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Wavelet-Based Texture Retrieval Using Generalized
Gaussian Density and Kullback—Leibler Distance
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Abstract—We present a statistical view of the texture retrieval
problem by combining the two related tasks, namely feature ]
extraction (FE) and similarity measurement (SM), into a joint ]
modeling and classification scheme. We show that using a con-
sistent estimator of texture model parameters for the FE step D
followed by computing the Kullback-Leibler distance (KLD) :

between estimated models for the SM step is asymptotically ]

optimal in term of retrieval error probability. The statistical Similarity Measurement
scheme leads to a new wavelet-based texture retrieval method that  query Featare

is based on the accurate modeling of the marginal distribution of g o = 110

wavelet coefficients using generalized Gaussian density (GGD)
and on the existence a closed form for the KLD between GGDs.
The proposed method provides greater accuracy and flexibility Fig. 1. Image retrieval system architecture.
in capturing texture information, while its simplified form has a

close resemblance with the existing methods which uses energy . . .
distribution in the frequency domain to identify textures. Ex- extraction(FE), where a set of features, called image signatures,

perimental results on a database of 640 texture images indicate is generated to accurately represent the content of each image
that the new method significantly improves retrieval rates, e.g., in the database. A signature is much smaller in size than the
from 65% to 77%, compared with traditional approaches, while  oyiginal image, typically on the order of hundreds of elements
it retains comparable levels of computational complexity. (rather than millions). The second tasksisnilarity measure-
Index Tgrms_—come”rg)t'bised_blima%‘? retrieval, _Ige_”era"ze‘j ment(SM), where a distance between the query image and each
Gaussian density, Kullback-Leibler distance, similarity mea- .0 in the database using their signatures is computed so that
surement, statistical modeling, texture characterization, texture M - . .
retrieval, wavelets. the top/V' “closest” images can be retrieved. Typically, the fea-
tures used in CBIR systems are low-level image features such
as color, texture, shape and layout. In this work, we focus on the
. INTRODUCTION use of texture information for image retrieval.
A. Motivation Some of the most popular texture extraction methods for re-
. : . . : rieval are based on filtering or wavelet-like approaches [2]-[8].
;2';%&:;?3%;"ﬁ:g:;;?éi ?Seciml:%mgf fc\g\:lr(rj]e;ys L\’;;%ssentially, these methods measure energy (possibly weighted)
. : P 9 ag the output of filter banks as extracted features for texture dis-
as on-line. To improve human access, however, there mustbe .” ~ . : . )
. . cngnnatlon. The basic assumption of these approaches is that
an effective and precise method for users to search, browse, gn S S o
) . . . . € energy distribution in the frequency domain identifies a tex-
interact with these collections and to do so in a timely manner. : o .
ure. Besides providing acceptable retrieval performance from

As a result, content-based image retrieval (CBIR) from “”a[%{r e texture databases, those approaches are partly supported
notated image databases has been a fast growing research arg ' bp partly supp

recently: see [1] for a recent extensive review on the subjec:t.by p%ysmloglcal studies of the visual cortgx [9], [10]. Further?
i : i . more, as wavelets are a core technology in the next generation
We consider a simple architecture of a typical CBIR syste

(Fig. 1), where there are two major tasks. The first orfeasure oF still image coding format, JPEG-2000 [11], the choice of
e ' wavelet features enables the implementation of retrieval systems

that can work directly in the compressed domain. Other pos-

ManuSCI'ipt received December 30, 1999, revised November 1, 2001. Tgﬁ)le transforms are Wavelet packetsy Wavelet frames and Gabor
work was supported by a Ph.D. Fellowship from the Department of Communi-
cation Systems, EPFL, and the Swiss National Science Foundation under Gygﬁt\{ele_t transforms._ . .
21-52439.97. The associate editor coordinating the review of this manuscriptFinding good similarity measures between images based on

and approving it for publication was Prof. Tsuhan Chen. some feature set is a challenging task. On the one hand, the
M. N. Do was with the Audio—Visual Communications Laboratory, Depart-

ment of Communication Systems, Swiss Federal Institute of Technology, Ldtimate goal IS.tO define similarity funptlons that r_na_tCh_ with
sanne, Switzerland. He is now with the Department of Electrical and Computddman perception, but how humans judge the similarity be-

Engineering and Beckman Institute, University of lllinois, Urbana, IL 6180%yeen images isa tOpiC of ongoing research Perceptual studies
(e-mail: minhdo@uiuc.edu). . o . . ) . .
M. Vetterli is with the Audio—Visual Communications Laboratory, DepartIlz], [13] identified texture dimensions by conducting experi-

ment of Communication Systems, Swiss Federal Institute of Technology, Laments that asked observers to group textures according to per-
sanne, Switzerland, and also with the Department of Electrical Engineeri?@ived similarity. The detected perceptual criteria and rules for
il

N best matched images

and Computer Science, University of California, Berkeley, CA 94720 (e-mail;, . . . . L. .
martin.vetterli@epfl.ch). similarity judgment from this type of subjective experiments can
Publisher Item Identifier S 1057-7149(02)00807-2. be used in building image retrieval system [14]. On the other

1057-7149/02$17.00 © 2002 IEEE



DO AND VETTERLI: WAVELET-BASED TEXTURE RETRIEVAL 147

hand, many current retrieval systems take a simple approachibysection Ill, we apply this to wavelet-based texture retrieval
using typically norm-based distances (e.g., Euclidean distaned)ere the statistical approach provides a justified way of
on the extracted feature set as a similarity function [1]. The madiefining new similarity function which has certain optimality
premise behind these CBIR systems is that given a “good set'bperties and can be simplified to explain other common
features extracted from the images in the database (the onestisatl metrics. In Section IV, experimental results on a large
significantly capture the content of images) then for two imagésxture image database indicate the significant improvement
to be “similar” their extracted features have to be “close” to eadh retrieval rate using the new approach. Section V concludes
other. Therefore, any reasonable similarity functions defined aith some discussions.

the features space should perform well. Sometimes, weighting

factors are necessary to normalize extracted features over the [I. CONTENT-BASED IMAGE RETRIEVAL IN A

entire database to comparable ranges so that they have approx- STATISTICAL FRAMEWORK

imately the same influence on the overall distance.

Note that this “global” normalization processiéferentwith
the one often used in classification problems where the normal-The problem of searching for the tdp images similar to a
ized factors are computed using a training set of feature vectgigen query image from a database of tatAimages (v < M)
from each class. Furthermore, the commonly used inverse vaan be formulated as a multiple hypotheses probiidine query
ance weighted Euclidean distance as in CBIR [15] is questiomageZ, is represented by its data set= (v, x2, ..., 71),
able in the case of a feature component that has small globéiich is typically obtained after a pre-processing stage. Each
variance, thus leading to a large weight in the overall distangandidate image in the databage i = 1,2, ..., M is as-

By contrast, it can be argued that a small variation componesigned with a hypothesi¥;. The goal is to select among tié
should have little discrimination power and should thus carrypossible hypotheses thé best ones (with a ranking order) that
small weight in the overall distance. describe the data from the query image.

To select theV top matches from thosg/ hypotheses we
B. Our Approach and Related Works can use the multiple hypotheses testing argument recursively.

In this work we consider jointly the problems of FE and SM hat is, we first choose the best one amongth@ossible hy-
in texture retrieval using a statistical approach. Our point is th@0theses?, Hs, ..., H }, and thenwe choose the next best
given only a low-level representation, statistical modeling pr&n€ among the remaifil/ — 1) hypotheses, and keep doing so
vides a natural mean to formulate the retrieval problem, as is tyfpf &V times. Under the common assumption that all prior proba-
ically done in pattern recognition. Considering the two relatedlities of the hypotheses are equal, it can be shown [18] that, for
retrieval tasks FE and SM as estimation and detection proble/@8ch recursive step the optimum rule (with the minimum prob-
respectively, provides us with a justified way of defining sim@Pility of error criterion) is to choose the hypothesis with the
ilarity functions on the feature space. The implication of thigighest likelihood among the possible ones. Thus for CBIR, it
approach is twofold. First, it provides a confidence on the ofst OPtimal to selectV hypotheses with highest likelihood, i.e.
timality of the defined similarity function under some explicit/tk1> Mz -+ -, Hiy Where
assumptions. Secondly, as we will see, this approach provides
a common ground for many existing similarity functions by(#Hx,) 2 p(#[Hr,) 2 -+ 2 p(a[Hry) 2 p([H;)
simply modifying the underlying assumptions. t#£ki(j=1,2,...,N). (1)

Statistical modeling has been used in CBIR systems before.
Perhaps the most well-known examples are the use of hisThis is referred to as thmaximum likelihoogML) selection
tograms to capture the distribution of image features such rage. The problem with (1) is that it requirdd computational
color [16]. Wouweret al. [7] employed generalized Gaussiarsteps with a typically large data set This turns out to be im-
density functions to represent texture images in the wavefgtctical in CBIR applications since this operation has to be
domain. The model parameters are estimated using a methodafeon-linein the interactive mode. Therefore, we need to find
moment matching, and the similarity function is again defineah approximation with much less computational cost.
as weighted Euclidean distances on extracted model paramh the parametricapproach, the conditional probability den-
eters. Independently of our work, Vasconcelos and Lippmaity p( X |H,;) is modeled by a member of a family of probability
[17] recently took a similar approach where they introduceddensity functions (PDFs), denoted byX; ;) whered; is a set
probabilistic formulation of the CBIR problem as a commonf model parameters. With this setting, the extracted features for
ground for several currently used similarity functions. the imageZ; is the estimated model paramefigrwhich is com-

As an important case of CBIR, we demonstrate in this wogsuted in the FE step. We denote the space of model parameters
the application of the statistical framework in the wavelet-based ©.
texture retrieval problem. The statistical approach fits nicely Consider the query data = (z1, z2, ..., 1) as an inde-
into this case, since a texture image is often regarded as a r@alkdent and identically distributed (i.i.d.) sequence from the
ization of an underlying stochastic process. In the end, we witlodelp(X; 8,) of the query image. Then for larde using the
briefly discuss how such approach can be applied to other fea-

tures and integrated into more general image retrieval systems.
9 9 9 y quwever the term “hypotheses” is used here in a loose sense. Since in CBIR

The outline of this paper '_S’ as follows. In Fh‘? next SeCt'Orépplications, the search is not for teeact matctbut rather formost similar
we set up the CBIR problem in a general statistical frameworaes, hence we can allow for more than one hypothesis to be valid.

A. General Setting
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weak law of large number, the ML selection rule (1) is equivd<LDs from each set. Finally, the convexity property of KLD
lent to maximizing permits it to be used in an efficient search scheme using multi-
scale representations [21].

L
1 1
L log p(w; 0;) = L Jz_:l log p(z;; 6:) B. Relation to Histogram Methods
Loco, p llog p(X; 6;)] _ Histogramg have been used §ince the early days of image re-
! trieval, especially for representing color features [16], as well
= / p(x; 04)logp(x; 6;) du. as for texture or local geometric properties [1]. In this section,

we demonstrate that the histogram method can be interpreted
This can be seen as equivalent to minimizing #ell- through our statistical approach by using an appropriate model
back-Leibler distancgKLD) or the relative entropy[19] setup.

between the two PDFs(x; 8,) andp(x; 6;) Let us partition the range of image data infodisjoint in-
) tervals of equal length{Sy, S, ..., Sr}. Now consider the
. o)) — . p(; 0y) family of piecewi densities, defined
D(p(X; 0)|lp(X; 6,)) = | p(x; 6,)log o) dz. (2) family of piecewise constant densities, defined as
pP\x; 0;

Under the same asymptotic conditiah is large), if the FE pla; ) =p;  forees; i=1...R (5

step uses eonsistenestimator, which ensures the estimated pa- !
A . Here the set of model parameterséis:= (p1, ..., Pr),
rameterf converges to the true parametkrthen the distance heren: > 0 (i — 1 R) andS°F 1
(2) can be computed using tlestimatednodel parameter, Wherep; = (i R ) iz Pi ) :
A . . Given a sequence of i.i.d. data samples from an image,
andé,. For such consistent estimator, we could employ the M ; . . - i
. . - . x1, - .., 2L ), Using the ML estimator in our statistical retrieval
estimator [20], which means that for the query image, it com- : -
putes the FE step amounts to computing the feature vetttehere

~ L
0, = argmax logp(x; ). 3) A o
7 0cO (= 6) 0 = arg max ; log p(i; 6)
In summary, by combining FE and SM into a joint modeling R
and classification scheme, the optimum ML selection rule can = arg max Z s log pr.. (6)
be asymptoticallyrealized (as the data sets for each image be- "
come large) by the following.

« Feature ExtractionGiven the data from each image, ex- Here, we denoten; the number of data samples in
tracting features as estimated model parameters usin§a; - --» #z) that belong to the regiofi;.. Solving (6) using
consistent estimator such as the ML estimator. the Lagrange multiplier gives

 Similarity Measuremenflo select the togV matches to . _
a query, the images in the database are ranked based on 0:=p with pp=m/L, k=1.., R (7)

the KLDs between the estimated model for the query andSo the extracted feature vecpois in fact the normalized his-

estimated models for each image. t%gram of the image data When searching for similar images
The advantage of this scheme is that the SM step can be co len the query data(® and its featurep(®, the following (dis-

. ) X I

put_ed entirely on the esumqted model paranﬁeFers, which .agr%te) KLD between the query image and each candidate image

typically small size, so that it can meet the timing constralr}{ can be used to rank the imades in the database

of the CBIR application. The method is generic as it allows thé 9

use of any feature data and statistical models for indexed im-

ages. Such image models can incorporate the knowledge fromp (p@)

perceptual studies to closely match human judgment. =
We point out that the Kullback-Leibler distance has been R R ‘

used in comparing images (e.g., in [21], [22]) but, to our knowl- = Z p,(f) 1ogp$> - Z p,(f) logp,(:’). (8)

edge, its use has not yet been sufficiently justified in the context k=1 k=1

of the image retrieval problem by jointly considering the two

related tasks FE and SM. loa-likelihood
To combine the KLDs from multiple data sets, such as from 9 <EINO0aAS

peq PE=L P20 g g

D) N~ @y PR

7 _ q . ]

p ) - Z pk 103 (z)
k=1 Py

Whereas the ML selection rule (1) is based on the following

different channels or feature sets, we can usetiaén rule[19] L
which states that the KLD between two joint PDE, Y) and log p (z(q) Hi) =3 log [p (%@; p(i))}
q(X,Y)is i=1

D(p(X,Y)|[¢(X,Y))
= D(p(X)[lg(X)) + DY [X)l¢(Y]X)).  (4)

ng]) logpgj)

I
M=

o~
Il
—

|
h

R
Especially, when data is considered to be independent be- (@) pgf) 1ng§j>. 9)
tween combined sets then the joint KLD is simply the sum of 1
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Compression

Comparing (8) with (9) indicates that in this case, the rankin "~ system
based on the KLD ixactly(rather than asymptotically) the

Original

same with the optimum ML selection rule. Image

A drawback of the histogram method is that it requires
large number of extracted features, typical several hundreds Retrieva
togram bins, to capture accurately image information. Thus @@
leads to impractical complexity in both storage of image in | Tature
dices and retrieval timing. In the next section, we employ th Extraction
wavelet transform and the generalized Gaussian density to e; | Waveeet gomase
ciently solve the texture retrieval problem within our statistice p—
framework. N e
Ill. WAVELET COEFFICIENTSMODELED USING GENERALIZED

GAUSSIAN DENSITY

Compressed

A. Wavelet Representation Image

Statistical modeling is much easier if some preprocessing s
carried out on the input images. Typical preprocessing is dogg. 2. Block diagram of the wavelet-based texture retrieval system in
via transformation of image pixel values into a suitable spacenjunction with a compression system. Feature extraction tasks could be done
where simple models with a small number of parameters Ccﬂcrpcurrently and efficiently either when an image is compressed and inserted

. 0 the database or when an input compressed image is decoded.
describe the data. Wavelets have recently emerged as an effec-

tive tool to analyze texture information as they provide a nat- ) b hi he hi £ il
ural partition of the image spectrum into multiscale and orientd@¥tUre Images by matching the histograms of filter responses

subbands via efficient transforms [2][8]. Furthermore, sin [om a wavelet-liked transform. More accurate texture models

wavelets are used in major future image compression stand&a8 Pe obtained viafasionof marginal distributions using min-

[11] and are also shown to be prominent in searching for ifili8X €ntropy principles [25] or by taking into account the joint

ages based on color and shape [23], [24], a wavelet-based Slatistics of wavelet coefficients across subbands [28]. However,

ture retrieval system can be used effectively in conjunction wiffpnSidering complexity as a major constraint in the image re-

a compression system and retrieval systems using other img val application, in this work we simply characterize texture

features (see Fig. 2). Images via marginal distributions of their wavelet subband coef-

Using the assumption that the energy distribution in frdicients. Still, this representation of texture is more precise than
quency domain identifies texture, traditional approach(g%e ones that use wavelet subband energies alone. But more im-

computed energies of wavelet subband as texture featuRdytantly, the statistical modeling leads to a more justifiable way
Commonly, L' and L2 norms are used as measttedlore of defining similarity functions between images.

specifically, given the wavelet coefficients 1, =; 2, - .., #; L

at theith subband, typically the following two values are use
as features:

. Generalized Gaussian Density Modeling of Wavelet
oefficients

Experiments show that a good PDF approximation for the

1 & marginal density of coefficients at a particular subband pro-
1y _ 10 . .
fi= i3 Z i, 51, (10)  duced by various type of wavelet transforms may be achieved by
=t adaptively varying two parameters of theneralized Gaussian
and L2 density (GGD) [29], [30], [7], [31], which is defined as
L
1 3 ,
A= 23 2 . (11) . _ P ey

H : H O —tyz—1
On the other hand, statistical approaches treat texture af4ferel’(-) isthe Gammafunction, i.d(z) = [;~ e™*#* " dt,

ysis as a probability inference problem (e.g., see [25]). A nat-> 0- . )
ural extension of the energy method is to model a texture hy€réa models the width of the PDF peak (standard devia-

the marginal densities of wavelet subband coefficients. Thisti@n). While 5 is inversely proportional to the decreasing rate
justified by recent psychological research on human texture pQF-the peak. Sometimes, is referred to as thecaleparameter

ception which suggests that two homogeneous textures are o€ £ is called theshapeparameter. The GGD model contains
difficult to discriminate if they produce similar marginal distri-t€ Gaussian and Laplacian PDFs as special cases, /#isitg

butions of responses from a bank of filters [26]. In fact, Heeg8Pd0 = 1, respectively. , _ _
Within a CBIR statistical framework, the desired estimator in

and Bergen [27] successfully synthesized many natural looking . : Lt X
our case is the maximum-likelihood (ML) estimator. Further-

. _ , _ _ more, in [32] evaluation of accuracy of estimates for both large

2This is an abuse of terminology since strictly spealirfignorm is not an en- d I les for GGD del | . istical

ergy function. Sometimes it is chosen due to its simplicity. Results from sevefild Small samples for models among classic statistica

studies indicate no general conclusion in favor of a particular measure. ~ methods shows that the ML estimator is significantly superior
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for heavy-tailed distribution (which is often the case for subbar™” ' ' ' ' '
coefficients). We now describe an ML estimator for GGD.

Let us define the likelihood function of the samplesso
z = (z1, ..., zr) having independent component as

L
=1

150 -
where« andg are parameters to be estimated. It was shown

[32] that in this case the following likelihood equations have
unique root in probability, which is indeed the maximum-like-1oo-
lihood estimator

OL(x; o, 3) L & Bl Pa? sor i
Jo « + Zz::l « (13) e E

OL(x; o, ) L _L¥(1/pB) S P Gt
a3 B 32

Fig. 3. Wavelet subband coefficient histogram fitted with a generalized
L |a:| B |a:| Gaussian density. Example for the Fabric15 subimage of sizex1P33 at the
! log “1=0 (19

- Z highest horizontal frequency scale. The estimated parameters are0.46
i1 andjg = 1.52.

where ¥(.) is the digamma function [33], i.eW(z) =

I'(2)/T(z). we obtain the following closed form for the Kullback—Leibler
Fix 2 > 0 then (13) has a unique, real, and positive solutigfiStance (KLD) between two GGDs as
as
Bra]’(1/73
L s Dot s Bl e ) = o ( Gz 2 )
. (B 3 15 ) P20 I'(1/B1)
a=\p ) (15) (o) 1
- (8%} ]._‘(1//31) /31 )
Substitute this into (14), the shape paramgtirthe solution
of the followingtranscendentagquation Therefore, the similarity measurement between two wavelet
subbands can be computed very effectively using the model
L 5 /} L 4 parameters. Furthermore, applying (4) with the reasonable as-
\If(l//?) lev‘,l' log|z;| log 7 Z | | sumption that wavelet coefficients in different subbands are in-
i=1 =1 _

_ — (0 dependent, the overall similarity distance between two images is
B Z |z |7 B precisely the sum of KLDs given in (17) between corresponding
(16) pairs of subbands. That is, if we denaté’) and /Ji(]) as the
extracted texture features from the wavelet subbamd the
which can be solved numerically. We propose an effective deiageZ; then the overall distance between two imagesand
termination of3 using the Newton—Raphson iterative procedut®, (whereZ; is the query image) is the sum of all the distances
[20] with the initial guess from the moment method describeatross all wavelet subbands
in [30]. This algorithm is detailed in the Appendix. Experiments
show that typically only around three iteration steps are require
to obtain solutions with an accuracy of the order of 40
Fig. 3 shows a typical example of a histogram of wavelet sub-

band coefficients together with a plot of the fitted GGD usingnere B is the number of analyzed subbands. Thus the KLD
the ML estimator. The fits are generally quite good. As a resutheory provides us with a justified way of combining distances
with only two parameters for the GGD, we can accurately capyo an overall similarity measurement, and no normalization on
ture the marginal distribution of wavelet coefficients in a sulpe extracted features is needed.
band that otherwise would require hundreds of parameters byrne distance function defined in (17) is a function of three
using histogram. This significantly reduces the storage of thgiaples: the ratio of two scales /o, and two shape parame-
image features, as well as the computational complexity in sifgys 3, and3,. Fig. 4 plots the distance function when the two
ilarity measurement. distributions have the same shape parameter and when they have
the same scale parameter. The chosen ranges for thedtio
as[0.25, 4] comes from the fact that we are only interested in
Given the GGD model, the PDF of wavelet coefficients ithe two relatively close distributions when searching for most
each subband can be completely defined via two parametersimilar images. The selected range foas[0.7, 2.0] is based
and 3. Substitute (12) into (2) and after some manipulatioren the experimental results (refer to Section IV-C).

1+

D@ 1) =3 Dl o, B p(s o, 47)) (18)

i=L

C. Similarity Measurement Between GGDs
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On the other hand, consider the optimum ML selection rule.
At a particular wavelet subband, denete= {z1, 2, ..., 1}
the wavelet coefficients of the query image andx; o), k =
1,2, ..., M as the estimated marginal distributions for each
candidate images in the database. The ranking procedure should
be based on the following normalized log-likelihood values,
which can be simplified as

D(p(-s 0ty B) I1 PL-: 010 BY)

L
1
l(z) = i3 Z log ps(s; au)

i=1

L

D el

=log —log2 — log oy, — logT'(1/8) — =2 ——

Loc’f
az\" 1
og vy, <ak> 3 +Cg
wherea, is the extracted feature from the query data given in
8 , (20) andCy is a constant only dependent gn
7 ' On the other hand, the KLDs between the query model pa-
=6 rameter and a candidate image model parameter is
g s
= . di(z) = D(p(-|Gw)|pa( o)
s ° | (G 71 lood L
= = log oy, — = —logdagy — —.
o So we can see that, with a given query datan searching for
» the best matches, maximizing the log-likelihdadz) for & =
= 1, 2, ..., M isexactlythe same as minimizing the KLD& ()
B 1 ““5:‘5:’:’:' ; 2 fork =1, 2, ..., M. Thus, in this simplified case, the retrieval
08 08 1 process using the KLDs provides the same result as the optimum
(b) ML selection rule that uses direct data from the query image.
Fig.4. Kullback-Leibler distance between two generalized Gaussian densifiééte that in the general case, this is only true asymptotically
given in (17). when the size of datd — oo. Here, however, it is truéor
everyL.

D. Special Case of GGD

To gain more insight on the similarity function (17), let
consider the special case of a GGD where the shape parametéurthermore, consider the case when the paraniitefixed
3 is fixed. That means we model the wavelet coefficients usirgd equal 1. That is we are modeling the wavelet coefficients
the following single parameter distribution family using the Laplacian distribution. The extracted feature from
wavelet coefficients of a particular subband is

ug' Relation to Energy-Based Methods in the Laplacian Case

B Ul
; R, )= el/e)”t
fpats @ e Resptas )= gl (19) .
> il
This simplified model is often used in practical image pro- G = i=1 22)
cessing problems like denoising [31]. From the sample data se- * L
quencer = {x1, z2, ..., x1}, the extracted feature is just the . ) 1 .
estimated parameter as given in (15) as'l;:]n? 1|8)preC|ser th&-norm feature of wavelet coefficients
g L 1/8 From (21), the KLD between two Laplacian distribution is
(= <£ 3 |aji|'8> (20)
L — % o1
1= D(p1(.; a1)|lp1(; a2)) = log <—> + —=—1.
231 2

The KLD between two PDFs from the family given in (19) is
This is a convex function ofiz/«y and is minimum when
042) <a1>'8 1 1 21) az/oy = 1. Therefore in term of selecting the most similar

Dips(s an)llps(s az)) = 10g<a_1 images, we are only interested in the situation when the ratio

BB

2
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we [y IS in the vicinity of 1. Using first-order Taylor approxi- subimage was individually normalized to zero mean and unit
mation oflog z around 1logx ~ x — 1 whenz = 1, we have variance before the processing.

D(pr(; a)|lpa(s; aw)) = 2 Mm A. Testing the Texture Discrimination Power of the GGD
(%)) Model
2
— M The accuracy of GGDs in modeling wavelet coefficients from
2 texture images has been shown in [7] by fitting the estimated

Substitute this into (18), the overall similarity measuremerg'ti't:ig:rv\\/; \;V)'(thlé?g :ﬁgﬁ;?'j\}gggn:egitnhe t%zeg'ggniégnefg';
between two image®; andZ, becomes P y 9

terms of comparing synthesized textures visually. This allow us
to visualizethe capability of the GGD models not only in cap-

B (agi) _ agj))Q turing texture information but also in discriminating textures.
D(Zy, Ip) = Z — o (23) In this experiment, we employed the conventional pyramid
j=1 oy’ ay’ wavelet decomposition with three levels using the Daubechies’

_ _ _ _ maximally flat orthogonal filters of length 8, filters) [35].
This distance is essentially the same as the popufafom a single image in the database (of size ¥2828), two
weighted Euclidean distance between extracted feaw8s GGD parameters were estimated from each of nine wavelet sub-

where “global” normalization factorgs) = var{agj): bands (except for the lowest band or scale coefficients which
i = 1,2,..., M} are replaced by “local” normalization corresponds to the approximation of the image) using the ML
factorsw!”), = a§’ ol estimator described in the previous section. Our hypothesis is

Therefore, we demonstrated that our statistical method withat those 18 (2« 9) model parameters capture important tex-

a GGD model on the wavelet coefficients can be particuldidre-specific features and have discrimination power among tex-
ized to closely resemble and thus provide a justification for thgre classes.

weighted Euclidean distance betwdehinorms of wavelet sub-  To show that, wavelet coefficients at each wavelet subband
bands. This is an interesting fact since the two approaches are generated as i.i.d. sample sequence from the GGD with pa-
based on totally different assumptions. The former relies on gameters estimated from the true coefficients. Using those gen-
underlying stochastic process of the texture image while tkeeated wavelet coefficients and the scale coefficients from the
later is based on the energy distribution in the frequency deriginal image, the synthesis texture image is obtained by the

main. inverse wavelet transform. Fig. 6 shows the example results for
two images of size 12& 128 from different texture classes
F. Summary of Different Forms of KLD in our database. The comparison is also made with the recon-

L ize the diff ; ¢ KLD th h structed images using the scale coefficients only (referred to as
et us summarize the different forms o that we aV?oarse approximation images).

seen so far. In Section I1I-C we introduced the general formu e emphasize that the goal here is not texture synthesis but
(17) for the KLD between GGDs for two wavelet subbands .t(?éther texture discrimination. In this regard, it can be seen from

gether with the overall similarity mgasurement between two 4. 6 that the extracted 18 GGD model parameters in fact cap-
ages (18) as the sum of all the d|§tances across wavelet € some of the main texture-specific information of the in-
bands. Sections IlI-D and IlI-E considered special cases to 93 eq images. The synthetic images from two different images

more insight of the technique as well as providing explanati%mg additive GGD models are clearly more distinguishable
for existing methods. For practical applications, as well as f%an the ones using scaling coefficients only
the following experiments, the general form of KLDs in Sec- '

tion lll-C are used. B. Computational Complexity

The proposed texture retrieval system has been implemented
in a Matlab environment. The feature extraction (FE) step in-

We used 40 textures obtained from the MIT Vision Textureolves talking a wavelet transform of the input image and esti-
(VisTex) database [34] and displayed them in Fig. 5. These amating the GGD model parameters at each subband using ML
real world 512x 512 images from different natural scenes. Onlgstimator. It was found that roughly the same amount of time
gray-scale levels of the images (computed from the luminanisespent on wavelet transformation and parameter estimation,
component) were used in the experiments. Since we define siiving a total of less than 1 s of CPU time on a Sun Ultra 5
ilar textures as subimages from a single original one, we selecteorkstation for extracting features from one image.
texture images whose visual properties do not change too muchVe applied three levels of wavelet decomposition (which
over the image. generates nine wavelet subbands). Therefore, to represent

Each of the 512« 512 images was divided into sixteen 12&ach texture image using the GGD model we need only 18
x 128 nonoverlapping subimages, thus creating a test databasmbers as an extracted feature set. Thanks to the closed form
of 640 texture images. Furthermore, to eliminate the effect of distance in (17), the similarity measurement (SM) between
common range in the gray level of subimages from a sarwo images involves simple computation using a small number
original image and to make the retrieval task less biased, eaflmodel parameters. Optimized implementation using lookup

IV. EXPERIMENTAL RESULTS
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Fig. 5. Texture images from the VisTex collection that are used in the experiments; from left to right and top to bottom: BarkO, Bark6, Bark8, Blatk9, Bri
Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, Fabric9, Fabricl1, Fabric14, Fabric15, Fabric17, Fabric18, Flowers5, FoodO, F@& @& d3sddLeavess,
Leaves10, Leavesll, Leavesl12, Leavesl6, MetalO, Metal2, Misc2, SandO, Stonel, Stone4, Terrain10, Tilel, Tile4, Tile7, Water5, Wood1, and Wood2.

tables yield comparable computation time as normalizédl Retrieval Effectiveness

Euclidean distance. In retrieval experiments, a simulated query image is any one
of 640 images in our database. The relevant images for each
C. Range of3 in GGD Models query are defined as the other 15 subimages from the same orig-
inal VisTex image. Following [6] we evaluated the performance
Itis of interest to know the common range for the values of in terms of the average rate of retrieving relevant images as a
in GGDs for texture images. For typical natural images whidlinction of the number of top retrieved images. The new ap-
are dominated by smooth regions, the valuesfare found proach is compared with the traditional methods using the en-
to be between 0.5 and 1 [29]. Fig. 7 shows the histogram efgy-based features in the wavelet domain givenin (10) and (11)
the estimated values @f from our database of 640 texture im-together with normalized Euclidean distance as the similarity
ages using the method described in Section 11I-B. The discreteasurement.
wavelet transform of three levels usid, filters was used. As  Evaluation of all possible wavelet transform schemes is be-
can be seen from the figure, the fifth and 95th percentile valugand the scope of the experiments. Thus, we restricted our at-
of the estimated values for our texture database are around Ot&ntion to the Daubechies family of orthogonal wavelets [35].
and 2, respectively. This family is indexed by the number of zeros.at= 7 of the
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Fig. 7. Histogram of estimated values férfrom 640 texture images of size
@ 128 x 128.

TABLE |
AVERAGE RETRIEVAL RATE (%) IN THE TOP 15 MATCHES USING
PYRAMID WAVELET TRANSFORM WITH DIFFERENT FILTERS AND

DECOMPOSITIONLEVELS
Filters Methods
L! L7 TL'+L? [ GGD & KLD | GGD & ED
D, 55.50 | 53.37 | 56.89 68.36 873
Dy 55.02 | 51.37 | 55.47 66.36 57.47
Ds 55.39 | 53.49 56.15 65.60 56.41
Dy 55.80 | 54.37 | 56.54 65.37 56.45
Dy 55.04 { 52.71 54.97 64.22 56.10

Image Irers Appeaaimalan
(a) One-level decomposition.

TFilters Methods
L! L? JL'+L?* | GGD & KLD | GGD & ED
D, 61.29 [ 57.54 [ 61.43 74.10 64.63
D, 62.97 | 59.68 | 62.82 73.35 65.87
Dg 61.88 | 59.57 | 61.65 72.72 64.89
Dy 62.83 | 61.25 | 62.99 72.65 65.15
Dy 62.21 | 60.62 | 62.11 71.61 63.45
(b) (b) Two-level decomposition.
Fig. 6. Texture synthesis examples using generalized Gaussian density
wavelet coefficients on images of size 128128. Filters Methods
Lf L? [L'+L? | GGD & KLD | GGD & ED
) . ) D, 62.72 | 61.76 | 64.48 76.93 62.22
lowpass filter. WaveleD,, uses an orthogonal filter bank with D, [ 63.89 | 62.54 | 64.83 76.57 61.18
length2n low nd high filters. D¢ 65.07 | 63.03 | 65.11 75.51 60.35
ng tﬁ © pazsa ? d gnhpass .t.e SI | . Dy | 6560|6364 | 6548 75.63 61.73
or the number of decomposition levels, our experimen 1, |l g5:90 | 64.25 | 65.81 74.66 59.73
agree with [3] that the size of the smallest subimages shoi , N
not be less than 1& 16 so the estimated energy values c. (c) Three-level detomposition.

model parameters would be robust. Hence for the input image
size 128x 128, a maximum of three levels of decompositiosentially equivalent to the one composed of means and standard
is chosen. deviations of the magnitude of the wavelet coefficients that was
In afirst series of experiments, the wavelet pyramid transforased in [6]. It also yields the same number of features per images
(DWT) with different filters and decomposition levels were emas the statistical method using GGDs (two features per wavelet
ployed. Table | shows the comparison in performance in averaggéband). The proposed method use the combination of GGD &
percentages of retrieving relevant images in the top 15 matchi€kD. We also report the results when the normalized Euclidean
HereL! andL? denote the methods which use texture featureistance (ED) was used on GGDs model parameters, which is
computed as in (10) and (11), respectively, wiife+ L2 uses similar to the method used in [7]. Therefore, except for GGD
both set of features. Note that tlie + L? feature set is es- and KLD, all other listed methods use normalized Euclidean
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Fig. 8. Average retrieval rates for individual texture class using wavelet ~AVERAGE RETRIEVAL RATE (%) IN THE TOP 15 MATCHES USING
pyramid transform with Daubechie®), filters and three decomposition levels. PYRAMID WAVELET TRANSFORM (DWT) AND WAVELET FRAMES
(DWF) WITH D4 FILTERS
Type of decomposition Methods
distance as the similarity measurement. Following are the m: LTI T2 TG0D & KLD [GGD L ED
points that we observe. T scale (6 Teatures) -
. ‘g 55.47 66.36 a7.
1) First, the statistical gpproach (GGD anq K_LD) alyvay DWF 56.99 67.09 61.34
outperforms the traditional methods. This is consiste 3 scales (12 features)
with our expectation since the GGD parameters a DWT 62.82 73.35 65.87
more expressive in characterizing textures than tl DWF 63.32 74.01 69.78
-based ones. Furthermore, the inferior results 3 scales (18 features)
energy-base - , ‘ DWT 64.83 76.57 61.18
the GGD and ED method (where the same features wi DWF 68.48 78.12 71.13

the statistical method were used but with the normalized
Euclidean distance) shows that good performance in
retrieval comes not just from a good set of extracted A second series of experiments was conducted for the
features but also together with a suitable similaritponsubsampled discrete wavelet frames (DWF). The results
measurement. Hence this supports our approach foretrieval rates are summarized in Table Il. We also listed

considering the two problems FE and SM jointly. the results for the wavelet pyramids (DWT) for comparison.
2) Secondly, the length of the filter has little effect in perforAs expected, the full rate filterbanks improve the performance
mance in all methods. over the critical-sampled filterbanks on both the old and new

3) Finally, in our database, most of the texture discrimindnethods. However this improvement is marginal compared to
tion information live in the first two scales of wavelet dethe one achieved when replacing the traditional approach by
composition since there is little improvement in retrievaPur proposed method.
rates when we increased from two to three levels of de-
composition. E. Image Retrieval Examples

Fig. 8 details the comparison betweenIiie+ L and GGD  Qualitative evaluation of our method was carried out by visu-
& KLD methods on each texture class using there levels gfly examining the images of retrieval results. However, this can
wavelet decomposition with th®), filters. Again, we can see only be based on a subjective perceptual similarity since there

that the new method consistently gives superior performanggists no “correct” ordering that is agreed upon by all people
for almost all texture classes, especially for the ones that hgge].

structural patterns. Note that those two methods extract the samgig. 10 shows some examples of retrieval results to demon-
number of features, 1842 x 9), from each indexed image. strate the capability of our method. In Fig. 10(a), the query

Fig. 9 shows a graph illustrating this comparison in retrievathage is “leaves.” The system almost perfectly retrieves all im-
performances as functions of number of top matches considerages of the same leaves and also images of other types of leaves.
As can be seen, almost the double number of retrieved imagekiigig. 10(b), the query is a fabric patch. In this case, all rele-
required in the traditional method compared to the new methednt images are correctly ranked as the top matches following
in order to retrieve the same number of relevant images. by images of similar textures.
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(b)

Fig. 10. Examples of retrieval results from 640 texture images based on the VisTex collection. In each case, the query image is on the top léftitbemer; al
images are ranked in the order of similarity with the query image from left to right, top to bottom.

V. CONCLUSION AND DISCUSSIONS Experimental results on 640 texture images of 40 classes from
the VisTex collection indicated that the new method signifi-
We have introduced a statistical framework for texture reantly improves retrieval rates, e.g., from 65% to 77%, over the
trieval in CBIR applications by jointly considering the two probtraditional approaches, using both the pyramid wavelet trans-
lems of FE and SM while keeping in mind the complexity conform and wavelet frames, while requiring comparable compu-
straint of such applications. In our approach, the FE step hational time.
comes an ML estimator for the model parameters of image dataye want to emphasize that our method is specially designed
and the SM step amounts to computing the Kullback—Leiblésr the retrieval problem where the classes are not defmed
distances between model parameters. For large data sets, ghisyi. If one looks at a pure classification problem, better results
achieves the same optimality as the ML selection rule. might be obtained by taking into account the distribution (e.g.,
The statistical framework has been applied successfully ircavariances) of the feature vector itself from each predefined
wavelet-based texture retrieval application, where wavelet coefass and then employing the optimal Bayesian classifier [37].
ficients in each subband are independently modeled by a géf-course, this requires an additional training step which one
eralized Gaussian density (GGD). This results in a new texturannot usually afford in the general retrieval problem.
similarity measurement in wavelet domain which has a soundThe proposed statistical framework can be applied to other
theoretical justification with no need for normalization stepg&nd more general retrieval methods. The GGD was used ef-
Furthermore, by restricting to simpler models, the new simiiectively here for modeling the coefficients from the wavelet
larity distance becomes closely related to the popular variantensforms and wavelet frames and can applied to other sim-
normalized Euclidean distance. Hence, the statistical approdeln filtering schemes such as wavelet packets and Gabor trans-
can be used as a common framework for other existing methoftsms. In [38]-[40], we employed the statistical framework to
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more complex texture models that aggregate wavelet desctipe estimate of the variance of the sample data set, respectively,
tors across scales and orientations using hidden Markov modéien 3 is estimated by solving

Furthermore, we can extend the statistical model for texture
using the Wold theory which was shown to closely match human
texture perception [36]. As shown in Section 1I-B, the popular
histogram method fits into our scheme. Thus beyond texture
color and local shape features can also be captured. Finally,
suming that different feature sets (color, texture, shape) are ““—
dependent, the chain rule of the KLD suggests that the overa

similarity measurement is simply the sum of KLDs from eacBe
feature.

'In

APPENDIX
MAXIMUM LIKELIHOOD ESTIMATOR FOR GENERALIZED
GAUSSIAN DENSITY

= 1 my
B=rF;; <\/m_2> 27)

a practical implementation, the solution of (27) can be

fotind quickly using interpolation and a look-up table whose en-
?s are the corresponding valuesof /,/ms andj3. X

Finally, the initial guess}, = 3 of the ML estimator3 can
“polished up” with a few number steps of Newton—Raphson
(experiments showed that only around three steps are adequate).
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The MLE for GGD amounts to solve the highly nonlineathe image retrieval interface used in our experiments, and one
equation (16). We thus have to resort to iterative root findingferee for some very helpful comments on the original version

procedures like the Newton—Raphson method.

Define the left hand side of (16) as a function®fy(3). The
Newton—Raphson iteration finds the new guess for the root of
9(1), Br+1, based on the previous ong,, using

[1]
. 9B
Br+1 = B 7B (24) 2]
We have 3]
o WB) WE) 1
g (/3 ) - /32 /33 /32 [4]
L L 2 5]
Izl Qoglail)? D lwil? log ]
=1 =1
- L L 2 [6]
> |wil? 3 Jail?
i=1 i=1 [7]
I /3 I
Z |z;|? log |x;]  log <EZ |$7|8> "
i=1 i=1
+ - - - iE (25)
B il [9]
=1
10]

wherel’(z) is known as the first polygamma or trigamma func- [
tion [33]. Note the fact thag(3) andg’ () share many common  [11]
terms which can be used for saving computation at each iter#l2]
tion step in (24).

A good initial guess for the root @f(3) can be found based on [13]
the matching moments of the data set with those of the assumed
distribution [30]. For a GGD, it can be shown that the ratio of[14
mean absolute value to stand deviation is a steadily increasing

function of thes
[15]

(2/8)
VIA/BTE/B)

Hence, if let m, (1/L) ) x| and mo
(1/L) Ef:l x? be the estimate of the mean absolute value and

Fu(B) = (26)

[16]

of the manuscript.
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