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An Efficient Search Strategy for Block Motion
Estimation Using Image Features

Yui-Lam Chan and Wan-Chi Sjisenior Member, IEEE

Abstract—Block motion estimation using the exhaustive full of the motion vectors, the most successful technique for mo-
search is computationally intensive. Fast search algorithms tion estimation is perhaps the block matching algorithm (BMA)
offered in the past tend to reduce the amount of computation by [5]-[23]. To do this, a current frame is first partitioned into
limiting the number of locations to be searched. Nearly all of these . . ’ . .
algorithms rely on this assumption: the MAD distortion function two-dimensional (Z'D,) smgll blocks and a search window in
increases monotonically as the search location moves away fromthe reference frame is defined. Then, each block of the cur-
the global minimum. Essentially, this assumption requires that rent frame is compared against all blocks of a previous frame
the MAD error surface be unimodal over the search window. within the search window. The motion vector is finally obtained
Unfortunately, this is usually not true in real-world video signals. by searching for the minimum point on an error surface that is

However, we can reasonably assume that it is monotonic in a . . . .
small neighborhood around the global minimum. Consequently, composed of the block matching distortion over all candidate

one simple strategy, but perhaps the most efficient and reliable, Motion vectors within the search window.

is to place the checking point as close as possible to the global Nevertheless, motion estimation, even using the block
minimum. In this paper, some image features are suggested to matching technique in which the mean absolute difference
locate the initial search points. Such a guided scheme is based on(MAD) is employed to measure the block matching distortion

the location of certain feature points. After applying a feature il - tati | ticular. it h ft.
detecting process to each frame to extract a set of feature points Still requires enormous computations. in particuiar, 1t has often

as matching primitives, we have extensively studied the statistical Pecome a bottleneck problem in real-time applications if the
behavior of these matching primitives, and found that they are conventional full search algorithm (FSA) is used. To illustrate
highly correlated with the MAD error surface of real-world  thjs situation, we consider a typical MPEG-1 application [24]:
motion vectors. These correlation characteristics are extremely Suppose that 45 x 15 search window is used for a video
useful for fast search algorithms. The results are robust and the ith int diate f t (SIF) at te of
implementation could be very efficient. sequence with a source intermediate forma (SIF) a a rate o
A beautiful point of our approach is that the proposed search 30 frame pel’ Second. Itis found that the fu" Search motion es-
algorithm can work together with other block motion estimation  timation using MAD block matching distortion requires about
algorithms. Results of our experiment on applying the present 1 2 billion (integer) additions and 0.57 billion comparisons per
approach to the block-based gradient descent search algorithm second! In fact, this amount of computations can take up to

(BBGDS), the diamond search algorithm (DS) and our previously - .
proposed edge-oriented block motion estimation show that the 75% of the computing power of the whole encoding system. For

proposed search strategy is able to strengthen these searchingfuture high-definition television (HDTV) applications, much
algorithms. As compared to the conventional approach, the new larger search windows will have to be employed. This gives rise

algorithm, through the extraction of image features, is more to a computational demand that is several orders of magnitudes
robust, produces smaller motion compensation errors, and has higher than that for the MPEG-1 applications [25]. Clearly, the
simple computational complexity. . . o . : '
full search motion estimation is unlikely to be implemented
~ Index Terms—Block matching algorithm, image features extrac- in real-time video coding applications, and determination of
tion, motion estimation, motion vector. a way to speed up block motion estimation with negligible
performance degradation has become an important research
|. INTRODUCTION topic for quite some time.

OTION estimati | . tant role in today’ During the past two decades, many fast search algorithms,
M : estimation plays an important role In today s, hich requce the computation time by searching only a subset
video coding and processing systems, because mot

L : ¥ he eligible candidate blocks, have been developed. These

vectors are critical information for temporal redundancy redug: ;1 ock motion estimation algorithms include thestep hi-

tion [1}-[4]. Due to their simplicity and the coding emdencyerarchical search algorithm{SHS) [16], the 2-D logarithmic
search algorithm [17], the conjugate directional search algo-

) . ) ) ) ) rithm (CDS) [18], the new three-step search algorithm [19], the
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selected becomes the most crucial task. Nearly all existing fi  **°f
search algorithms rely on this assumption: the MAD distortio
function increases monotonically as the search location mo\
away from the global minimum [17]. Obviously, this assump &
tion essentially requires that the MAD error surface be unimod _+
over the search window, which leads to employ a uniform peg
tern. Unfortunately, this is usually not true in real-world videt
signals. As a consequence, the minimum MAD found by the:
methods is frequently higher than that is produced by the FS
This is one of the reasons why the FSA is still widely use
in most high-quality video codec. The adaptive multiple-car
didate hierarchical search (AMCHS) [12], [15] that is used t
overcome this drawback adaptively by keeping more than o
winner for the next step of motion estimation. The genetic m
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tion search algorithm (GMS) [22] attempts to overcome th
problem by first choosing a random search point and then usi (a)
an algorithm similar to the genetic processes of mutation a
evolution to find the global minimum of the matching distor:

tion. However, the number of operations required by the oth ,
fast search algorithms outlined above is approximately 15%

that required by the GMS. In this paper, areliable search strate  #°F
that employs the guide of some image features is proposec
locate one of the initial search points as close as possible to
true motion vector so that the chance of catching the true moti
vector is maximized by using some image features. In additic
it is found that the proposed strategy is very suitable for cor
bining with other block motion estimation algorithms to fornm ot

an efficient algorithm.

In Section Il of this paper, we present an in-depth study of t
correlation between the MAD error surface and some image fe
tures, and then formulate a reliable search strategy for block n
tion estimation, together with an analysis of the algorithm’s con
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plexity and some of the simulation results. Based on the stud

in Section 11, we apply the search strategy to our feature-orient
block motion estimation algorithm to further improve its overal
performance. Finally, a conclusionis drawn in Section IV.

Il. FRAMEWORK OF AN EDGE-ASSISTEDSEARCH STRATEGY

FOR MOTION ESTIMATION ALGORITHM
A. Statistical Behavior of the Error Surface

(b

Fig. 1. MAD error surface for two different blocks.

search location moves toward the global minimum value. This
implies that simple fast search algorithms such asrttstep

hierarchical search algorithm [16], the block-based gradient
decent search algorithm [20] and the diamond search algorithm

Suppose that the maximum motion in the vertical and holiz1] require a small number of searches to determine the global
zontal directions is=W'. There are thu@W + 1) candidatesin gptimum for this block. For the surface as shown in Fig. 1(b),
total to be checked if the full search algorithm is used, each c@fcontains a large number of local minima. Almost all con-
responding to a checking pointin the search window. The MAfentional fast algorithms have explicitly or implicitly assumed
valuesthatresultfromthese checking pointsforman error surfg¢| that the error surface is unimodal over the search window.

N—-1N-1

=2 2 Ihiy)

=0 75=0

MAD(u,v) — L (i +u,j+v)

where the block size is taken 86 x N, («,

erence frame(¢ — 1)th frame) that are to be compared.

v) denotes the lo-
cation of the candidate motion vector, ah¢-, -) andf,_1(, -
refer to the blocks in the current fran{ frame) and in the ref-

As a consequence, it is unlikely that the above-described fast
search algorithms would converge to the global minimum. In

other words, the search would easily be trapped into a local
minimum.

B. Reliable Search Through Image Features

The guided strategy presented in this paper intends to
strengthen the conventional fast search algorithms. Without loss

The statistical behavior of the MAD error surface has of generality, we employ the block-based gradient descent search
significant impact on the performance of a fast search algalgorithm (BBGDS) [20] as an example to illustrate the problem
rithm for block motion estimation. For the surface as showof the conventional fast search algorithm. Let us recall that in
in Fig. 1(a), the MAD error decreases monotonically as thbe first step of the BBGDS, a search is carried out only around
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7-6-5-4-3-2-101234567 Although the error surface exhibits uncertainties in large
spatial scale, we can reasonably assume that it is monotonic
in a small neighborhood around the global minimum [19]. In
checking the existence of local minima, one simple strategy, but perhaps
block the most efficient and reliable, is to place the checking block
)4 as close as possible to the global minimum, as depicted in
Fig. 3(b). If the initial checking block is close enough to the
: global minimum, it will be very likely able to find the global
minimum through a local search. One possible solution is to
test more starting points that spread across the search window.
Fig. 4 shows one of the starting point pattern (SPP) in which
the starting points (SPs) are distributed evenly across the
search window. However, it is inefficient to use such a large
amount of the starting points in this regular SPP. Consider a
(a) search window with a MAD surface as shown in Fig. 1(a), it
7-6-5-432-101234567 is wasteful to use all of the starting points as shown in Fig. 4.
It is obvious that if the number of starting points is reduced as
much as possible and the starting point is as close as possible
to the position of the true motion vector, the search algorithm
becomes more efficient.
Let us suppose that the global minimum pointig, and a
starting point close to the global minimum d&., as depicted
in Fig. 3(b). These points play an important role in the devel-
opment of a reliable search, which can be further seen from
the following discussion. In a hierarchical fast search scheme,
the global minimumC,, can be reached only if a local search
is conducted around’,. By reducing the number of sampling
points in the regular SSP, we can save computation time as com-
pared to the conventional methods. Thus, the number of SPs
b) must be minimized under the condition that the remaining SPs
must cover poinC, in doing the local search. This requires that
areht least one of the nearby starting point(gf, such as’., be
f<ept, after performing the adjustment of the regular SSP, so that
the local search around the limited starting point can coyer
_ _ o ) Although the objective of the SPP design is straightforward,
the center checking point as shown in Fig. 2(a). If the optimuyecomes nontrivial when one tries to design a universal SPP
is found at the center, the procedure stops. Otherwise, furthgr 5 sequence of frames such that each individual search will
search is conducted around the point where the minimum fagye the minimal amount of search points in order to obtain the
justbeen found. The procedure continues until the winning poigiopal optimal solution. Usually, such a universal solution does
becomes a center point of the checking blogk<(3 checking not exist. Hence, we have to perform an adjustment of the reg-
points) or when the checking block hits the boundary of thaar SPP such that the limited SPs have a high enough chance
predeﬁned search range [20]. The pr(_)cedure is illustrated dp catching the global minimum. In this paper, we propose a
Fig. 2, where the motion vectds, —4) is found. Of course, featyre-assisted search algorithm. The adjustment of the regular
the BBGDS relies on the assumption that the MAD measu&pp s a primitive-based approach which generally includes a
decreases monotonically as the search point moves closer toffi§ching process for tracking the feature primitives from frame
optimal point. It can easily be trapped into the local minimumig, frame in a sequence of images. This is the main theme of this
cases where the error surface looks like the one in Fig. 1(b). paper. The proposed algorithm first estimates an initial proba-
Let us use Fig. 3 to give a clearer account of this phenomenaiiity of being the global minimum of each possible matching
Fig. 3(a) shows a nonunimodal surface due to many reasons spah between the current block and the block at the regular SPP.
astheaperture problem, the textured (periodical) localimage cditen the regular SPP is updated based on certain criteria, such
tent, the inconsistent block segmentation of moving object aad the feature similarity. Many features, such as the edge points,
background, the luminance change between frames, etc. In thener points and segmented regions, can be used as matching
first step of the BBGDS, the center point in the checking blogirimitives. This approach produces good results if the extrac-
wins. It stops the search process and a local minimum will bien of primitives is nearly perfect. In the meantime, the perfor-
found. However, it is seen that the global minimum is located atance of a fast algorithm is also judged by its speed-up ratio
the far side of the winning point and the MAD value of the winand robustness. For hardware implementation, regularity is also
ning pointis significantly larger than that of the global minimuman important factor to be considered. Hence, tradeoffs have to
This will degrade the quality of the motion-compensated framée made carefully among these competing factors.
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Fig. 2. (a) First step of the BBGDS and (b) example of the BBGDS se
procedure, where motion vect(3, —4) is found.
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MAD
value

checking block

Trapped into
local minimum

Global minimum

>
search distance

(a)

MAD
value

Initial position of checking
block

: “Global minimum

C, cC search distance

(b)

Fig. 3. Nonumimodal error surface tested by a checking block. (a) The checking block starts at the origin and a false checking results, henceralodal min
found. (b) If the initial checking block is close enough to the global minimum, the global minimum can be successfully found.

C. Edge-Assisted Search Algorithm An efficient extraction of the edge information is an impor-
tant aspect of our proposed EAS. In choosing an edge detection
In [23], we have shown that edge features can greatly imalgorithm, one must consider its speed and precision. Prior to lo-
prove the accuracy of motion estimation. Also, the availabilityating the directional derivatives, the image must be smoothed,
of VLSI edge detection chips [26] makes the possibility of usingo that ripples, spikes and high frequency noises from the image
edges in motion estimation quite realistic and potentially rere removed. A simple smoothing process using the mean, that
warding. In this paper, we try to employ the edge feature as garforms equally-weighted smoothing using a square window
example to illustrate our proposed feature-assisted search @fh the size of x 5, has been employed here. By using the data
proach and we will refer to it as the edge-assisted search algguse technique, some computations can be saved, as described
rithm (EAS). A flowchart of the proposed approach is shown i further details in a latter part of the paper. The edge detection
Fig. 5 and the realization procedure of the EAS is as follows.algorithm is then applied to the smoothed current frame. For the
« Step 1: Image Preprocessing by Edge Detection sake of simplicity, theg x 3 Sobel gradient convolution masks
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.12 +4 +8 +12
Currcnt frame
.12 ‘
Binary Edge
Formation
-8
Binary edges of current frame
“ v
Edge Block Detection
FS e Data flow
4] =] —
Control flow
Edge block?
+8 Yes
Binary edges of v
reference frame ) Compute EMS of the
_| next SPin the regular
+12 g SPP
©  Starting Point: §P Yes
Fig. 4. Regular SPP: SPs distribute evenly across the search window. This SP is
reserved in the
No updated SPP
have been used
1 2 1 1 0 -1
Last SP in the
go= 10 0 0 gy=12 0 =2]. 2 regular SPP?
-1 -2 -1 1 0 -1
The edge framé, (¢, j) is given by Y'i'j
Reference frame G.ofth
N T s 1ie . Comput: of the next
Si(t,5) = [L13(2, ) * g=| + |14, 5) * gy 3) ~ | 5P i the nbdated SPP
where(z, j) is the smoothed image with the same dimensic
as the original image.
The binary edge framé3,(i, 5), is defined by B < xMADkin_in_ updte_57F
. 1 if S(4,5) > T. e
B,(i.7) = 79 € 4 - This SP is
(07) 0 otherwise ) Only cener SP s reserved in the
final SPP N final SPP
whereT, is a predefined threshold.
The block is considered as having an edge
St I Bi(ing) > Teoundds satisfied, Wher€oouy: is
the threshold of edge count. This is done in order to preve
false determination of edge blocks due to the presence o
noise and consequently it can guarantee that motion vect >
obtained in the EAS are more reliable. If the block is classifie Reference (rame . Motion vector estimation
. final SPP as the
as an edge block, the search of this block proceeds to stej > “s"ggemgpom.m ©
otherwise one of the conventional fast search algorithms st lﬁm motion
vector

as the BBGDS [20] or the DS [21] is applied.

* Step 2: Adjustment of the Regular SPP

Once the image feature description is determined, a matching
evaluation function is required to show the degree of similarity
between two descriptions. Usually the similarity between twaifferent blocks based on distance minimization. Note that this
descriptions is defined in the form of a cost function or a distanstraightforward approach to determine the distance function by
function, where these costs are expected to be minimized ammputing the binary edge matching is very time-consuming
are zero only if both descriptions are identical. because it considers all binary edge points across the reference

Binary edge points can be selected as image features ifoage pixel by pixel. An efficient technique that reduces this
block matching, and details of such an approach can be foundimning time is highly desirable. In this paper, we propose
reference [23] for locating the best fit of edge points from twto reduce the computational burden by introducing the edge

Fig. 5. Flowchart of the proposed EAS.
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(a)
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MAD error surface of the “ball™ EMS surface of the “hall
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Fig. 6. Relationship between the MAD error surface and the proposed EMS surface.

matching score (EMS), as the cost function to adjust the regutanrent framefth frame) and of the reference frame ¢ 1)th
SPP and to avoid the pixel-wise comparison. The EMS fsame) that is to be compared.
defined as the difference between the sum of edge points ofThe adjustment of the regular SPP is based on the measure

each block of how large the probability of being the global minimum of
N-1N-1 each possible matching pair between the current block and the
EMS(u,v) = > > Bu(i, j) block at the regular SPP is. The EMS is to consider that if the
=0 j=0 numbers of edge points in two blocks are similar, the block in
Ne1N_1 the regular SPP has a large probability of being closest to the

_ Z Z By (i +u,j +v) (5) global minimum. In Fig. 6, the MAD surfaces and the EMS

) surfaces of two different blocks containing a ball or a racket
moving against a background are plotted. We have found that
where(u,v) denotes the location of the possible motion vectothe correlation between these two surfaces is very high and this
andB(-,-) andB;_1 (-, -) refer to the binary edge blocks of thefurther ensures that the motion search algorithm can be guided

i=0 j=0
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by the EMS. Thus a block in the regular SPP whose EMSisle 2%
than a pre-defined thresholfigys, will be considered suitable
for an interesting SP. In other words, this SP is reserved in tl
SPP. In the follow of our discussion, we refer the modified SP g
to as the updated SPP. In order to normalize the thresholdir 5
the Tgnms is proportional to the number of edge points of thew
current block. That is

190 A

180 A

170 ~

160 -

Average MS

N—1N-1

Tems =« Z Z By(i, 4) (6) 150 |

=0 5=0

“Ww+——

whereq« is a proportional constant.
« Step 3: Formation of the Final SPP g
In order to reduce further the computational complexity, th (a) Table Tennis
updated SPP can be refined by using the image intensity.
simple way is to employ the MAD matching criterion. Selectior 230
of the best matched SP as compared to other SPs in the upde

SPP is based upon the MAD values, and it is defined as
220

Gk it MADk - MADmin_in_updated_SPP (7)
210 A

MSE per pixel

wherek means to cover all selected SPs of the updated SPP, ‘s
cept the SP with the smallest value of MAD in the updated SP §
where MAD i _in_updated_spp @and MAD;, are the smallest 2 500 |
value in the updated SPP and the value of the MAD from the £
in the updated SPP, respectively. First, the SP with the small¢
value must be reserved in the final SPP. Second, the value 190 —
@}, is used to establish the final SPP. If the valugXfis small 0 T 5 2
enough (smaller thaf¥ x MADuyin in_updated_spr, Wheregs ’
is also a proportional constant), it implies that the probability
of this SP being the global minimum is high. In other words, , .
this SP must b included n the final SPP; otherwise, the SPLS Jngl ELeormance o 1 8BGDS v the £A5 ploted g
eliminated from the updated SPP. After examining all SPs variation of 3. (a) Table Tennis and (b) Football.
the updated SPP, the final SPP is formed.

« Step 4: Motion Vector Estimation Using the Final SSP as

(b) Football

the Startina Point Since our proposed EAS can work together with the conven-
?Aft arﬂl1ng ?'T)l. h t of the final SPP. all SPs in the fi tiPnaI fast search algorithms, the BBGDS [20] and the DS [21]
er the establishment of the ina @ S In the fingyo employed to illustrate the performance of the EAS. To ob-

SPP serve as the starting point of one of the conventional fﬁh the binary edge information, thé and7; of the edge
’ 3 count

searching algorithms such as the BBGDS [20] or DS [21]. I:Hetection are setto 40 and 16, respectively. Consider Figs. 7 and

nally, a search is conducted to find the minimum value of MAD& which plot the MSE performance and the number of search
points required of the BBGDS with the EAS for all possible
choices ofa and 3, which are used to control the number of
1) Quality Comparison:A series of computer simulationsSPs in the updated SPP and the final SPP respectively. These
have been conducted to evaluate the performance of #xperimental results indicate that, for a fixed increasings
proposed EAS. These include the “Table Tennis” and thiesults in a roughly linear increase in the number of SPs and
“Football” sequences in SIF format. The maximum allowablig improves the MSE performance. However, the MSE perfor-
displacement in both the horizontal and vertical directions isance does not improve further whénis beyond 1 in both
15 with a block size of6 x 16. The mean square error (MSE)the “Table Tennis” and “Football” sequences. This indicates
between the estimated frandg(, j) and the original frame that some SPs are wasted whgn> 1. Also, as« increases,
I,(4,7), is used to compare the performance of the propostitt MSE performance improves as shown in Fig. 7. When
algorithm with the related techniques in the literature. Thie beyond 0.3, the MSE performance does not improve signifi-

D. Simulation Results

MSE is defined as cantly. A similar result is obtained when the DS is used instead
of the BBGDS, as depicted in Figs. 9 and 10. Thus, by consid-

o Yo [ g) — L 5)P ering the tradeoff between the computational requirement and
MSE = 27 (8) the quality of most image sequences, we have set the propor-

tional constantsy and/, to 0.3 and 0.5, respectively for the rest
whereP x L is the size of the image. of the comparison. The conventional methods for performance
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a=05 190 1
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% a=03 2
§ g 170 4
2 60 =02 &
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) =0.1 150 - \ '
g 401 a=05
5 140 ; . e
2 0 1 2
20 4
(a) Table Tennis
240 -
0 +———rrr—r—————
0 1 5 2
3 20
(a) Table Tennis 5
o
w
180 - g 2207
=05 5
o
160 - _ g
a=04 T Hyg | '
140 - a=03 : '
% ..
] 200 T T " T T T T T T T : :
5 1201 . a=02 0 1 2
5 f
1-%
(2] 4
£ 10 (b) Football
2' a=01
§ 80 1 Fig. 9. MSE performance of the DS with the EAS, plotted as a function of
g « and 3. Each line represents the MSE performance for a fixednder the
5 60 - variation of 3. (a) Table Tennis and (b) Football.
2
40
FSA. This is because the probability of occurrence of the sit-
20 uation as shown in Fig. 3(a) is more often in fast moving se-
guences. In this situation, an inappropriate choice was made in
0 e the early steps of the-SHS. The unreliable stop in the search
0 ! I 2 for the conventional BBGDS and DS implies that these types of
algorithms are more easily trapped in a local minimum. How-
(b) Football ever, our new EAS can resolve the problem of the local min-

imum by placing the checking block closest to the global min-
Fig. 8. Number of search points required per frame of the BBGDS with trig]um whichis guided by the edge features. As showninFigs. 11
EAS, plotted as a function of and 3. Each line represents the search poinend 12, the new EAS can strengthen both the BBGDS and DS,
requirement for a fixedv under the variation of8. (a) Table Tennis and (b) \which are significantly better than that of theSHS, the con-
Football. ventional BBGDS and the DS, and their MSE performance are

very close to the FSA.
comparison are the full search algorithm (FSA), thstep hi- 2) Complexity Analysis and Discussiom the following,
erarchical search algorithm{SHS) [16], the block-based gra-the computational complexities of our proposed EAS are com-
dient descent search algorithm (BBGDS) [20], and the Diamompared with those of the conventional algorithms including the
search algorithm (DS) [21]. FSA, then-SHS, the BBGDS and the DS. In general, several

In the following subsection, we will analyze the MSE perforfactors need to be taken into account in comparing the cost as-

mance of the BBGDS and the DS with the help of our proposedciated with various algorithms. These factors include speed,
EAS, as compared to the FSA, theSHS, the BBGDS without chip area and power, and they can usually be traded with each
the EAS and the DS without the EAS. Figs. 11 and 12 show thather depending upon the architecture to be used, hence com-
there is a big prediction error in the-SHS, the conventional paring the costs associated with various algorithms is not an easy
BBGDS and the conventional DS as compared with that of tik@sk. Nevertheless, itis possible to choose simple ways to define
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80 1 of our proposed EAS, only the average number of search points
=05 per block for the entire sequence are reported. For the conven-
tional BBGDS and DS, the number of search points required
depends on whether the stop criterion is fulfilled. When our
a=03 proposed EAS is used to strengthen the search algorithms, less
search points are required for smooth region within the frame,

‘ =02 whereas more search points are needed in regions containing
many edges and motions, as they require more search points
40 2=0.1 using the edge block matching criterion.
Apart from calculating the matching criterion, the formation
of the final SPP is the major overhead of our proposed EAS. Its
computational complexity is now examined. The formation of

20 4 the final SSP consists of three parts: smoothing of the frame,
taking directional derivatives of the frame, and adjusting the

regular SPP. Step 3 in the EAS is not considered as overhead
since its major computation has been taken into account in the
required search points as previously mentioned. Smoothing

60 -

no. of search points per block

0 1 5 o 2 simply involves taking the average of the input with the
5 x 5 window, and fast calculation for smoothing an image
(2) Table Tennis is developed in [23]. By exploiting the maximal data reusage,

the computation for smoothing can be reduced drastically. The
input image is smoothed in thgdirection and the sum of
image pixels along-direction V (4, j) is calculated, which is

/ a=05 defined as

120 1 a=04 )

2=03 V@i, j)= Y 1(i,j+h) ©
100 4 h=-2

a=02 . . . . .

wherel(z, 7) is the input image at spatial locatidf j).

80 1 From Fig. 13, it is obvious that the difference betwé&n, ;)

2=0.1 andV(¢,j + 1) is only two pixels and can be expressed as
60 4

V0 j+1)=V(0i,j) =10, —2)+ 1,5 +3). (10

40 1 Suppose the image size # x L, to obtain the summation

of image pixelsV (4, j) for j = 0, requirest P additions. Other

V' (4, 7)s can be obtained by using (10), requirizg. — 5) addi-
tions. In the same way, if the above procedure is performed on
the:-direction withV (¢, j) as the input, the smoothed image is

140 -

no. of search points per block

20

° o A obtained. From the above discussion, the total number of addi-
b tions required peiN x NN block for the smoothing process of an
image is
(b) Football

A, = N2 x (11)

P[4 + 2(L — 5)] + L[4 + 2(P - 5)]
Fig. 10. Number of search points required per frame of the DS with the PL :
EAS, plotted as a function of and 3. Each line represents the search point
requirement for a fixedv under the variation off. (a) Table Tennis and (b)  To detect edges, eleven additions, two absolute conversions

Football. and two multiplications by two are required to compute the
Sn(4,4) as defined in (2). Note that multiplication by two can
complexity. The fixed-point implementation of the proposebe achieved by a simple shift, and the cost of this multiplication
EAS is now compared with that of the FSA, that of h&SHS, could therefore be neglected.
that of the BBGDS and that of the DS. The matching criterion To adjust the regular SPP, 49 times of the EMS calculation
as shown in (1) requires 2-D operations, i255(16 x 16 — 1)  and selection process, as shown in (5) and (6), respectively, are
additions 256(16 x 16) subtractions, an#56(16 x 16) absolute required in the case of the edge block. Since the calculation of
conversions per search point are needed. Therefore, for its 9& number of edge points within each block is performed by the
search points in the search range of the FSA, each block requivegary counter, it can be neglected as compared with the opera-
245 055 additions, 246 016 subtractions, and 246 016 absoltitmal effort of additions and subtractions. Thus, 49 subtractions
conversions. For its 33 search points of th&HS, each block and multiplications per block are required to adjust the regular
requires 8415 additions, 8448 subtractions, and 8448 absol@BP. Combining all of these, Table | shows a comparison of the
For the BBGDS, the DS and the search algorithms with the hadperational requirements of the BBGDS with the help of the
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Fig. 11. Performance using the EAS to strengthen the BBGDS. (a) “Table Tennis” and (b) “Football.”

EAS, the DS with the help of the EAS, the BBGDS, the DS, thalgorithm. Despite its successful applications, it suffers from
n-SHS and the FSA. The table shows that the algorithms wiseveral drawbacks. One of the problems is that blocks located
the proposed EAS require more computational effort as cown the boundaries of moving objects are not estimated accu-
pared with then-SHS, the BBGDS and the DS. It is due to theately. It causes poor motion-compensated prediction along the
fact that the EAS can avoid the serious local minimum problemoving edges to which the human visual system is very sen-
of then-SHS, the BBGDS and the DS by involving a reasonabktive. By considering the characteristics of block motions for
number of starting points, which have a high degree of similaritypical image sequences, we suggested an intelligent classifier
of edge points between the current block and the block in tf23] to classify blocks into three categories which perform dif-
search window. However, it has a speed-up of over 15 timesfasent modes of motion estimation.

compared with the FSA. « Type 1: Blocks in a still area or with a background of very
slow motion. Minimal motion search is required. These
I1l. NEW EDGE-ORIENTED BLOCK MOTION ESTIMATION blocks might have motion vectors which correspond to the
UsING EAS previous frame.
. . » Type 2: Blocks that contain the boundary between the
A. Description of the Technique moving objects and the still area. In some cases, the inten-

As mentioned in (1), the block matching algorithm is based  sity-based block motion estimation works well and obtains
on the matching of pixel intensities in 2-D blocks between two  the true motion vector of the moving object. However, this
frames, and it is known as an intensity-based block matching is not the case if a large portion of pixels in the block is
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Fig. 12. Performance using the EAS to strengthen the DS. (a) “Table Tennis” and (b) “Football.”
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Fig. 13. lllustratio

vy \4

n of the data reuse of image smoothing.

occupied by the still area. Thus the motion vector domi-
nated by the effect of the still area is unavoidably selected.

Consequently, the edge would be lost in the motion-com-
pensated frame. This situation supports the use of an edge
matching criterion to replace the intensity-based matching
criterion of block motion estimation, as defined in (12).
The idea of edge matching is to try to track the corre-
sponding edge in the previous frame, so that better moving
edges can be predicted in the compensated frame. In this
matching method, the true motion vectors of moving ob-
jects could be computed

N—-1N-1

EMAD(u,v) = Y Y [5:(6,4) = Se—1 (i +u, 5 +)]. (12)

1=0 5=0

Type 3: Blocks in a moving object on which the inten-
sity-based block motion compensation works well. It can
be seen that the motion in these blocks correlate highly
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TABLE I 520 1 H L L b Ll -
COMPARISON OFCOMPUTATIONAL COMPLEXITY AND AVERAGE MSE FOR i L
VARIOUS ALGORITHMS R —%— n-SHS F
= —x—— EOBMA with EAS =
420 — —o— EOBMA —
Additions/ Absolute Muitiplications Average MSE 7 —a—— FSA I
Subtractions | Conversions ] [
Table Tennis - S
FSA 491,071 246,016 — 146.74 g 3207 N
n-SHS 16,863 8,448 — 237.66 . ] L
BBGDS 7,016 3514 — 196.72 3 ] [
BBGDS + EAS 21,497 9,354 19 158.82 2 5504 -
DS 8,190 4,103 — 178.86 b "
DS + EAS 21,642 0,436 19 160.62 i L
Football R L
FSA 491,071 246,016 — 190.70 1207 N
n-SHS 16,863 8,448 — 239.6 B! F
BBGDS 10,629 5325 — 256.57 ] N
BBGDS + EAS 34329 15,782 19 201.81 20 . S ; S
DS 11,227 5,624 — 245.02 ¢} 10 20 20 40 50 60 70 80
DS + EAS 31,800 14,522 19 209.87 frame no.
(a) Table Tennis
L )] P I SRS T N SN T SRS (ST SN SN ST ST NPT SN T S A SN R S SR
5 L 1 | 1 L 420
2.0x10 L 1 —%— n-SHS 3
1 L 9 —— EOBMA with EAS r
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2 | L
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£ i | 5
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frome no. 0 10 20 30 40 50 60 70 80
frame no.
Fig. 14. Number of search points required per frame for different types (b) Football

blocks in the EOBMA.

Fig. 15. MSE produced by different algorithms for video sequences (a) “Table
a’_ennis" and (b) “Football.”

with the surrounding edge blocks, provided that the m
tion vectors in the edge blocks truly represent the motion
objects. Thus, the motion vectors of the edge blocks (type
2) are significant enough to develop an efficient motion es-
timation of blocks which are classified as type 3. If there

TABLE 1l

VARIOUS ALGORITHMS

COMPARISON OFCOMPUTATIONAL COMPLEXITY AND AVERAGE MSE FOR

are adjacent blocks for which the motion vectors have al- —[ Aggiti:zns/ CAbsoh{‘e Multiplications | Average MSE
su actions Onversions
ready been computed, the current block can make use ¢ Table Tonmie
these motion vectors as the initial centers and employ th: F:gs 4;1;6731 2264%6 — Zgg;
intensity-based block matching with a smaller displace- EOBMA 360,410 98993 — 15257
ment to compute its motion vector. But if no adjacent EOBMA+EAS [ 64984 31,139 19 167.24
H : . Football
block hf_;\s its motion vector computed, the computation ol x BT 546015 — 570
the motion vector of this block will be postponed until the 0-SHS 16,863 8,448 — 239.6
i i i H EOBMA 351,947 174,912 — 210.00
motion vectors of the required adjacent blocks are avail- =< 755850 5653 3 S oss

able. The advantage of this motion estimation technique

is that unnecessary computations are avoided so that the

motion search can be conducted efficiently. FSA with a large search window is used to ensure its accuracy.

The experimental results in [23] show that the edge-orrig. 14 shows that 95% of the total search points required of

ented block matching algorithm (EOMBA) provides a bettehe whole motion estimation process are performed for type
motion-compensated prediction along the moving edges 2rblocks. In order to increase the flexibility and practicability
comparison with the traditional intensity-based block motioof the EOBMA, the computational burden of the motion
estimation methods. It is visually important to human percepstimation of type 2 blocks must be reduced.
tion. As mentioned before, the accuracy of the motion vectorsSince the ideas behind both the EOBMA and EAS have been
of a type 2 block is critical in the EOBMA. Consequently, theleveloped according to the image edges, the proposed EAS is
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Fig. 16. Motion-compensated frame of the “Table Tennis” sequence. (a) Original frame, (b) FSA, (c) BBGDS with the proposed/=8863dje) EOBMA,
and (f) EOBMA with the proposed EAS.

a possible solution when combined with the EOBMA. In th&Football” sequences. Also, Table Il shows the average MSE
following simulation results and analysis, instead of the FSAf various algorithms for both image sequences. As it is seen,
our EAS is used in the motion estimation of type 2 blocks in theur proposed EOBMA with and without the help of the EAS,

EOBMA. Some encouraging results will be shown. compares favorably with the traditional intensity-based FSA in
terms MSE performance.
B. Simulation Results Although the MSE measure has a good physical and theoret-

In this section, we are going to give experimental resultgal basis, it could correlate poorly with the subjectively judged
on the performance of the proposed EAS when applied to tdlistortion of an image. This is mainly due to the fact that the
EOBMA from the viewpoint of the computational complexityhuman visual system does not process images in a point-by-
as well as the accuracy of the estimated motions. Again, tReint fashion, but extracts certain spatial, temporal, and chro-
“Football” and the “Table Tennis” image sequences withatic features. Thus, the MSE measure cannot reflect image
the size in SIF format have been used as test sequencescfi@racteristics such as edge fidelity, image contrast, and other
comparison purposes. These sequences have various magigrilar characteristics [27], [28], and hence subjective quality is
characteristics such as camera panning, zooming, and motd$p a very important measure. Edge-oriented algorithms aim to
of human body. obtain more accurate motion prediction along the moving edges,

Fig. 15 shows the results using the MSE for the motion-corte which the human visual system is very sensitive. Fig. 16
pensated frame by using the EOBMA, the EOBMA with thehows the motion-compensated frames of the “Table Tennis”
help of the EAS, the:-SHS and the FSA. It can be seen fronsequence produced by the EOBMA, the EOBMA with the EAS,
this figure that both edge-oriented block motion estimation alhe BBGDS with the EAS, the FSA and theSHS. Fig. 16(b),
gorithms outperform the-SHS for the “Table Tennis” and the (c) and (d) show the incorrect prediction of the racket along
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Fig. 17. Number of search points required per frame for type 2 block in the EOBMA with and without EAS.

the edge produced by the traditional FSA, the BBGDS with tHeis even better than the FSA and the BBGDS with the EAS in
EAS andn-SHS, while the edge of the racket can be preservéerms of subjective view, though the objective measure appears
by using the edge-oriented block motion estimation algorithnis, be a little inferior. Since our algorithm reduces the number of
the EOBMA with and without the help of the EAS, as shown iedge mismatches in the prediction frame, it could also contain
Fig. 16(e) and (f) respectively. This visual result indicates thiss high frequency information in the prediction error frame, so
the proposed EAS technique when applied to the EOBMA fkat the number of bits required to code the DCT coefficients is
successful and is able to preserve the advantage of the EOBMéduced. Besides, it can remove the most visually disturbing ar-
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tifacts, therefore the frame produced by it seems virtually errorHowever, because the EAS is not highly regular, hardware
free. In low-bit-rate applications as to which there is insuffimplementation is difficult. On the other hand, as general-pur-
cient bandwidth to reconstruct the prediction error adequatepgse processors are becoming more and more powerful, soft-
the artifact produced by the motion estimation can remain in thre encoding will likely be possible, and it is the trend of the
final decoded frame of the traditional method. However, our nefiwture development of video processing. As a concluding re-
edge-oriented block motion estimation algorithms can achievrk, we believe that the results of our work will certainly be
a good subjective quality, as shown in Fig. 16. Table I andgseful for the future development of software codecs.

Fig. 17 show that the EAS proposed in this paper can signifi-
cantly reduce the computational complexity of type 2 blocks of
the EOBMA and thus the overall complexity is dramatically re-
duced. This implies that the new EAS renders more useful ourm
previously proposed EOBMA.

[2]

(3]
(4]

IV. CONCLUSIONS

In this paper, a fast search algorithm for block motion
estimation has been proposed. The proposed algorithm generaII%
includes a matching process to track edge primitives from frame
to frame in a sequence of images, hence we can consider it a§]
an edge-assisted search algorithm, EAS. Edge features have
been used for the adjustment of the start point patterns (SPP) qf
search windows such that a limited number of starting points
can still provide a high enough chance of catching the global 8
minimum. First, this method estimates an initial probability
of being the global minimum of each possible matching pair [°]
between the current block and the block at the SPP. The SPP
is then updated based on the EMS which is introduced tqio]
consider the degree of similarity of edge points between two
blocks. We have demonstrated that the correlation between the
EMS and the true motion vector is very high and it can ensurgi1]
that the motion search algorithm can be guided by the EMS.
We have tested the proposed EAS using a number of imag&]
sequences, including the “Table Tennis” and the “Football,’
and found that it can reduce the heavy computational burden
of the full search algorithm without significantly increasing
the prediction error of the motion-compensated frame. The
EAS is significantly better than those of the widely known [14]
search algorithms such as theSHS [16], the BBGDS [20]
and the DS [21], and shows great improvement in the accuraqys)
of the block motion estimation.

The proposed EAS can also work in conjunction with the[16
EOBMA [23]. Since both of the algorithms are developed
based on image features, they can take advantages of eicp
other. For example, the EAS can reduce the computation t ]
burden of the EOBMA. Thus, itis able to enhance the flexibility
and practicability of the EOBMA. Experimental results show[18]
that the EOBMA with the help of the EAS has comparable
mean square error performance as compared to the traditionab)
intensity-based block matching algorithm using the exhaustive
full search, while it is a significant improvement over thetep [20]
hierarchical search algorithm. However, the poor prediction
along the moving edges, which is very annoying around movin%ﬂ]
objects, is substantially reduced by our proposed algorithm. |
addition, since edges are more closely tied to physical features
in a scene, when compared to individual pixel intensities, ac-
curate moving edges are likely to be useful in other processingz]
parts of a video compression system.
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