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Correspondence

Faster Image Template Matching in the Sum of the proposed for speeding up template matching computations including
Absolute Value of Differences Measure use of the following:
1) parallel processing computer architectures [14];
2) hierarchical tree-based schemes [4], [8];
3) correlation techniques [7], [9], [12];
Abstract—Given anm x m image I and a smallern. x n image P, 4) methods that_ are very spec_ific to a particular application domain,
the computation ofan(m — n + 1) X (m — n + 1) matrix C where such as semiconductor chips [13].
C (4, 5) is of the form We next state precisely the computational problem considered in this
paper, and the nature of the paper’s contribution.
Let I be anm x m matrix (called thamagematrix), P be ann x
Cig) = > fU(Gi+k,j + k), P(k, k), n matrix (called thepattern ngatrix), n < ng. The er)ltries of bott
0 <z.k:3."'<::n n and P come from some alphabet = {ai,...,a,} where thea;’s
= 7= are (possibly large) numbers; < a2 < --- < as. Without loss of
for some function f, is often used in template matching. Frequent choices genera“tyf \.Ne ass_,um_e_that thes ‘f’“e positive integers; this S|mp||f|e§
for the function £ are f(w,y) = (= — v)? and f(x, y) = |= — y|. e exposition. Itis trivial to modify the paper for the case of negative
For the case whenf (z, y) = (@ — y)?, itis well known that C iscom- ;s (or, alternatively, one can add to everything a large enough constant

putable in O(m? log n) time. For the casef(z,y) = |z — y|,onthe to make it positive—the template matching function considered here is
other hand, the brute force O((m — n + 1)®n®) time algorithm for  jqvariant to such a transformation)

computing C seems to be the best known. This paper gives an asymptoti- h i ' .

cally faster algorithm for computing C when f(,y) = |& — y|, one The 90?‘ ,'S_to compute afin — n + 1) X (m —n + 1) matrix
thatrunsintime O(min{s, n/+/log n}m? log n) time, wheresisthe ~WhereC'(i, j) is of the form

size of the alphabet, i.e., the number of distinct symbols that appear id
and P. This is achieved by combining two algorithms, one of which runs in
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n—1 n—1

O(sm? log n) time, the other in O(m?*n+/Tog n) time. We also give a i ) )
simple Monte Carlo algorithm that runs in O(m? log n) time and gives C(i,j) = Z Z FIG 4k j+E), P(k,E)),
unbiased estimates ofC'. k=0 k’/=0

. . . . <i, <m—
Index Terms—Algorithms, convolution, image processing, template Oty j<m—n

matching.
for some functionf. Two reasonable choices for the functigrthat

are often used in image processing [7], [9] #ite, y) = (« —y)? and
I. INTRODUCTION fla,y) = |z —yl.

Template matching tries to answer one of the most basic questiond he case wherf(z,y) = (& — y)* is known to be solvable in
about an image: Is there a certain object in that image? If so, whefdgm” logn) time [7], [9]. This can easily be seen by expanding
The template is a description of that object (and hence is an image/if#- ¥) = (¢ — y)? intoa? +y* — 2wy in the definition of matrixC':
self), and is used to search the image by computing a difference m&Be matrices corresponding to the term and (respectively)” term
sure between the template and all possible portions of the image it €asy to compute ifi(m?) time, and the matrix corresponding to
could match the template: If any of these produces a small differen&a€ =y term can be computed i(m* logn) by a judicious use of
then it is viewed as a possible occurrence of the object. Various deenvolution; various elaborations and improvements on this basic idea
ference measures have different mathematical properties, and diffef@t Pe found in the literature.
computational properties. The measure considered in this paper is th&n O(m” log n) time Monte Carlo algorithm [2] has recently been
sum of absolute value of differenazee: We give a faster algorithm for given for the case whefi(z, y) = é..,, wheres,. ,, is the Kronecker
performing the basic template matching computation for this measu$¥mbol:é.., is one if and only ifz = y and is zero otherwise. The
Although itis not the purpose of this paper to make any claim about tREhniques used in [2] do not extend to the casg(af y) = [+ — yl,
suitability of that particular measure as opposed to other measures,aRéd the method used in [2] has little in common with the method used
do note that most textbooks on image processing mention it as a p<his paper. In the pattern matching community, the us&(ofy) =
sible choice. Of course the literature contains many other measures, &nd IS @lmost universal [6], but this is not so in the image processing
interesting new ones continue to be proposed (for example, see [3] &AgMunity. In fact, most of the papers on pattern matching not only
the papers it references). For all of these measures, the speed of %87 (2. 4) = 6.4, but also focus on the problem of finding exact or

plate matching is of crucial importance. Many approaches have bedifost-exact occurrences of the pattern (we refer the reader to the book
[6] for an extensive bibliography on this subject).

We are not aware of any previous algorithm for the case
3%;6, y) = |z — y| that is faster than the obvious brute force approach,
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the O(sm?*logn) time algorithm, and Section IV gives the (more 3) Createl, from I= by replacing with one every occurrence of
complex)O(m?*n/Togn) time algorithm. Section V gives a simple symbols fromB’ — {#}.

Monte Carlo algorithm that runs i@ (m? log n) time and computes ~ 4) CreateP; from P- by replacing with one every occurrence of
unbiased estimates af'. Section VI concludes by giving rough symbols fromB" — {#}.

practical guidelines to using these algorithms (based on practical5) ComputeX = I— x P, — I} x P—.

experiments with them), mentioning an open problem, and discussings) If B’ > B” then returnX. If B’ < B" then return-X.

the time complexities of the algorithms for the case of nonsquare emma 2: Algorithm DISJOINT_ALPHABETS correctly computes
images. Before giving the algorithms, the next section covers somg, ., in O(m? log n) time.

preliminaries that are needed later. Proof: The most expensive step of the algorithm is Step 5 which,
using Lemma 1, can be carried out @%m?logn) time. To prove
Il. PRELIMINARIES correctness, consider the three possible cases in the alignment of an

a € B'inI withab € B” in P, and how each case contributes to

i i Al / f{
Let # be a special symbol not ii, and letA’ denoted U {#}. We Chyr 1 and toX..

extend the definition of the functiofi so thatf(x,y) = 0 if z ory is

a # symbol, otherwisg(z, y) = | — y|. 1) _If eithera or b is the symbol #, trlen the effect of that alignment
Definition 1: Let G and H be two subsets ofi’ . Then theCa i is zero onC'r r as well as ony.. . .
matrix is defined by The othe_r cases below assume that.nelaihmrb is #. o
2) If a > b (i.e., B > B") then the alignment’'s contribution
1na to Cgs gr is |a — b| = a — b. Its contribution is+a to the
. . . / ding entry if- « P, (that s, the entry of— x P; that
Canli,j) = (TG + k4 k), Pk E)), correspon b _ _
6. (i) ,; k,ZO fem(I(i J ) Pk K) corresponds to this alignment}) to the corresponding entry in
0<i, j Sﬁm —n I, « P=. Hence its net effect on the corresponding entryits

a — b, as desired.

3) Ifa < b (i.e., B < B") then the alignment’'s contribution
wherefc mr(a,b) equalsa — bl if a € G — {#} andb € H — {#}, to Cpr g is [a — b| = b — a. Its contribution is+b to the
equals zero otherwise. corresponding entry il x P—, 4+a to the corresponding entry

In other words('¢;, » counts the contribution t0' of the alignments in I + . Hence its net effect on the corresponding entry in
of symbols fromG that occur in/, with symbols fromH that occur in _Xish — a. as desired.
P. Note that, in generaly,n # Cu,c. Our goal is to compute the '

trix — This completes the proof. O
matrix s ar (= C). Lemma 3: Cy.,}, 47 + C'ar {4} Can be computed i®(m” logn)
. time.
. AN O(sm?logn) TIME SOLUTION Proof: We can writeC',,} 47 + Car (a,} @S

The following is a well-known straightforward consequence of the
fast algorithms for two-dimensional convolution.

Lemma 1: Let U’ be anm x m matrix andl"" be amn x n matrix,
n < m. Let the product’ = U" be defined as thém — n + 1) x t Caraiaddad + Claias) fa)
(m — n + 1) matrix where

Clasyfarsonai 1) T Claid faigp1,eas)

becaus&’y, ; (..} is zero. Each of the above four terms can be com-

n—1n-1 puted inO(m? log n) time by using algorithm BJOINT_ALPHABETS.
(U= U" i) = 30 DU i+ ko + KU (R 1), O
k=0 k’=0 The following algorithm gives the main result of this section (it
0<i, 7<m—n. makes crucial use of algorithmiEOINT_ALPHABETS).

Algorithm ALPHABET_DEPENDENT

GivenU' andU"', the matrixU/’ +U"" can be computed i@ (m? log n) Input: Image/, patternP.

time. Output:C (= Cas,47).
Proof: Straightforward, by using convolution (see any image 1) Initialize all the entries of” to zero.
processing textbook). O 2) For eachy; € Ainturn, computeCy, 1 4/ + Car y,,3 and add
Note:An implementation of the above-mention@dn? log n) time itto C'. This is done by using algorithmiEIOINT_ALPHABETS
algorithm is available in MATLAB. four times (see Lemma 3).
The next algorithm, for a special subproblem, will be used by sub- 3) €' = C/2.
sequent algorithms. Theorem 4: Algorithm ALPHABET_DEPENDENTCOrrectly computes
Algorithm DISJOINT_ALPHABETS Cy4r 4arin O(sm2 log n) time.
Input Image!, patternP, two disjoint subsets of’ (called B’ and Proof: The time complexity claim follows from the fact that

B’") such that the symbols iB’ are either all larger than those Bi’, it uses algorithm BBJOINT_ALPHABETS 4s times, each at a cost of
or all smaller than those B’ (with the convention that # is smaller O(m?log n) time. Correctness follows from the fact that
than anything in4).

Output Cpr pr. .
1) Createl— from I by replacing with zero every # symbol and Carar=2""- Z(C{ui}.m +Carfa})
every symbol not fromB’ (symbols fromB’ — {#} are left i=1

undisturbed).

2) CreateP- from P by replacing with zero every # symbol andwhere we divided the summation on the right-hand side bgcause
every symbol not fromB” (symbols fromB” — {#} are left it double-counts the effect of each alignment ofzin I with ab in P
undisturbed). (it counts it once when; = «a, and another time when, = 5). O
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IV. AN O(m*n(logn)°®) TIME SOLUTION

We partition the problem inton /»)* subproblems in each of which
the pattern is stillP but the image i$2n) x (2n). After that, we solve
in T(n) = O(n*/Togn) time each subproblem, for a total time of
(m/n)*T(n) = O(m>n(logn)’?®). The (m/n)* subproblems are
defined by the following well-known reduction [6].

1) We pad matrix¥ with enough additional rows and columns of #

2

3

)

)

symbols to make its dimension a multiple ofn. This causes
an increase of at most — 1 in m. The next two steps of the
reduction assume that this has already been done, ant:tisat
a multiple ofn.

Note: This padding is for the purpose of simplifying the dis-
cussion—it is easy to drop the padding and the assumption that
m is a multiple ofn, but that would unnecessarily clutter the dis-
cussion that follows. We chose to makea multiple ofr for the
sake of clarity.

CoverI with (m/n)? overlapping squarek ; of size(2n) x
(2n) each, wherd; ; consists of the square submatrix obf
size(2n) x (2n) that begins (i.e., has its top-left corner) at po-
sition(n - i,n - j)inI. Hencel; ; andl;+1 j+1 overlap over a
region ofI of sizen x n, I, ; andl; ;4. overlap over a region
of size(2n) x n, I; ; andI;+1,; overlap over a region of size
n x (2n).

TheT(n) time algorithm is then used on each of the /n)?
image/pattern pairg; ;, P. It is easy to see that thege: /n)?
answers contain a description of the desired matix

4)

The above partitioning is not only for the sake of easier exposition: It
is important that the partitioning be used, and that the method outlined
in the rest of this section be usaulividually on each of them /n)?
smaller subimages.

The algorithm for computing the answer matrix (denoted’byfor
a(2n) x (2n) subimagel’ and then x n patternP consists of the
following steps (wherel”’ now denotes the set of symbols that appear

in I, or in P, plus the # symbol).

5)

1) Computed” and, for every symbal € A", computen, (resp.,

2

3

~

~

B.), Which is the number of times that symholoccurs inI’
(resp.,P). This is easy to do i®)(n” log n) time by sorting the
symbols occurring id’ (resp.,P), etc.
Let AT be the subset of symbols it for which o, + 3, >
nyTogn, andletA™ = A” — A" Intuitively, A* contains the
symbols that “occur frequently” — they will be processed dif-
ferently from the other symbols; the idea of processing symbols
that occur frequently separately from the other symbols was first
used in [1], [10] in the context of approximate pattern matching
between two strings, i.e., counting the total number of matches
for all possible positions of a pattern string in a text string.

Note that

(I'l+|P)) _ bn
nylogn  +/logn

ATl <

The rest of the algorithm processes the symbols frofrdiffer-

ently from symbols ind ™.

This step computes the contribution, @, of alignments for
which at least one of the two symbols is fram". That is, it
computes

1! 1!
Z C ai},A”+CA”,{CL7'}'
a; EAT

Every symbok; € A" gets processed iR (n? log ) time, by
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) to computeCy,, 3 a7 + Car yq,3- The total time for all such
a; € AT is therefore

n

O (JAT[n*logn) =0 <<\/m>n2 log n)
=0(n"/logn).

We now turn our attention to computing the contribution( o
of alignments both of whose symbols are frotn . We begin
by partitioning a sorted version of~ intot = O(n/+/logn)
contiguous pieced,, ..., A, such that the total number of oc-
currences of the symbols in the sét is O(n+/log n). This is
done as follows: Scan the sorted version4f by decreasing
order, putting the symbols encountered in4etuntil the quan-
tity 3, c 4, (2a + 2) becomes> n+/log n, at which pointd,

is complete and the subsequently encountered symbols are put
in Az, againuntily" ., (aa + 3.) becomes> ny/logn, etc.
Every A; so created satisfies

ny/logn < Z (aa + Ba) < 2n+/logn

acA;

because 1) every € A~ has(a, + 84) < ny/logn and 2)
we stop adding elements to sétas soonaj’ . 4. (aa + 5a)
becomes> n/log n. This implies that

[I'| +|P]) _ 5n
nylogn  logn'

t<(

The partitioning ofd ™ into A, ..., A; takesO(n?) time since
we can obtain a sorted™ from the (already available) sorted
version of A",

We can now write the contribution of each to C’ (i.e., the
contribution of alignments where both symbols are fram as

! ! 1
Caja; ¥ Caya0va, +Cap o uay A,

+Ch aguua,  +Chyova; 4,
The last four terms in the above can each be computed in
O(n*logn) time by using algorithm BJOINT ALPHABETS.
The first term,Ogi,Ai, is not computed explicitly: Instead we
directly add its effect to the curret’ matrix by looking at
every pair of occurrences of symbols fram in I’ and P,
and updating”’ to account for this pair of entries, as follows.
Suppose the pair of entries in question are the occurrence of
symbola € A, at position(i’, ;') in I’, and the occurrence of
symbolb € A; at position(i”, ;') in P. We process this pair by
simply incrementing”’ (i’ — i, j' — ") by an amount equal
to f(a,b). The total number of such, b pairs is

>

(Z a’“’)
acA; beA;
<(2ny/logn)* = 4n° log n.

The above must be repeated for eath 1 < i < t. There-
fore the total time for this step 9(tn? log n) = O(n*/log n)
(where we used the fact that= O(n/+/logn)).

Z aa‘ﬁb S

a,beA;

As was analyzed in each of the above five steps, the time is

using algorithm DBJOINT_ALPHABETSfour times (see Lemma 3 O(n*/Tog n).
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K'|L- > [Tot(i 4+ k,j + k)N Int(i 4+ 1,5 +1")| | = C(i,5)°

0<k,k/ 1,1/ <n—1

V. AN O(K'm*logn) TIME MONTE CARLO ALGORITHM method; the comparisons are not definitive because he used a soft im-
plementation of FFT, which of course suffers from large constant fac-
tors in its time complexity—the algorithms should work better with the
FFT step performed by dedicated chips. Of course, for large enough

t problem sizes the asymptotic time complexity overcomes the effect of
large constant factors, but with the current software implementation
“large enough” means megapixel-size images unless one judiciously

For example/- . is obtained fron¥ by replacing every symbol by ;J;E;Vtsh; g;;;g ;;‘”S %lgo(i”;hn;a(iff ela?e:f\t/;r?rl;?gsr)e on this). What
1 if that symbol is larger tham, by zero otherwise. t= A e, ylarg P '

Let = be a random variable uniformly distributed over the interval® The deterministic algorithm starts getting faster than brute-force at
[a1,a.], and let image sizes of 6 megapixels (monochrome, 1 byte/pixel).
« Monte Carlois best used to locatterethe smallest entry of’ oc-
G=1. (Isy % Py + I<, % Psy) cursin case.thetemplate “almogtoccurs”intheimage, ratherthan as
- - away to estimate all of th€ matrix; the latter would require a large
where the product is as defined in Lemma 1 . K (more on this be_Iow) whereas for the former a snhalis enough
Theorem 5: E(é) —C. (e.g.,K = 10) and in that case Monte Carlo beats brute-force even
for smallimages (as small as 32 kilopixels). That Monte Carlo is ex-
perimentally found to be a good estimator of where the template al-
most-occurs is not surprising: The expression for the variance (given
at the end of Section V) reveals that it is particularly small at the po-
sitions in the image where the template “almost occurs” (i.e., where

C(i,7) is small).
¢ Recall that the speed of the Monte Carlo algorithm depends on the

parametefy that determines the variance of the estimat€' oDne

needs to use a fairly largk’ (around 100) for the estimates 6f

to have a small enough variance, and for siiclthe Monte Carlo

algorithm starts getting faster than brute-force at image sizes of 1

megapixel.

An interesting open question is whether it is possible to achieve
is therefore one with a probability equal o — b[/ L. Hence, the ex- (2 log n) time for the exact computation @ for arbitrary size
pected value of >, * P<, 4 I<, * P is L cC. O alphabets.

The above theorem states thatis an unbiased estimate @f. Finally, the analysis of this paper can be repeated for rect-
This suggests an algorithm that repeatedly (ddytimes) does the angular (nonsquare) matrices, wheie is m x m' and P

Recall that the alphabet i4 = {ai,....as}, wherea; < ax <
cerag. LetD = as —ay + 1.

Letx be anumberg; < z < a,.LetR € {<,>,<,>}. We use
Ir. to denote the matrix obtained frofby replacing every alphabe
symbola with 1 if it satisfies the relation Rz, with O otherwise Py,
is similarly defined.

Proof: Consider an alignment of a particular symhdh I with
a symbolb in P.

» The corresponding alignment féx.. andP<, isa 1 with a 1 if
and only ifb < @ < a. The probability of this happening when
b<aisequaltofla—1—-b+1)/L=(a—0)/L.

 The corresponding alignment fé&, andPs.. is a 1 with al if
and only ifa < @ < b. The probability of this happening when
a<bisequaltofb—1—a+1)=(b—a)/L.

The term that corresponds to thatvith-b alignment in the sum

(I>x * ng + Iglv * P>x)

following: is n x n'. The resulting time complexities would then be
1) generate am (uniformly over the intervala1, as]); O(min{s, v/nn'/log(nn’)}mm'log(nn')) for the determin-
2) create inD(m?) time the four matrice$s .., T<, P>, P<s; istic algorithm, O(mm'log(nn')) for the Monte Carlo one. The

3) computel’ = L - (Ise % P<, + I<, x P>). This can be done details of this extension are straightforward and are omitted.
in O(m? logn) time (by using Lemma 1).
C is estimated by taking the average of the estimates obtained
in Step 3 for theK iterations. The time complexity is obviously
O(IKXm?log n). Of course the largeK is, the smaller the variance.
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performance. matedL,, however, does not guarantee positive definiteness. Negative
Index Terms—Data assimilation, Kalman filter, Markov random field, ~ €igenvalues are not only infeasible in an information matrix but also
recursive least-squares, satellite imaging. causes of numerical inaccuracy and inefficiency (e.g., during iterative

inversion ofL,). This note presents an alternative recursion scheme
that preserves positive definiteness in the approximhtedalso, the
new scheme provides a measure of accuracy of approximation.

In [1], an approximate Kalman filtering method has been introduced
for time-recursive solution of an image sequence reconstruc- Il. RECURSION OFINFORMATION MATRIX
tion/restoration problem. Let the vectar. be the collection of the
unknowns over an image grid with' pixels at a time-index, and
v« be the under-constraining (e.g., sparse) observations, ofThe
solution is then sought for the time-varying, space-time optimization
(recursive least-squares [2]) problem

|. INTRODUCTION

The Kalman filter equations for recursion of the optimal estinkate
based on the dynamic system (2)—(3) can be written as

X =Fxp_ (4)
Li (% — %) = H ' N(y, — HX;) (5)

k
_ nin Z {Ixi — Fixi—1llar, + lyi — Hixi|%,} (1) whereL; is the information matrix associated with the estimation error
PR s X — Xi. We also denote d;. the information matrix corresponding

g 7 . to the prediction errok, — Xi. The sequencfa,C associated with the
for M; = 0, where]| 4|z = A" BA denotes the quadratic normaf  ohimal estimates can be obtained by minimizing the “information” in
with a positive definite weight matri¥. The minimizing solutiont;. 5 manner consistent with the maximum entropy principle [5]. One way
for (1_) can be computec_i time-recursively by applying a Kalman filtgf) ro5jize this is through the following recursion.

algorithm to the dynamic system Theorem (Recursion of information matrixpssume that the ma-
trix L,_, + F' MF is symmetric and strictly positive definite. The
estimation error information matrik;. in (5) can then be obtained by
v =Hxp 4+ vy (3) the recursion

xr =Fxp 1+ wy
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