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The Design of H∞ Controllers for an Experimental
Non-collocated Flexible Structure Problem

Roy S. Smith, Cheng-Chih Chu, and James L. Fanson

Abstract—This paper describes recent results in applying
robust control techniques to achieve vibration suppression of an
active precision truss structure. The active structure incorpo-
rates piezoelectric members which serve as both structural and
actuation elements. The problem considered is multiple-input,
multiple-output with non-collocated actuators and sensors. Sev-
eral characterizations of uncertainty are studied and the resulting
controllers are compared experimentally. One characterization
uses a novel approach involving eigenvalue perturbation descrip-
tions.

Index Terms—Robust control, flexible structures.

I. INTRODUCTION

The Control Structure Interaction (CSI) program at the Jet
Propulsion Laboratory is investigating the technology required
to achieve submicron level dimensional stability on large
complex optical class spacecraft. The focus mission for this
work is an orbiting interferometer telescope [1]. A series
of evolutionary testbed structures are being constructed for
the purpose of developing and demonstrating the technology
required for such a mission. The JPL CSI Phase 0 testbed
structure, described in Section II, is one in a series of
experimental facilities used for the development of active
structure hardware and feedback control methodologies [2].
This structure is the experimental testbed for the robust control
designs described here.

Achieving submicron stability of the optical system involves
a layering of several technologies including active vibration
isolation, structural vibration suppression, and active optical
control. The work considered here applies to the active vi-
bration suppression problem. A mixture of technologies can
be applied to the vibration suppression problem itself; passive
damping, active damping and active structural stabilization.
Refer to [3] for earlier work on the application of all of
these technologies to the Phase 0 experiment. This paper
concentrates only on the active structural stabilization work
and includes more recent approaches and experimental results.

The wider issue of vibration suppression, particularly in
flexible space systems, is an active area of research. Many
approaches have been applied at a number of institutions, and
no attempt is made here to give a complete summary. A similar
approach is described by Balas and Doyle [4].

R.S. Smith is with the Dept. of Electrical & Computer Engineering,
University of California, Santa Barbara, CA 93106

C.-C. Chu is with the Guidance and Control Section, Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA 91109

J.L. Fanson is with the Applied Mechanics Technologies Section, Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA
91109

The robust control approach requires a nominal model and
a description of the uncertainty. This uncertainty description
often takes the form of norm bounded perturbations occurring
at various places within the nominal model. The resulting
control design achieves specified performance and stability
characteristics for all system models described by the set of
bounded perturbations. This is a powerful approach as one not
only designs a controller for a specified model, but also for
models “close” to that model. In other words the design is
robust with respect to perturbations in the system model. The
underlying hope is that the perturbations in the model describe
the various uncertain behaviors of the physical system.

A more complicated identification problem arises as a
result of the robust control approach. One must now specify
perturbation bounds in addition to the nominal system model.
Model structural choices — the number of perturbations and
how each perturbation enters the model — must also be made.
Currently there is little theory addressing these issues. Ad-hoc
approaches must be used and one hopes that experience on
a particular problem is representative for similar problems.
The issue of uncertainty modeling is specifically addressed in
this paper. Three choices of perturbation structure have been
studied experimentally, and the results are presented here.

The experimental problem is described in detail in Section
II. The flexible structure context of this work has been de-
scribed elsewhere [1,2,5,6] and only the salient issues will be
mentioned here. Obtaining a nominal model from experimental
data is itself a difficult problem. This is described in detail in
[7] and summarized in [3].

The H∞/µ synthesis methodology was used for all of the
designs. Refer to [8] for algorithmic and general application
details of this approach. A brief overview of the approach is
given in Section III, where the flexible structure problem is
used to illustrate the theory.

The perturbation structures studied are outlined in Section
IV. Uncertainty in flexible structures is often characterized
as uncertainty in the modal frequencies and damping ratios.
When the standard H∞ perturbation models are applied to
this problem the resulting model can be dominated by the
perturbation which may lead to a conservative design. An alter-
native perturbation modeling approach, based on perturbations
to a state-space representation, can avoid this problem. This
approach is also studied experimentally in this paper.

Particular choices of perturbation bounds and perturbation
structure result in different controllers. Three such controllers,
K1, K2 and K3, are described in Section IV. The performance
of all three designs is evaluated on the experiment in Section
V.
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Fig. 1. Precision truss structure. The control design problem inputs and
outputs are also illustrated

The paper concludes (Section VI) with a discussion of
the various perturbation model choices and speculates on the
applicability of robust control to the design of spacecraft
vibration damping systems.

II. EXPERIMENTAL DESCRIPTION

The Phase 0 Precision Truss is a six bay structure, approx-
imately 2 meters tall, with two outriggers at the top. The base
is cantilevered off of a massive steel block. The total mass
of the structure is approximately 27 kg and was designed to
have very low damping. The modes of the structure (up to
60 Hz) are divided into two groups, the first group is near
10 Hz, and the higher group starts at approximately 30 Hz. The
30–40 Hz modes involve significant local bending of the truss
members and are therefore only marginally controllable from
the location of the active members. The structure is extremely
lightly damped with the damping ratios of the first eleven
modes ranging from 0.0008 to 0.015.

Accelerometers, mounted on an outrigger, measure the X, Y
and Z direction accelerations. Three active members (denoted
AM), located in the lower two bays, are used for control. A
disturbance is injected, via a shaker, at the middle bay. The
control objective is the minimization of the experimentally
estimated transfer function from the midbay disturbance to
the three accelerometers, for a bandwidth including at least
the first three modes (up to ≈15 Hz). Figure 1 illustrates the
configuration of the structure and the control problem to be
studied.

Piezoelectric actuators, built into the active members, pro-
vide the force actuation. These are capable of delivering a
clamped force of 1810 N, for the vertical members, and 430
N for the diagonal member, at input voltages of 1000 Volts

and 150 Volts respectively. Commercial amplifiers provide the
necessary high bandwidth gain and bias the actuators to their
midpoints. Anderson et al. [9] detail the construction of these
actuators. Commercial micro-g accelerometers provide the X,
Y and Z direction acceleration measurements. The accelerom-
eter outputs are amplified and filtered (2nd order Bessel filter
with cut-off frequency of 1 kHz) prior to measurement by
the data acquisition and control systems. Fanson et al. [6]
provide greater detail on the structure and control related
instrumentation.

The Hugh 9000, a VME bus based, real-time, control system
was developed at JPL for the CSI program [10,11]. A Heurikon
V3E processor card, based on a 25 MHz 68030 micropro-
cessor, and a CSPI Quickcard array processor are used for
the controller computations. The A/D and D/A conversion (16
bit resolution) is performed by Data Translation boards. For
the controllers tested here the sampling rate was 1 kHz and
the computational delay was 1 sample period (1 msec.). The
number of controller states varied between 31 and 40.

III. AN OVERVIEW OF H∞/µ ROBUST CONTROL

A. Robust Control Models

The modeling framework to be applied here is presented in
more detail by Packard [12]. Systems are modeled as nominal
linear time-invariant systems with stable, linear-time invariant,
perturbations. The perturbations, denoted by ∆(s), or more
simply, ∆, are assumed to be bounded by ∥∆∥∞ ≤ 1, with

∥∆∥∞ := sup
s=jω

σ̄(∆(s)),

where σ̄ denotes the maximum singular value. A simple model
might consist of the set described by P (s) +W (s)∆, where
P (s) is the nominal model, W (s) is a frequency dependent
weight, and ∆ is the unknown bounded perturbation. This is
an additive perturbation description — the general situation
can be described by a linear fractional transformation (LFT),
on a block matrix, M , with inputs w and outputs, e, by,

e =
[
M22 +M21∆(I −M11∆)−1M12

]
w

=: Fu (M,∆) w. (1)

By appropriate choice of M11, etc., the LFT form can be
used to describe any interconnection of a nominal system with
a perturbation. Furthermore, ∆ can be defined as having a
specified block diagonal structure,

∆ = diag(∆1, . . . ,∆m) , (2)

and then (1) can describe perturbations occurring at different
places in a complex interconnected system. Figure 2a illus-
trates the generic LFT of (1) in block diagram form. This
representation is powerful because interconnections of LFTs
are simply larger LFTs.

B. Analysis of Stability and Performance

The robustness analysis discussed here was introduced by
Doyle et al. [13,14]. For the following analysis procedure
each component of M is assumed to be stable. The fol-
lowing problem is known as the robust stability problem:
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Fig. 2. a) Generic LFT system model, b) Interconnection for the design
problem

Is Fu (M,∆) stable for all perturbations, ∆, ∥∆∥∞ ≤ 1?
In the case where ∆ has no block diagonal structure, the
answer is as follows. Fu (M,∆) is robustly stable if and only
if ∥M11(s)∥∞ < 1. In the case where we are dealing with
several perturbations (e.g. m perturbations modeled by ∆ as
in (3), the structured singular value, denoted by µ, provides
the answer. The interconnection, Fu (M,∆) is robustly stable
if and only if ∥µ(M11(s))∥∞ < 1. Note that µ is a function
of the prescribed block diagonal structure given in (3). For the
typical engineering problems that arise here µ can usually be
quickly calculated to within 5 %.

A similar result holds for robust performance if performance
is appropriately defined. The following framework will be used
throughout for the study of performance. In Fig. 2a the inputs,
w, are assumed to be unknown but bounded. They would
typically represent noise, disturbances or tracking commands.
The outputs, e, represent signals which are required to be
small in a particular norm. These might typically be error
signals and actuator outputs. In the problem considered here,
w will consist of the unknown midbay acceleration input and
noise on the accelerometer measurements. The X, Y and Z
accelerations, and the controller outputs are modeled as the
signal e.

Any frequency dependent weighting on the signals is
factored into M so that specified nominal performance is
equivalent to ∥M22(s)∥∞ < 1 and robust performance is
∥Fu (M,∆)∥∞ < 1 for all ∆, of the appropriate structure,
satisfying ∥∆∥∞ ≤ 1. The system satisfies the robust perfor-
mance specification if and only if ∥µ(M)∥∞ < 1. If it satisfies
robust performance it necessarily satisfies robust stability.

The above result is typically applied when M represents
a closed loop system. The associated design problem is
illustrated in Fig. 2b. Given a weighted perturbation model,
G, design K to stabilize G and satisfy the robust performance
test. The signals y are the controller measurements and u are
the actuator signals. In the nominal, unperturbed, case (∆ = 0)
this problem is solved by the H∞ design procedure [15]. In
the more general ∆ perturbation case an iterative procedure
(known as D-K iteration) gives controllers that approximate
the solution [8]. This procedure is discussed in greater detail
in Section III.C.

The choice of the ∞-norm as a measure of performance
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Fig. 3. D-K iteration procedure: a) Design H∞ controller, K0. b) Closed
loop perturbed system for µ analysis. c) Upper bound D scale approximation
to µ analysis. d) Scaling of H∞ design problem by D̂ where D̂ ≈ D from
upper bound µ calculation.

leads to the computationally tractable robust synthesis problem
above. This may not be an ideal choice from an engineering
point of view. If w is bounded in energy (or power) then this
method minimizes the energy (or power) of e. Bounded energy
signals may be poor representations of noise or command
references. Similarly one may be interested in other choices
of output error specification. This paper will illustrate, by
example, that on physically motivated problems, the H∞/µ
synthesis controllers can also perform well by other measures.
In this specific example, w will include the shaker input
disturbance and e will include the weighted accelerations.
Minimizing the ∞-norm will reduce the peak of this transfer
function. In our application the damping ratios of the lower
frequency modes are significantly increased.

In order to apply this approach, one must obtain a nominal
model and perturbation description for the system. Several
choices of perturbation descriptions are studied in Section IV.



C. Controller Synthesis with D-K Iteration

The D-K iteration procedure is illustrated schematically in
Fig. 3. An H∞ design is performed (Fig. 3a) to get an initial
controller, K0(s). This minimizes ∥M(s)∥∞, where M(s) is
the closed loop system with controller K0(s). This is an upper
bound on the desired objective, ∥µ(M(s))∥∞ (Fig. 3b).

At each frequency, a scaling matrix, D, can be found such
that σ̄(DMD−1) is a close upper bound to µ(M) (Fig. 3c).
The D scale is block diagonal and the block corresponding to
the e and w signals can be chosen to be the identity. The part
of D corresponding to the z signal commutes with ∆ and
cancels out the part of D−1 corresponding to the v signal.
Therefore µ(DMD−1) = µ(M) and the robust performance
analysis is unaffected.

However the H∞ design problem is strongly affected by
scaling. The synthesis approach involves applying the D
scaling to the original H∞ design problem. The D scale is a
complex valued matrix at each frequency and an approximate
realization (denoted by D̂ in Fig. 3d) must be obtained before
it can be applied to the state-space H∞ design (Fig. 3d).
The resulting controller, K, gives a new closed loop system,
M , with µ(M) smaller than that given by the controller K0.
The procedure can be iterated upon (Figs. 3b through 3d): µ
analysis of the new closed loop system gives a different D
scale and this can be applied to the H∞ design problem.

Several aspects of this procedure are worth noting. For the
µ analysis and D scale calculation, a frequency grid must be
chosen. The range and resolution of this grid is a matter of
engineering judgement. The µ analysis can require a fine grid
in the vicinity of the lightly damped modes. The order of
the initial controller, K0, is the same as the interconnection
structure, G. The order of K is equal to the sum of the orders
of G, D̂ and D̂−1. This leads to a trade-off between the
accuracy of the fit between D and D̂ and the order of the
resulting controller K.

The robust performance difference between the H∞ con-
troller, K0, and K, can be dramatic even after a single D-K
iteration. The H∞ problem is sensitive to the relative scalings
between v and w (and z and e). The D scale effectively
provides the optimal choice of relative scalings for closed loop
robust performance.

IV. SYSTEM MODELS AND PERTURBATION STRUCTURES

A nominal model, denoted by Pnom, has been identified by
a multivariable approach based on estimated transfer functions
and an iterative least squares optimization. This is described
in detail in [7] and summarized in [3].

Three perturbation models are studied here, giving designs
K1, K2 and K3. The choice of perturbation structure and
associated weighting functions drives the controller design.
The first two are based on relatively standard perturbation
modeling approaches. The modeling approach use to obtain
K3 will be discussed in greater detail later in this section.
The full design problem is covered to provide the necessary
background to the perturbation description discussion.
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Fig. 4. Interconnection structure for the controller design

A. Outline of the Design Problem

Figure 4 shows the weighted interconnection structure,
denoted by G, used for the D-K iteration. This corresponds to
the block G in Figs. 2b and 3a. The three perturbation models
(Fu (P,∆)) were embedded in a generalized interconnection
structure for each of the designs. The unknown inputs, w,
are the shaker and weighted noise signals applied to each
of the acceleration measurements. Weighted X, Y and Z
accelerations, along with the weighted controller outputs, are
considered as the error signals e. The controller calculation
delay was modeled by a Padé approximation.

The weighting functions, Wperf , Wact, Wdist and Wnoise

act as the engineering design variables and were adjusted to
investigate the achievable performance with each of the pertur-
bation models. The most significant feature of the weighted
problem is that Wdist is essentially bandlimited, having the
effect of disregarding performance (vibration suppression) for
frequencies above 15 Hz. High frequency actuator effort was
also penalized. Refer to [3] for an example of representative
weighting functions for an earlier version of this problem.

The H∞/µ synthesis procedure produces controllers of
order at least as high as that of the weighted interconnection
used for the design. In this case this resulted in controllers
of approximately 60th order. Although it is rapidly becoming
less of a computational issue, most engineers are reluctant
to implement what is essentially a “black box” controller
of that order. One view is that such controllers give some
estimate of the achievable performance and can be used as a
benchmark with which to compare the results of more classical
approaches. In this case the objective is to obtain some
estimate of the achievable performance with robust control.
Controller order reduction was performed via a combination
of balanced truncation [16] and Hankel norm model reduction
[17] as the real-time controller was limited to 40 states at
1000 Hz.

The solution of the H∞ design equations can be numerically
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poorly conditioned for high order interconnection structures
with lightly damped modes. The 60th order structure de-
scribed above requires an ordered Schur decomposition of
a 120×120 Hamiltonian matrix. This was possible with the
currently available software. Because of the dimension and
number of perturbations, each state used in fitting a transfer
function to a D scale results in an addition 12 states in the
scaled interconnection structure. These additional states lead
to a numerically unstable design problem, and to avoid this
constant D scales were used. Even constant D scales resulted
in a significant performance improvement over the standard
H∞ design.

B. K1 Perturbation Structure

The K1 perturbation structure is shown in Fig. 5. The pertur-
bations are additive, ∆1 weighted by Wadd, and multiplicative,
∆2 weighted by Wmult. Both of the weights are diagonal.

The dynamic perturbation weights for each control design
are given in Fig. 6. For comparison purposes, the AM to X
acceleration estimated transfer function is also shown. The
diagonal components of all of these weights are individually
scaled to account for differences in the relative sizes of the
transfer functions.

The additive weight, Wadd, increases sharply (3rd order roll-
up) beyond the lower frequency (8–12 Hz) modes reflecting the
fact that less is known about the system at higher frequencies.
It will subsequently be seen that this weight is insufficient to
describe the lack of information about the modes in the 30–
40 Hz region. In the K1 design the weight Wmult is a small
constant (0.05) intended to capture the possible mode-shape
errors in the lower frequency modes.

C. K2 Perturbation Structure

The perturbation structure used for design, K2 is illustrated
in Fig. 7. This structure reflects most possible combinations
of additive and multiplicative perturbations. This is arguably
excessively complicated — however it does allow one to
investigate the effects of various perturbation locations. There
can be a computational penalty in choosing too many pertur-
bations. This is particularly true if a H∞ design is performed,
rather than a D-K iteration (µ-synthesis), as the µ-synthesis
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procedure can remove some of the conservatism introduced
by an inappropriate choice of perturbation scalings.

In the K2 model case both Wmult and Wout increase
with frequency (refer Fig. 6). Wadd is a constant used as a
relative scaling of the uncertainty with respect to the system
inputs. Because of the different perturbation structures, a direct
comparison of the weights is difficult. However, for the K2

case, the increase in uncertainty with frequency is reflected
by the product of Wmult and Wout causing K2 to roll off
significantly faster than K1.

The K2 design also includes a small input multiplicative
perturbation (Win = 0.001 for each active member input).
This was found to make the controller model reduction easier.
One possible explanation is that this reduces the tendency of
the design methodology to generate a controller that inverts
the plant from the input.

D. K3 Perturbation Structure

The approach taken here is to model the uncertainty in the
lower frequency modes by an eigenvalue perturbation to the
state-space representation. The higher frequency uncertainty
is again described by an additive weight that increases with
frequency. Figure 8 illustrates the perturbation structure. The
additive perturbation, ∆1, again represents the high frequency
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uncertainty and the weighting function, Wadd, is shown in
Fig. 6.

This structure is significantly different in that the lower
frequency uncertainty is represented by an LFT on the per-
turbation ∆2. The motivation for this approach is new and
will now be discussed in more detail.

A particular LFT perturbation structure is chosen. Consider
the nominal system to have a state-space representation,

Pnom = C(sI −A)−1B +D.

The LFT is chosen as,

P̂11 = W2(sI −A)−1W1

P̂12 = W2(sI −A)−1B

P̂21 = C(sI −A)−1W1

P̂22 = C(sI −A)−1B +D,

which yields the perturbed system,

Fu

(
P̂ ,∆2

)
= C(sI −A−W1∆2W2)

−1B +D.

Note that this simply has the effect of replacing A by
A + W1∆2W2. A particular choice for A, motivated by
the following result, is useful for modeling flexible structure
perturbations.

Consider A to be real-valued and block diagonal, revealing
the modal structure. If A has only n complex conjugate
eigenvalue pairs, λi± = σi±jβi, i = 1, . . . , n, then the desired
form of A is,

A =

 A11

. . .
Ann

 , whereAii =
[

σi βi
−βi σi

]
.

A weighting matrix, W , is chosen to be diagonal; W ∈
R2n×2n,

W =


w1

w1

. . .
wn

wn

 , wi > 0.

It is simple to show, via Geršgorin type arguments, that the
eigenvalues of A + W∆2, for all σ̄(∆2) ≤ 1, lie within n
pairs of disks, of radius wi, centered at the eigenvalues of A,

λi±. For further details refer to [18,19]. The result trivially
extends to systems with a combination of real and complex
eigenvalues.

This approach is now used to model perturbations in the
modal frequency and damping ratios of the lowest three
modes. For this problem the weights W1 and W2 were chosen
such that W = W1W2 and only the lowest three modes have
wi > 0. This gave significantly lower input-output dimensions
for ∆2.

An additional enhancement can also be made. In the above,
the eigenvalues of A, are replaced by disks. By modifying
selected Aii, the centers of selected disks can be moved
further into the left-half plane. This was done for the lowest
three modes in this problem. Figure 9 illustrates the nominal
eigenvalues (denoted by *) and the shifted perturbation disk
around each, for these modes. In this case the amount of
uncertainty attributed to each mode was the same.

Uncertainty in a modal frequency and damping ratio cor-
responds to the eigenvalue lying within a rectangular region
in the complex plane. In this case the shifted disks were
chosen such that they would cover the rectangular regions
corresponding to a 1 % error in damping ratio and a 0.1 %
error in modal frequency. The centers of the disks correspond
to new nominal eigenvalues and were chosen to be more
heavily damped than the original nominal model. Note that
this approach introduces additional plants into the perturbation
model set which are unlikely to occur in practice. However
these plants are more heavily damped and it is therefore hoped
that they impose no additional difficulties on the control design
problem.

Several practical benefits arise from this formulation. The
nominal system is now more heavily damped leading to less
numerical sensitivity in the control design algorithms. The
associated perturbation (∆2 in this case) is weighted only by
a constant which reduces the number of states in the design
interconnection structure and therefore reduces the number of
states in the resulting controller.

V. EXPERIMENTAL RESULTS

Figure 10 shows the experimental transfer functions from
the acceleration measured at the shaker input to the Y and
Z accelerometer outputs. The X and Y acceleration responses
are qualitatively similar for each of the controllers. The Z
acceleration response is the worst case for each controller.
The performance of controllers K1 and K3 is similar, with
K1 being slightly better than K3, and significantly better than
K2, particularly in the first mode.

The above statements must be considered in light of ad-
ditional experimental experience. Controller K1 was tested
several times over a period of a year. The earlier results
are shown here. In later experiments the controller exhibited
strong limit cycle behavior around 32 Hz, and in the latest
series of experiments the closed loop system was unstable.
This suggests slight variations in the structure have occurred
over the period of a year. Although the experimental set-up
was nominally identical in each case, the structure is part of a
larger experimental program and the active members had been
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removed and reinstalled in the structure several times. This is
likely to have caused experiment to experiment differences.

Some indication of why K1 is so sensitive to such variation
can be obtained by examining the singular values of the system
loop gain. The maximum singular values of the loop gain are
shown in Figure 11.

The maximum singular value of the loop gain is greater
than one for several of the 30–40 Hz modes, indicating that
these modes are not gain stabilized. The fact that the controller
functioned at all indicates that it is possible to roll-off through
these modes. However, the subsequent stability problems sug-
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Fig. 10. Experimental estimated transfer functions for open and closed-loop
systems. Upper plot: shaker acceleration to Y acceleration; lower plot: shaker
acceleration to Z acceleration
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Fig. 12. Maximum and minimum singular values of the loop gains for K1

(solid), K2 (dashed) and K3 (dot-dash)

gest that the level of uncertainty associated with these modes
must be well characterized in order to do this in a robust
manner.

Controllers K2 and K3 roll off significantly faster beyond
30 Hz, gain stabilizing the modes greater than 30 Hz. K3

exhibited a small amount of local limit cycle behavior. This
could possibly come from the 32 Hz mode which is not gain
stabilized. K2, the least well performing controller, rolls off
quickly and exhibited no stability problems.

Singular value analysis is also useful for examining the
performance in the lower frequency modes. Figure 12 shows
both the maximum and minimum singular values of the loop
gain in this frequency range.

The minimum singular value of the loop gain appears to
give a good indication of the relative performance of the
different controllers. Theoretically, this is only a lower bound
on the performance and may be misleading in multiple-input,
multiple-output systems. The higher values for K1 and K3

suggest better performance and this is indeed the case.
Although it is difficult to pick appropriate weights a priori,

one can use this experimental information to go through
another design iteration. It is expected that reducing the
perturbation associated with the first mode of the K3 design
would improve performance. Slightly increasing the additive
perturbation weight in the region of 30 Hz would be likely to
improve the high frequency stability properties of the design.

VI. CONCLUSIONS

The robust, H∞/µ-synthesis approach has been used to
design a series of vibration suppression controllers in a very
lightly damped, multiple-input, multiple-output, flexible struc-
ture. The resulting designs significantly increased the damping
in the lower frequency modes to the point where in certain
directions no modes were discernible.

Several means of modeling the perturbations were studied.
There is currently no theoretically based approach for deter-
mining the best perturbation bound or how the perturbations

should enter the model structure. Experimentally based itera-
tive procedures are found to be a suitable ad-hoc approach. In
this case a design, with a specified perturbation structure and
bound, was experimentally tested and the resulting information
was used to refine the perturbation model.

A novel eigenvalue perturbation model was applied to this
problem and resulted in a controller with good performance.
The ability of this approach to independently assign differing
levels of uncertainty to each mode is a potential benefit that
was not examined in this case.

The more classical means of estimating worst case perfor-
mance and stability (singular value loop gain analysis) were
found to correlate well with the experimental results. There
is no theoretical reason to expect this, particularly since the
singular values range over a factor of approximately 1000
in certain frequency ranges, and over a factor of about 100
everywhere else.

Some observations on the overall context of this work are
in order. The above has shown that it is possible to design
controllers which roll-off through the system modes. Experi-
mental evidence suggests that this is particularly sensitive to
relatively small changes in the system. The controller which
did not achieve gain stabilization of the higher modes was
successful for only a short time. Presumably, the system
differed more from its identified model as time progressed
and the perturbation model used in the design was unable to
account for the system changes.

The H∞/µ-synthesis procedure is an optimization and if
the perturbation model does not cover the system uncertainty
then a high performance controller can result in instability.
This indicates that designing such controllers places significant
requirements on the identification and uncertainty characteri-
zation procedure in the cross-over frequency region. Practical
applications of such controllers may require regularly repeated
identification experiments to maintain a well characterized
model in this frequency range.

In a complete spaceborne system design, one will also have
the option of placing a limited number of passive dampers in
the system. The experience here suggests that those dampers
should be placed in order to increase the damping in the cross-
over frequency range. As the above experiments show, very
lightly damped low frequency modes do not pose a problem
in this robust design. Similarly, high frequency gain stabilized
modes are also not a problem for the controller design. Note
that the controller has no effect on these modes — additional
damping may be required to meet system objectives that a low
bandwidth controller cannot meet. It is hoped that applying
damping to the modes in the cross-over region will reduce
their sensitivity to small system changes, thereby making both
the identification and design problems easier. Experimental
verification and quantification of this issue has yet to be
resolved.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Dankai Liu for his assistance
in conducting the experiments. The research described in
this paper was carried out by the Jet Propulsion Laboratory,



California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

REFERENCES

[1] R. Laskin and M. San Martin, “Control/structure system design of a
spaceborne optical interferometer,” in Proc. AAS/AIAA Astrodynamics
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