
template operations which we provide after the following exam-
ples.

Example: Many image processing techniques such as the
Rolling Ball Algorithm and algorithms for noise removal em-

Fig. 1. Support of the templater at pointy. The hashed cell indicates the
location of the target pointy = (x; y).

Fig. 2. Templater constitutes the additive maximum of the templatess and
the templatet.

ploy morphological image-template products of the form
or [19].

Example: The templates in Fig. 2 satisfy
.

Some Properties of Image and Template Operations:The
following associative and distributive laws hold for an arbitrary
image and arbitrary templates and

:

(7)

These results establish the importance of template decomposi-
tion.

Strong Decompositions of Templates:A sequence of tem-
plates in is called a(strong) decompo-
sition (with respect to the operation “”) of a template

if can be written in the form

(8)

In the special case where , we speak of aseparabletem-
plate if the support of is a 1-D vertical array and the support
of is a 1-D horizontal array.

Example: The template given in Fig. 1 repre-
sents a separable template since this template decomposes into a
vertical strip template and a horizontal strip tem-
plate as shown in Fig. 3.

Weak Decompositions of Templates:A sequence of tem-
plates in together with a strictly
increasing sequence of natural numbers is called
a (weak) decomposition(with respect to the operation “”) of
a template if the template can be represented
as follows:

(9)
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Fig. 3. Pictorial representation of a column templates and a row templatet.

We say is a weak decomposition of a rectangular
template into separable templates if each, where

, is separable and .
Correspondence Between Rectangular Templates and Ma-

trices: Note that there is a natural bijectionfrom the space
of all matrices over into the space of all rectan-
gular templates in .

Let be arbitrary and be
such that

(10)

The image of a matrix under is defined to
be the template which satisfies

(11)

Henceforth, we restrict our attention to rectangular templates
whose target pixel is centered, i.e., rectangular templates of the
above form.

The theory of minimax algebra [3] examines the algebraic
structures arising from the lattice operations “maximum,”
“minimum,” and “addition” including the space of all matrices
over together with the operation “additive maximum.”
The natural correspondence between rectangular templates
in and matrices over allows us to use a
minimax algebra approach in order to study the weak decom-
posability of rectangular templates into separable templates.

Example: Let be the matrix and , the vectors

(12)

The function maps to the square template
in Fig. 1, and it maps the column vectorto the column tem-
plate and the row vector to the row template

in Fig. 3. The reader may want to verify these
mappings using (10) and (11).

III. RANKS OF MATRICES IN MINIMAX ALGEBRA

In this section, we develop a new notion of matrix rank within
the mathematical framework of minimax algebra. We relate this
concept of matrix rank to the one given by Cuninghame-Green
[3] and derive the notion of the rank of a morphological tem-
plate.

Algebraic Structures and Operations in Minimax Al-
gebra: The mathematical theory of minimax algebra deals
with algebraic structures such as bands, belts and blogs. For
example, together with the operations of maximum (“”)
and addition forms a belt. Cuninghame-Green defines the
matrix rank for matrices over certain subsets of the blog .
For our purposes it suffices to consider, the finite elements
of .

Operations such as the maximum (“”), the minimum (“ ”),
and the addition on induce entrywise operations on , the
set of all matrices over . Minimax algebra also defines
compound operations such as “”—pronounced “additive max-
imum”—from into , an operation similar
to the regular matrix product known from linear algebra. (An
obvious dual of this operation is provided by the “additive min-
imum” operation.) Given matrices and ,
the additive maximum is determined by

(13)
If is a matrix in and if are column vectors in
and are row vectors in for , then the
following equivalence holds for the corresponding rectangular
template , the vertical strip templates , and the hori-
zontal strip templates :

(14)

Linear Dependence of Vectors [3]:A vector is said
to be linearly dependenton the vectors if
and only if there exists a (not necessarily unique) set of scalars

, such that

(15)

Otherwise, the vector is calledlinearly independent
from the vectors . The vectors

arelinearly independentif each one of them is linearly in-
dependent from the others.

Example: Consider the following elements of :

(16)

Since , the vector is linearly
dependent on and .

Rank of a Matrix: The (separable) rankof a matrix
is denoted by rank and defined as the minimal

number of column vectors and row
vectors which permit a representation of

in the following form:

(17)
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A representation of this form is called arank decomposition
or separable decompositionof . We say is aseparable ma-
trix (with respect to the operation) if rank .

Rank of a Rectangular Template:If for some real-
valued matrix , then we define therank of the template

as the rank of .
Our interest in matrix and template ranks in the nonlinear

domain is motivated by the problem of morphological template
decomposition since the rank of a morphological template

represents the minimal number of separable templates
whose maximum is or, equivalently, the minimal number
of column templates and row templates

such that . Cuninghame-Green
provides a different definition of matrix rank in [3].

IV. M ATRIX DECOMPOSITIONS INMINIMAX ALGEBRA

As an introduction to the general problem of rank-based ma-
trix decomposition in minimax algebra, we would like to present
a short review of some results which have been established be-
fore. The reader should bear in mind the consequences for the
corresponding rectangular morphological templates.

Theorem 1: If a matrix has a representation
in terms of column vectors and

row vectors , where , then can be
expressed in the following form:

(18)

where is given by

(19)

Similarly, given and the column vectors , we
can compute row vectors for such that

(20)

Remark: Theorem 1 implies that, for any matrix
of separable rank, it suffices to know the row vectors

which permit a weak decomposition of
into separable matrices in order to determine a representation
of in the form

where

(21)
From now on we use the notation , to

denote the th row vector of an arbitrary matrix ,
and we use the notation , , to denote the th
column vector of .

A theorem by Li and Ritter [13] allows for the following ele-
gant reformulation.

Theorem 2: If is a separable matrix and
is an arbitrary index then each row vector is linearly

dependent on the th row vector of .
Assuming that every row vector of a given matrix is lin-

early dependent on , the matrix is separable and The-
orem 2 yields a strong decomposition , where

. We showed in an earlier paper [24] that Theorem
2 can be generalized in a natural way to include matrices of rank
2:

Theorem 3: A matrix has rank 2 if and only if
there are two row vectors of on which all other row vectors
depend (linearly).

Theorem 3 provides for a straightforward algorithm to deter-
mine if a given matrix is of rank in the minimax
algebra sense. Consider each tuple of row vectors ofand test
all row vector of for linear dependence on this vector tuple.
If the matrix rank is indeed less than 3, then this algorithm also
computes a tuple of vector pairs into which the matrix can be
decomposed.

A similar theorem does not hold for matrices of separable
rank . This fact is expressed by the following theorem.

Theorem 4: For every natural number there are
matrices over which are weakly -decomposable into a
product of vector pairs, but not all of whose row vectors are
linearly dependent on a single-tuple of their row vectors.

We showed in a previous paper that the general problem of de-
termining rank decompositions of matrices is NP-complete [23].
However, the NP-completeness of a certain problem does not
preclude the existence of an efficient algorithm for solving arbi-
trary instances of this problem. For matrices having relatively
small rank compared to their size, we suggest the following
heuristic algorithm (Algorithm ). This heuristic is based on
the following observations:

Remark: Suppose that , whose rank is an un-
known integer . Hence, can be represented as the maximum
of matrices , where and
for some real-valued column vectors of length and some
real-valued row vectors of length . According to Theorem
2, the separability of the matrix induces the equality of the
differences for all and for arbi-
trary, but fixed and . On
the other hand, if the differences are all equal for

, it seems reasonable to assume that there
exists an index such that and

for most provided that is relatively small
and that is relatively large
compared to . This assumption and Lemmas 1 and 2 of the Ap-
pendix play an important role in Algorithm which intends to
determine as well as column vectors and row vec-
tors such that

(22)

Remark: Assume that , where and

are unknown real-valued vectors. Algorithmconstructs vec-
tors and for such that . The
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maximum reaches , i.e., ,

if there exist sets and for all such that the
following conditions hold:

(23)

Lemmas 1 and 2 of the Appendix provide some further insight
into these matters. Additionally, by combining Lemmas 1 and 2
we establish a theorem (Theorem 8) that should lead to an even
better understanding of Algorithm.

Algorithm : Let . This algorithm determines a
parameter rank and progressively constructs column
vectors and row vectors such that

(24)

Furthermore, this algorithm generates a matrix
which has the following property:

(25)

Informally speaking, each entry represents a label indi-
cating which index maximizes the sum .

Initialize the matrix to be the zero matrix
and let . As long as the matrix has a zero entry, we
increment the parameterby 1, and perform the following steps.
Otherwise and the algorithm stops.

Step 1) (Find the most frequent tuple difference):Determine
a strictly increasing sequence of maximal length

such that there exist two different
column indices and having the following
property:

and or (26)

For any satisfying ,
we set . If either one of the entries

or differs from 0 for all ,
then set for all .

Step 2) (Extend the markings of found tuples horizontally):
For all and all , we
set if the following two conditions both
hold:

a) .

b) .

Step 3) (Create preliminary row vectors ): Ini-
tialize the vector by setting

for all . Let
. For all such

that there exists an index satisfying
, change the value of to ,

where . Note that the value of
does not depend on the choice of an elementof the
set since
condition b) of STEP 2 holds for all such.

Step 4) (Extend horizontal markings vertically and create
column vectors ): Define the column
vector as follows:

(27)

Note that adopts a finite value for all
, since is a finite matrix and

is finite. Increase the values of all zero entries
of to whenever .

Step 5) (Final horizontal extension of markings and creation
of final vectors ): For all
such that is finite, we equate with . Other-
wise, we define as . Any remaining
zero entry is set to if .

Example: Let us first illustrate how Algorithm works with
a simple example. Suppose is the following matrix:

(28)

A matrix is initialized as . Then we execute
Step 1–Step 5 for the parameter .

Since for all , we set
, , and . The matrix

now has form

(29)

Considering and , we recog-
nize that

and

(30)

Therefore

(31)
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Initially, all entries of the vector are set to . Since
, the parameter . When executing STEP 3, these entries

adopt the following values:

(32)

Step 4 computes a vector as follows:

(33)

Since the vector is finite, we have in Step 5.
Now the parameterchanges to 2, since there are still some

zero entries of left. These zeros of are eliminated in Step
1, since and

. Thus,

(34)

Note that Step 2–Step 5 effect no change in the matrix, since
. Step 3 and Step 4 create the following vectors

and :

(35)

Step 5 produces a row vector , where for
. The entries and are computed as follows:

(36)

Since all entries of are strictly greater than 0, Algorithm
finishes yielding the following result:

(37)

Theorem 5: Algorithm is a polynomial time algorithm.
Proof: Let us analyze Step 1 through Step 5 for

and for fixed .
Since there are different tuples of column in-

dices and , subtractions are needed in order
to compute the differences for all and
for all . For fixed and , the comparison of
the real numbers takes operations.
Hence, these comparison operations are of computational com-
plexity . All other operations of Step 1 and the
operations of Step 2 through Step 5 have smaller computational
complexity. Since the number of zero entries of de-
creases when performing Step 1 through Step 5, Algorithm
is a polynomial time algorithm.

Theorem 6: Given a matrix , Algorithm pro-
duces an integer, column vectors and row vectors

for such that

(38)

Moreover, Algorithm generates a matrix such
that the following relationship holds:

(39)

Proof: Suppose that Algorithm is applied to a matrix
, yielding as an output an integer, column vectors
and row vectors for all , as

well as a matrix .
Since the final matrix belongs to the set ,

it suffices to show that the following properties hold for all, ,
and :

1) ;
2) .
The first property immediately follows from the fact that

equals , since .
Suppose that after completion of STEP 3. This

assumption implies that and
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. In this case, the following argumentation shows
the validity of property 2:

(40)

The inequality above holds for the following reason: Either
or

for all .
Clearly , if the entry of the matrix

has been set toin Step 4 or in Step 5.
Theorem 7: Given a matrix of rank 1, Algorithm
determines a column vector and a row vector

, such that

(41)

Proof: By Theorem 2, each row vector of , where
, is linearly dependent on the first row vector .

Hence, there exist such that , which implies
that the following equalities hold:

(42)

Hence, Step 1 of Algorithm results in a matrix
of the following form:

...
...

...
...

. . .
...

(43)

Since the differences , where ranges from 1 to , are
all equal for arbitrary, but fixed , all entries of

are set to 1 in Step 2. Step 3 yields a row vector .
In Step 4, we compute a column vector as follows:

(44)

Hence, . STEP 5 equates with , and the
algorithm finishes yielding .

Remark: An application of Gader’s algorithm to a separable
matrix will also yield a separable decomposition of the matrix
[7]. In view of Theorem 2, the separability of a matrix is easy
to recognize anyway. Thus, the intended use of Algorithmis
for matrices of rank . If the matrix is close to being separable
and an approximation in terms of a separable matrix is desired,
Gader’s algorithm should be chosen. Algorithmis best suited
for finding exact outer product representations of matrices with
small rank.

Theorem 8: Suppose for a matrix ,
a column vector and a row vector . Let

denote the vectors constructed from the ma-
trix in Algorithm for an arbitrary, but fixed parameter
. Let be as in Algorithm . If and

denote the sets

and

for some

(45)

then

(46)

In particular, if for some and
some , then .

Remark: Suppose that has representation
, where rank . Theorem 8 pro-

vides conditions which guarantee that coincides with
for certain and , where and are the vectors

constructed in Algorithm . We obtain the desired result
if the following condition is satisfied:

For all and , there exists an index depending
on and such that

(47)

The interested reader may find the proof of Theorem 8 in the
Appendix.

Example: The following example shows that although Al-
gorithm always determines a weak decomposition of a given
matrix into outer products of column vectors and row vec-
tors, the number of these outer products is not always minimal.
In other words, there are instances when the parameterdeter-
mined by Algorithm exceeds the rank of the matrix. Let

be the following matrix.

(48)
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Since is weakly decomposable into three vector pairs, the
rank of rank . Using Theorem 3, we can show that
rank . However, Algorithm yields and com-
putes the following column vectors and row vectors

such that .

(49)

V. CONCLUSION

Computational Results:We have coded Algorithm in
MATLAB [30]. We randomly generated 100 matrices of size

having integer values ranging from 0–255 and rank
for . We succeeded in finding a rank decomposition
for the following percentages of the given matrices:

1) rank 3: 91%.
2) rank 4: 88%.
3) rank 5: 74%.
The average CPU time on a Sun SPARC 4 workstation and

the average amount of flops required for the rank decomposition
depend on the rank of the given matrix:

1) rank 3: 13.45 s, 75 885 flops.
2) rank 4: 18.02 s, 110 950 flops.
3) rank 5: 24.03 s, 146 710 flops.
Concluding Remarks:Note that the intended use of Algo-

rithm is the problem of weakly decomposing a morpholog-
ical template into outer products of column templates
and row templates. Savings in computation time can only be
achieved if .

As approaches the limit of in this example,
the success rate reveals a further decrease (about 43% for rank
6 matrices) while more and more operations are needed. Infor-
mally speaking, the decrease in the success rate of the algorithm
as the matrix rank increases can be explained as follows:

The algorithm attempts to guess an outer product representa-
tion of the given matrix using a minimal number of vector pairs.
Differences of corresponding entry tuples provide clues which
can be used in order to construct such a rank decomposition. As
the rank of the matrix to be decomposed gets higher, it becomes
more likely that the same difference of corresponding entry tu-
pels is accidental, leading to a wrong guess in the outer product
representation.

Wrong guesses are also more frequent in the situation where
the discrete matrix values are densely distributed over a small
range than in the situation where the matrix values are sparsely
distributed over a wide range. However, the following payoff

exists: The probability that a wrong guess causes the failure of
the algorithm appears much smaller in the first case than in the
second case. Further research is needed in order to determine the
criteria for optimal algorithm performance. Other suggestions
for further research include the following.

Usefulness of algorithm for nonoptimal decomposition:
The algorithm is guaranteed to determine an outer product
representation. An application of the corresponding strip
templates to an arbitrary image will still lead to savings in
computation time as long as exceeds the
number of outer products determined.
Approximation capabilities:The execution of the al-
gorithm may always be stopped at timeyielding an
approximation of the given matrix, the given template
respectively, in terms of outer products.
Generalizations and variations:The algorithm may po-
tentially be adapted to produce decompositions of tem-
plates other than rectangular templates and/or decomposi-
tions into templates other than strip templates.

APPENDIX

We state and prove the two lemmas mentioned in this manu-
script and provide a proof of Theorem 8.

Lemma 1: Let and . Suppose
that there exists an index such that

for all . If for all
there exists an index such that

then

(50)

Proof:

(51)

Lemma 2: Suppose , ,
and . Furthermore, let a subset of

and a subset of be given such that
and are finite for all . If the following conditions

are satisfied then for all and
for all .

or

(52)

Proof: It suffices to show that for arbitrary
and for arbitrary the relation
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holds. Suppose denotes if
and otherwise. We obtain the following

estimate for the difference , where is an arbitrary
element of :

(53)

Using this estimate, the inequality now
follows from the inequality .

Proof of Theorem 8:Note that by construc-
tion of the vectors and . Furthermore, the set
generated in STEP 1 of Algorithm contains the set since

for all . Let us first show that
for all and for all . By

Lemma 1, it suffices to show that for all there exists an
index such that .

By the definition of , each index entails an index
such that is set to in STEP 2 of Algorithm .

If denotes , then
for all . For an arbitrary, but fixed

element the inequalities hold
for all . Therefore, we are able to deduce the
following equalities:

(54)

Since , the conditions of Lemma 1 are satisfied,
yielding that for all and for all .

Provided that or for
all can be shown, an application of Lemma 2
concludes the proof of the theorem, since for all .
Let us fix an arbitrary row index . By the definition of

as , there exists a column indexsuch that
. Since is finite, is finite and equals

. Therefore, either equals or is an element of the set
which we define as the set of all column indicessuch that

for some .
Note that includes . The case leaves nothing to
show, since . Assuming that , we finish
the proof of the theorem as follows. We use the facts that

and that for all .

for some

for some

(55)
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