

CERIAS Tech Report 2001-06

FASTER IMAGE TEMPLATE MATCHING
IN THE SUM OF THE ABSOLUTE VALUE

OF DIFFERENCES MEASURE

by Mikhail J. Atallah

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001 659

Correspondence__

Faster Image Template Matching in the Sum of the
Absolute Value of Differences Measure

Mikhail J. Atallah

Abstract—Given an image and a smaller image ,
the computation of an(+ 1) (+ 1) matrix where
() is of the form

() =

1

=0

1

=0

((+ +) ())

0

for some function , is often used in template matching. Frequent choices
for the function are () = () and () = .
For the case when () = () , it is well known that is com-
putable in (log) time. For the case () = , on the
other hand, the brute force ((+ 1)) time algorithm for
computing seems to be the best known. This paper gives an asymptoti-
cally faster algorithm for computing when () = , one
that runs in time (min log log) time, where is the
size of the alphabet, i.e., the number of distinct symbols that appear in
and . This is achieved by combining two algorithms, one of which runs in
(log) time, the other in (log) time. We also give a

simple Monte Carlo algorithm that runs in (log) time and gives
unbiased estimates of .

Index Terms—Algorithms, convolution, image processing, template
matching.

I. INTRODUCTION

Template matching tries to answer one of the most basic questions
about an image: Is there a certain object in that image? If so, where?
The template is a description of that object (and hence is an image it-
self), and is used to search the image by computing a difference mea-
sure between the template and all possible portions of the image that
could match the template: If any of these produces a small difference,
then it is viewed as a possible occurrence of the object. Various dif-
ference measures have different mathematical properties, and different
computational properties. The measure considered in this paper is the
sum of absolute value of differencesone: We give a faster algorithm for
performing the basic template matching computation for this measure.
Although it is not the purpose of this paper to make any claim about the
suitability of that particular measure as opposed to other measures, we
do note that most textbooks on image processing mention it as a pos-
sible choice. Of course the literature contains many other measures, and
interesting new ones continue to be proposed (for example, see [3] and
the papers it references). For all of these measures, the speed of tem-
plate matching is of crucial importance. Many approaches have been

Manuscript received April 23, 1997; revised January 17, 2001. This work was
supported in part under Grant EIA-9903545 from the National Science Founda-
tion and by sponsors of the Center for Education and Research in Information
Assurance and Security. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Dmitry B. Goldgof.

M. J. Atallah is with the CERIAS and Department of Computer
Sciences, Purdue University, West Lafayette, IN 47907 USA (e-mail:
mja@cs.purdue.edu).

Publisher Item Identifier S 1057-7149(01)02880-9.

proposed for speeding up template matching computations including
use of the following:

1) parallel processing computer architectures [14];
2) hierarchical tree-based schemes [4], [8];
3) correlation techniques [7], [9], [12];
4) methods that are very specific to a particular application domain,

such as semiconductor chips [13].

We next state precisely the computational problem considered in this
paper, and the nature of the paper’s contribution.

Let I be anm�m matrix (called theimagematrix),P be ann �
n matrix (called thepatternmatrix), n � m. The entries of bothI
andP come from some alphabetA = fa1; . . . ; asg where theai’s
are (possibly large) numbers,a1 < a2 < � � � < as. Without loss of
generality, we assume that theai ’s are positive integers; this simplifies
the exposition. It is trivial to modify the paper for the case of negative
ai ’s (or, alternatively, one can add to everything a large enough constant
to make it positive—the template matching function considered here is
invariant to such a transformation).

The goal is to compute an(m � n + 1) � (m� n + 1) matrixC
whereC(i; j) is of the form

C(i; j) =

n�1

k=0

n�1

k =0

f(I(i+ k; j + k0); P (k; k0));

0 �i; j � m� n

for some functionf . Two reasonable choices for the functionf that
are often used in image processing [7], [9] aref(x; y) = (x� y)2 and
f(x; y) = jx � yj.

The case whenf(x; y) = (x � y)2 is known to be solvable in
O(m2 logn) time [7], [9]. This can easily be seen by expanding
f(x; y) = (x� y)2 into x2 + y2 � 2xy in the definition of matrixC:
The matrices corresponding to thex2 term and (respectively)y2 term
are easy to compute inO(m2) time, and the matrix corresponding to
the xy term can be computed inO(m2 logn) by a judicious use of
convolution; various elaborations and improvements on this basic idea
can be found in the literature.

An O(m2 logn) time Monte Carlo algorithm [2] has recently been
given for the case whenf(x; y) = �x;y , where�x;y is the Kronecker
symbol:�x;y is one if and only ifx = y and is zero otherwise. The
techniques used in [2] do not extend to the case off(x; y) = jx � yj,
and the method used in [2] has little in common with the method used
in this paper. In the pattern matching community, the use off(x; y) =
�x;y is almost universal [6], but this is not so in the image processing
community. In fact, most of the papers on pattern matching not only
usef(x; y) = �x;y , but also focus on the problem of finding exact or
almost-exact occurrences of the pattern (we refer the reader to the book
[6] for an extensive bibliography on this subject).

We are not aware of any previous algorithm for the case
f(x; y) = jx� yj that is faster than the obvious brute force approach,
which consists of takingO(n2) time for each entry ofC, hence
a total of O((m � n + 1)2n2) time. One of the results of this
paper is an algorithm that takesO(minfs; n=plogngm2 logn)
time. Such an algorithm would easily follow if we could design
one algorithm that takesO(sm2 logn) time, and another algorithm
that takesO(m2n

p
logn): If s � n=

p
logn then we would use

the former, otherwise we would use the latter. Section III gives

1057–7149/01$10.00 ©2001 IEEE

660 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001

the O(sm2 logn) time algorithm, and Section IV gives the (more
complex)O(m2n

p
logn) time algorithm. Section V gives a simple

Monte Carlo algorithm that runs inO(m2 logn) time and computes
unbiased estimates ofC. Section VI concludes by giving rough
practical guidelines to using these algorithms (based on practical
experiments with them), mentioning an open problem, and discussing
the time complexities of the algorithms for the case of nonsquare
images. Before giving the algorithms, the next section covers some
preliminaries that are needed later.

II. PRELIMINARIES

Let # be a special symbol not inA, and letA0 denoteA [f#g. We
extend the definition of the functionf so thatf(x; y) = 0 if x or y is
a # symbol, otherwisef(x; y) = jx � yj.

Definition 1: Let G andH be two subsets ofA0 . Then theCG;H
matrix is defined by

CG;H(i; j) =

n�1

k=0

n�1

k =0

fG;H(I(i+ k; j + k0); P (k; k0));

0 �i; j � m� n

wherefG;H(a; b) equalsja � bj if a 2 G � f#g andb 2 H � f#g,
equals zero otherwise.

In other words,CG;H counts the contribution toC of the alignments
of symbols fromG that occur inI , with symbols fromH that occur in
P . Note that, in general,CG;H 6= CH;G. Our goal is to compute the
matrixCA ;A (= C).

III. A N O(sm2 logn) TIME SOLUTION

The following is a well-known straightforward consequence of the
fast algorithms for two-dimensional convolution.

Lemma 1: LetU 0 be anm�m matrix andU 00 be ann�n matrix,
n � m. Let the productU 0 � U 00 be defined as the(m � n + 1) �
(m � n + 1) matrix where

(U 0 � U 00)(i; j) =

n�1

k=0

n�1

k =0

U 0(i+ k; j + k0)U 00(k; k0);

0 �i; j � m� n:

GivenU 0 andU 00, the matrixU 0�U 00 can be computed inO(m2 logn)
time.

Proof: Straightforward, by using convolution (see any image
processing textbook).

Note:An implementation of the above-mentionedO(m2 logn) time
algorithm is available in MATLAB.

The next algorithm, for a special subproblem, will be used by sub-
sequent algorithms.

Algorithm DISJOINT_ALPHABETS

Input: ImageI , patternP , two disjoint subsets ofA0 (calledB0 and
B00) such that the symbols inB0 are either all larger than those inB00,
or all smaller than those inB00 (with the convention that # is smaller
than anything inA).

Output: CB ;B .

1) CreateI= from I by replacing with zero every # symbol and
every symbol not fromB0 (symbols fromB0 � f#g are left
undisturbed).

2) CreateP= from P by replacing with zero every # symbol and
every symbol not fromB00 (symbols fromB00 � f#g are left
undisturbed).

3) CreateI1 from I= by replacing with one every occurrence of
symbols fromB0 � f#g.

4) CreateP1 from P= by replacing with one every occurrence of
symbols fromB00 � f#g.

5) ComputeX = I= � P1 � I1 � P=.
6) If B0 > B00 then returnX. If B0 < B00 then return�X.

Lemma 2: Algorithm DISJOINT_ALPHABETS correctly computes
CB ;B in O(m2 logn) time.

Proof: The most expensive step of the algorithm is Step 5 which,
using Lemma 1, can be carried out inO(m2 logn) time. To prove
correctness, consider the three possible cases in the alignment of an
a 2 B0 in I with a b 2 B00 in P , and how each case contributes to
CB ;B and toX.

1) If eithera or b is the symbol #, then the effect of that alignment
is zero onCB ;B as well as onX.

The other cases below assume that neithera nor b is #.
2) If a > b (i.e., B0 > B00) then the alignment’s contribution

to CB ;B is ja � bj = a � b. Its contribution is+a to the
corresponding entry inI= �P1 (that is, the entry ofI= �P1 that
corresponds to this alignment),+b to the corresponding entry in
I1 � P=. Hence its net effect on the corresponding entry inX is
a � b, as desired.

3) If a < b (i.e., B0 < B00) then the alignment’s contribution
to CB ;B is ja � bj = b � a. Its contribution is+b to the
corresponding entry inI1 � P=, +a to the corresponding entry
in I= � P1. Hence its net effect on the corresponding entry in
�X is b � a, as desired.

This completes the proof.
Lemma 3: Cfa g;A + CA ;fa g can be computed inO(m2 logn)

time.
Proof: We can writeCfa g;A + CA ;fa g as

Cfa g;fa ;...;a g + Cfa g;fa ;...;a g

+ Cfa ;...;a g;fa g + Cfa ;...;a g;fa g

becauseCfa g;fa g is zero. Each of the above four terms can be com-
puted inO(m2 logn) time by using algorithm DISJOINT_ALPHABETS.

The following algorithm gives the main result of this section (it
makes crucial use of algorithm DISJOINT_ALPHABETS).

Algorithm ALPHABET_DEPENDENT

Input: ImageI , patternP .
Output:C (= CA ;A).

1) Initialize all the entries ofC to zero.
2) For eachai 2 A in turn, computeCfa g;A +CA ;fa g and add

it to C. This is done by using algorithm DISJOINT_ALPHABETS

four times (see Lemma 3).
3) C = C=2.

Theorem 4: Algorithm ALPHABET_DEPENDENTcorrectly computes
CA ;A in O(sm2 logn) time.

Proof: The time complexity claim follows from the fact that
it uses algorithm DISJOINT_ALPHABETS 4s times, each at a cost of
O(m2 logn) time. Correctness follows from the fact that

CA ;A = 2�1 �
s

i=1

(Cfa g;A + CA ;fa g)

where we divided the summation on the right-hand side by2 because
it double-counts the effect of each alignment of ana in I with ab in P
(it counts it once whenai = a, and another time whenai = b).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001 661

IV. A N O(m2n(logn)0:5) TIME SOLUTION

We partition the problem into(m=n)2 subproblems in each of which
the pattern is stillP but the image is(2n)� (2n). After that, we solve
in T (n) = O(n3

p
logn) time each subproblem, for a total time of

(m=n)2T (n) = O(m2n(logn)0:5). The (m=n)2 subproblems are
defined by the following well-known reduction [6].

1) We pad matrixI with enough additional rows and columns of #
symbols to make its dimensionm a multiple ofn. This causes
an increase of at mostn � 1 in m. The next two steps of the
reduction assume that this has already been done, and thatm is
a multiple ofn.

Note:This padding is for the purpose of simplifying the dis-
cussion—it is easy to drop the padding and the assumption that
m is a multiple ofn, but that would unnecessarily clutter the dis-
cussion that follows. We chose to makem a multiple ofn for the
sake of clarity.

2) CoverI with (m=n)2 overlapping squaresIi;j of size(2n) �
(2n) each, whereIi;j consists of the square submatrix ofI of
size(2n)� (2n) that begins (i.e., has its top-left corner) at po-
sition (n � i; n � j) in I . HenceIi;j andIi+1;j+1 overlap over a
region ofI of sizen � n, Ii;j andIi;j+1 overlap over a region
of size(2n) � n, Ii;j andIi+1;j overlap over a region of size
n � (2n).

3) TheT (n) time algorithm is then used on each of the(m=n)2

image/pattern pairsIi;j ; P . It is easy to see that these(m=n)2

answers contain a description of the desired matrixC.
The above partitioning is not only for the sake of easier exposition: It

is important that the partitioning be used, and that the method outlined
in the rest of this section be usedindividually on each of the(m=n)2

smaller subimages.
The algorithm for computing the answer matrix (denoted byC0) for

a (2n) � (2n) subimageI 0 and then � n patternP consists of the
following steps (whereA00 now denotes the set of symbols that appear
in I 0, or inP , plus the # symbol).

1) ComputeA00 and, for every symbola 2 A00, compute�a (resp.,
�a), which is the number of times that symbola occurs inI 0

(resp.,P). This is easy to do inO(n2 logn) time by sorting the
symbols occurring inI 0 (resp.,P), etc.

2) LetA+ be the subset of symbols inA00 for which�a + �a �
n
p
logn, and letA� = A00 � A+. Intuitively,A+ contains the

symbols that “occur frequently” — they will be processed dif-
ferently from the other symbols; the idea of processing symbols
that occur frequently separately from the other symbols was first
used in [1], [10] in the context of approximate pattern matching
between two strings, i.e., counting the total number of matches
for all possible positions of a pattern string in a text string.

Note that

jA+j � (jI 0j + jP j)
n
p
logn

=
5np
logn

:

The rest of the algorithm processes the symbols fromA+ differ-
ently from symbols inA�.

3) This step computes the contribution, toC 0, of alignments for
which at least one of the two symbols is fromA+. That is, it
computes

a 2A

C 0
fa g;A + C 0

A ;fa g:

Every symbolai 2 A+ gets processed inO(n2 logn) time, by
using algorithm DISJOINT_ALPHABETSfour times (see Lemma 3

) to computeCfa g;A + CA ;fa g. The total time for all such
ai 2 A+ is therefore

O (jA+jn2 logn) =O np
logn

n2 logn

=O(n3 logn):

4) We now turn our attention to computing the contribution, toC 0,
of alignments both of whose symbols are fromA� . We begin
by partitioning a sorted version ofA� into t = O(n=

p
logn)

contiguous piecesA1; . . . ; At, such that the total number of oc-
currences of the symbols in the setAi is O(n

p
logn). This is

done as follows: Scan the sorted version ofA� by decreasing
order, putting the symbols encountered in setA1 until the quan-
tity

a2A (�a + �a) becomes� n
p
logn, at which pointA1

is complete and the subsequently encountered symbols are put
in A2, again until

a2A (�a + �a) becomes� n
p
logn, etc.

EveryAi so created satisfies

n logn �
a2A

(�a + �a) � 2n logn

because 1) everya 2 A� has(�a + �a) � n
p
logn and 2)

we stop adding elements to setAi as soon as
a2A (�a + �a)

becomes� n
p
logn. This implies that

t � (jI 0j + jP j)
n
p
logn

=
5np
logn

:

The partitioning ofA� intoA1; . . . ; At takesO(n2) time since
we can obtain a sortedA� from the (already available) sorted
version ofA00.

5) We can now write the contribution of eachAi to C 0 (i.e., the
contribution of alignments where both symbols are fromAi) as

C 0
A ;A + C 0

A ;A [���[A + C 0
A [���[A ;A

+ C 0
A ;A [���[A + C 0

A [���[A ;A :

The last four terms in the above can each be computed in
O(n2 logn) time by using algorithm DISJOINT_ALPHABETS.
The first term,C 0

A ;A , is not computed explicitly: Instead we
directly add its effect to the currentC 0 matrix by looking at
every pair of occurrences of symbols fromAi in I 0 and P ,
and updatingC 0 to account for this pair of entries, as follows.
Suppose the pair of entries in question are the occurrence of
symbola 2 Ai at position(i0; j0) in I 0, and the occurrence of
symbolb 2 Ai at position(i00; j00) in P . We process this pair by
simply incrementingC 0(i0 � i00; j0 � j00) by an amount equal
to f(a; b). The total number of sucha; b pairs is

a;b2A

�a�b �
a2A

�a

b2A

�b

�(2n logn)2 = 4n2 logn:

The above must be repeated for eachAi, 1 � i � t. There-
fore the total time for this step isO(tn2 logn) = O(n3

p
logn)

(where we used the fact thatt = O(n=
p
logn)).

As was analyzed in each of the above five steps, the time is
O(n3

p
logn).

662 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001

K�1 L �
0�k;k ;l;l �n�1

jInt(i+ k; j + k0) \ Int(i+ l; j + l0)j � C(i; j)2

V. AN O(Km2 logn) TIME MONTE CARLO ALGORITHM

Recall that the alphabet isA = fa1; . . . ; asg, wherea1 < a2 <
� � � as. LetL = as � a1 + 1.

Let x be a number,a1 � x � as. LetR 2 f<;>;�;�g. We use
IRx to denote the matrix obtained fromI by replacing every alphabet
symbola with 1 if it satisfies the relationaRx, with 0 otherwise.PRx
is similarly defined.

For example,I>x is obtained fromI by replacing every symbol by
1 if that symbol is larger thanx, by zero otherwise.

Let x be a random variable uniformly distributed over the interval
[a1; as], and let

Ĉ = L � (I>x � P�x + I�x � P>x)

where the� product is as defined in Lemma 1 .
Theorem 5:E(Ĉ) = C.

Proof: Consider an alignment of a particular symbola in I with
a symbolb in P .

• The corresponding alignment forI>x andP�x is a 1 with a 1 if
and only ifb � x < a. The probability of this happening when
b < a is equal to(a� 1� b+ 1)=L = (a� b)=L.

• The corresponding alignment forI�x andP>x is a 1 with a1 if
and only ifa � x < b. The probability of this happening when
a < b is equal to(b� 1� a + 1) = (b� a)=L.

The term that corresponds to thata-with-b alignment in the sum

(I>x � P�x + I�x � P>x)

is therefore one with a probability equal toja � bj=L. Hence, the ex-
pected value ofI>x � P�x + I�x � P>x isL�1C.

The above theorem states thatĈ is an unbiased estimate ofC.
This suggests an algorithm that repeatedly (say,K times) does the
following:

1) generate anx (uniformly over the interval[a1; as]);
2) create inO(m2) time the four matricesI>x; I�x; P>x; P�x;
3) computeĈ = L � (I>x � P�x + I�x � P>x): This can be done

in O(m2 logn) time (by using Lemma 1).
C is estimated by taking the average of the estimates obtained

in Step 3 for theK iterations. The time complexity is obviously
O(Km2 logn). Of course the largerK is, the smaller the variance.
A detailed analysis reveals that the variance of the estimate of the
(i; j)th entry ofC is shown in the equation at the top of the page
where Int(i+ k; j + k0) denotes the interval

[minfI(i+ k; j + k0); P (k; k0)g;

maxfI(i+ k; j + k0); P (k; k0)g]

\ denotes the intersection of intervals, andjJ j denotes the length of an
intervalJ (i.e., ifJ = [b; b0] thenjJ j = b0�b+1). We omit the details
of the derivation of the variance (they are tedious but straightforward).

VI. FURTHER REMARKS

The algorithms described in this paper have been implemented, as
an undergraduate course project, by Purdue student F. Kime. The fol-
lowing arerough comparisons of these algorithms to the brute-force

method; the comparisons are not definitive because he used a soft im-
plementation of FFT, which of course suffers from large constant fac-
tors in its time complexity—the algorithms should work better with the
FFT step performed by dedicated chips. Of course, for large enough
problem sizes the asymptotic time complexity overcomes the effect of
large constant factors, but with the current software implementation
“large enough” means megapixel-size images unless one judiciously
uses the Monte Carlo algorithm (see below for more on this). What
follows is based onm = 2n (i.e., fairly large templates).

• The deterministic algorithm starts getting faster than brute-force at
image sizes of 6 megapixels (monochrome, 1 byte/pixel).

• Monte Carlo is best used to locatewherethe smallest entry ofC oc-
curs in case the template “almost occurs” in the image, rather than as
a way to estimate all of theC matrix; the latter would require a large
K (more on this below) whereas for the former a smallK is enough
(e.g.,K = 10) and in that case Monte Carlo beats brute-force even
for small images (as small as 32 kilopixels). That Monte Carlo is ex-
perimentally found to be a good estimator of where the template al-
most-occurs is not surprising: The expression for the variance (given
at the end of Section V) reveals that it is particularly small at the po-
sitions in the image where the template “almost occurs” (i.e., where
C(i; j) is small).

• Recall that the speed of the Monte Carlo algorithm depends on the
parameterK that determines the variance of the estimate ofC. One
needs to use a fairly largeK (around 100) for the estimates ofC
to have a small enough variance, and for suchK the Monte Carlo
algorithm starts getting faster than brute-force at image sizes of 1
megapixel.
An interesting open question is whether it is possible to achieve

O(m2 logn) time for the exact computation ofC for arbitrary size
alphabets.

Finally, the analysis of this paper can be repeated for rect-
angular (nonsquare) matrices, whereI is m � m0 and P
is n � n0. The resulting time complexities would then be
O(minfs; nn0= log(nn0)gmm0 log(nn0)) for the determin-
istic algorithm,O(mm0 log(nn0)) for the Monte Carlo one. The
details of this extension are straightforward and are omitted.

REFERENCES

[1] K. Abrahamson, “Generalized string matching,”SIAM J. Comput., vol.
16, pp. 1039–1051, 1987.

[2] “An algorithm for estimating all matches between two strings,”Algo-
rithmica, vol. 29, pp. 468–486, 2001.

[3] M. Boninsegna and M. Rossi, “Similarity measures in computer vision,”
Pattern Recognit. Lett., vol. 15, no. 12, pp. 1255–1260, Dec. 1994.

[4] R. L. Brown, “Accelerated template matching using template trees
grown by condensation,”IEEE Trans. Syst., Man, Cybern., vol. 25, pp.
523–528, Mar. 1995.

[5] K. R. Castleman,Digital Image Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1996.

[6] M. Crochemore and W. Rytter,Text Algorithms. Oxford, U.K.: Oxford
Univ. Press, 1994.

[7] R. C. Gonzalez and R. E. Woods,Digital Image Processing. Reading,
MA: Addison-Wesley, 1992.

[8] S. Inglis and I. H. Witten, “Compression-based template matching,” in
Proc. 1994 Data Compression Conf., Snowbird, UT, Mar. 1994, pp.
106–115.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001 663

[9] A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[10] S. R. Kosaraju, “Efficient string matching,” unpublished.
[11] L. Prasad and S. Iyengar, “High performance algorithms for object

recognition problem by multiresolution template matching,” inProc.
1995 IEEE 7th Int. Conf. Tools Artificial Intelligence, Herndon, VA,
Nov. 1995, pp. 362–365.

[12] P. Remagnino, P. Brand, and R. Mohr, “Correlation techniques in adap-
tive template matching with uncalibrated cameras,”Proc. SPIE, vol.
2356, pp. 252–263, 1995.

[13] F. Saitoh, “Template searching in a semiconductor chip image using par-
tial random search and adaptable search,”J. Jpn. Soc. Precision Eng.,
vol. 61, no. 11, pp. 1604–1608, Nov. 1995.

[14] H. Senoussi and A. Saoudi, “Quadtree algorithm for template matching
on a pyramid computer,”Theoret. Comput. Sci., vol. 136, no. 2, pp.
387–417, Dec. 1994.

On Kalman Filter Solution of Space–Time Interpolation

Toshio M. Chin

Abstract—The approximate Kalman filtering algorithm presented in [1]
for image sequence processing can introduce unacceptable negative eigen-
values in the information matrix and can have degraded performance in
some applications. The improved algorithm presented in this note guar-
antees a positive definite information matrix, leading to more stable filter
performance.

Index Terms—Data assimilation, Kalman filter, Markov random field,
recursive least-squares, satellite imaging.

I. INTRODUCTION

In [1], an approximate Kalman filtering method has been introduced
for time-recursive solution of an image sequence reconstruc-
tion/restoration problem. Let the vectorxk be the collection of the
unknowns over an image grid withN pixels at a time-indexk, and
yk be the under-constraining (e.g., sparse) observations ofxk. The
solution is then sought for the time-varying, space-time optimization
(recursive least-squares [2]) problem

min
x ;x ;���;x

k

i=1

fkxi � Fixi�1k
2

M + kyi �Hixik
2

N g (1)

forM1 = 0, wherekAk2B � ATBA denotes the quadratic norm ofA
with a positive definite weight matrixB. The minimizing solution̂xk
for (1) can be computed time-recursively by applying a Kalman filter
algorithm to the dynamic system

xk =Fxk�1 +wk (2)

yk =Hxk + vk (3)

Manuscript received February 13, 2000; revised December 15, 2000. This
work was carried out in part at the Jet Propulsion Laboratory, California Insti-
tute of Technology, Pasadena, under a contract with the National Aeronautics
and Space Administration and in part at Rosenstiel School of Marine and At-
mospheric Science, University of Miami, Coral Gables, FL, through the Office
of Naval Research under Grant N00014-95-1-0257. The associate editor coor-
dinating the review of this manuscript and approving it for publication was Dr.
Michael R. Frater.

The author is with Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA 91109 USA (e-mail: mike.chin@jpl.nasa.gov).

Publisher Item Identifier S 1057-7149(01)02469-1.

wherewk andvk are mutually uncorrelated sequence of zero-mean
Gaussian processes with covariancesM�1 andN�1. A key aspect
in this formulation is that images are reconstructed/restored by opti-
mizing their local attributes such as spatial gradients against closeness
to the observations. The algebraic manifestation of this locality is that
the given matricesF;H;M;N (denoted without the time-indexk for
lack of ambiguity hereafter) have sparsely banded structures. Examples
include the partial differential equations of fluid dynamics used forF

[3] and smoothness constraints of low-level vision used forH [1].
There is an economical incentive to exploit the given sparse matrix

structures during recursive computation ofx̂k, as the Kalman filter re-
quires co-recursion of anN � N matrix for a typically largeN . For
example,N can range104 � 10

7 in geophysical applications known
as “data assimilation” (dynamic mapping of atmospheric and oceanic
variables from sparse observations including satellite measurements
[3], [4]). In standard Kalman filter, the covariance matrix̂Pk of the
estimation errorxk � x̂k is recursively computed. The algorithm pre-
sented in [1] performs recursion of the estimation error information
matrix L̂k � P̂�1

k
instead, as the inherent sparseness in the formula-

tion is more apparent in the structure of the information matrix (e.g.,
M andN themselves are the information matrices forwk andvk,
respectively). By limiting the matrix bandwidth appropriately, the in-
formation matrixL̂k can approximate the error covariances compactly
using onlyO(N) nonzero elements. In fact, the elements of the infor-
mation matrix can be identified as the parameters of a Markov random
field (or regression in space) [1].

The algorithm presented in [1] for recursion of a sparsely approxi-
matedL̂k, however, does not guarantee positive definiteness. Negative
eigenvalues are not only infeasible in an information matrix but also
causes of numerical inaccuracy and inefficiency (e.g., during iterative
inversion ofL̂k). This note presents an alternative recursion scheme
that preserves positive definiteness in the approximatedL̂k. Also, the
new scheme provides a measure of accuracy of approximation.

II. RECURSION OFINFORMATION MATRIX

The Kalman filter equations for recursion of the optimal estimatex̂k

based on the dynamic system (2)–(3) can be written as

xk =Fx̂k�1 (4)

L̂k(x̂k � xk) =H
T
N(yk �Hxk) (5)

whereL̂k is the information matrix associated with the estimation error
xk � x̂k. We also denote asLk the information matrix corresponding
to the prediction errorxk � xk. The sequencêLk associated with the
optimal estimates can be obtained by minimizing the “information” in
a manner consistent with the maximum entropy principle [5]. One way
to realize this is through the following recursion.

Theorem (Recursion of information matrix):Assume that the ma-
trix L̂k�1 + FTMF is symmetric and strictly positive definite. The
estimation error information matrix̂Lk in (5) can then be obtained by
the recursion

Lk(���k) = k���kk
2

L̂
+ kI� F���kk

2

M (6)

L̂k =Lk(���k) +H
T
NH (7)

if ���k in (6) is chosen to minimize the trace ofLk(���k) for eachk.
Moreover,Lk(���k) with the minimum trace is unique and is equal to
Lk.

The recursions (4)–(7) are initialized aŝx0 = 0 and L̂0 = 0

for computation of the minimizinĝxk in (1). For most applications

U.S. Government work not protected by U.S. copyright.

