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Abstract—A physically interpretable model of an experimental
strip guidance installation, operated at Hoogovens Research and
Development in the Netherlands, is derived by means of system
identification. This process consists of an offset pivot guide steer-
ing roll with five degrees of freedom, four cylindrical guide rolls,
and one driving roll. In this experimental installation, an endless
steel strip is created by welding the ends of the strip to allow for
continuous experimentation. As this endless strip introduces an
internal mechanical feedback in the process, a closed-loop identi-
fication problem arises. Five identification strategies are applied
and compared for a single operating condition, determined by the
strip speed and tension, using experimental data. One of these
strategies is called the controller compensation in closed-loop
strategy. This new technique is proposed to reduce the closed-loop
identification problem into an open-loop one by using a regulator
to compensate the internal feedback due to the endless strip.
From the preliminary experiments for one operating condition,
this strategy is selected for further analysis as it yields the smallest
prediction error. The physically interpretable model is obtained
by identifying a linear time-invariant system for different opera-
tion conditions, and by expressing the model parameters in terms
of geometric and kinematic parameters that characterize the
strip guidance installation. The model yields improved prediction
capabilities compared to other models proposed in the literature.
The results presented in this paper are achieved in cooperation
between Hoogovens Research and Development and the Control
Laboratory at the Delft University of Technology.

Index Terms—Closed-loop identification, physically interpret-
able modeling, strip guidance, subspace identification.

I. INTRODUCTION

T RACKING problems in processing lines of the steel
industry generally result in damage and partial rejec-

tion of the steel strip, often combined with damage to the
installation and delay in the production process [1]. Preshaped
rolls and steering rolls are used to reduce these tracking
problems [2]. To properly control the strip guidance process
by means of steering rolls, a model of this process is needed.
In the literature, a first-order model of strip guidance over
a cylindrical roll was proposed by Campell [3] and Shelton
[4]. An extension to a second-order model of this process was
suggested by Shelton [5].
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At Hoogovens IJmuiden, an experimental installation is used
to study the strip tracking behavior in processing lines. Fig. 1
shows this experimental installation containing one steering
roll and five cylindrical guide rolls. The lateral strip position
is measured by six line-scan cameras. In this experimental
installation an endless steel strip is created by welding the
ends of the strip, which introduces an internal feedback in
the process. The lateral strip position at a certain point in
the experimental installation depends not only on the steering
action but also on the feedback. This internal feedback is called
the mechanical feedback.

However, rather than studying the strip guidance process
in the experimental installation, the aim of this research was
to develop a model for real processing lines. In these lines,
there is no mechanical feedback, and thus the identification
results obtained for the experimental installation cannot be
directly applied to the processing lines. In order to transfer the
results to the processing lines, a physically interpretable open-
loop model of the experimental installation is needed. In our
context, physical interpretability requires that the model pa-
rameters only depend on geometrical and kinematic quantities
that characterize the strip guidance in process lines.

Apart from achieving the above goal, the presented results
have a more general research interest. More precisely, the
identification strategy followed shows that identifying physical
real-life systems is far more than collecting data and applying
standard “black-box” identification techniques. Contrary to this
often simple-minded view on system identification, the current
study does the following:

1) Shows the importance of structuring the identification
problemat hand. In this step, the different subsystems
and their relationships are highlighted, resulting in a
block-schematic representation of the system. Based on
this step, the type of identification problem and a class
of suitable identification methods can be selected.

2) Compares four different identification methodswhich
can be applied to linear systems operating in closed
loop, with different feedback loops. These four methods
include three existing strategies, namely the direct use of
input and output data of the system when the delay of the
process is sufficiently large [6], the two-stage approach
[7], and the approach based on subspace identification
[8]. One new technique was developed in the course
of this research, called the controller compensation in
closed loop (CCCL).

3) Highlights the importance of preprocessing the measured
input and output data sequences and compensating for
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Fig. 1. The experimental installation.

deterministic trends as well as for time delays in the
process.

The obtained model is validated under experimental condi-
tions that were not considered in the process of constructing
this model.

This paper is organized in eight sections: Section II presents
a first-order physical model of strip guidance over cylindrical
guide rolls. In Section III, the experimental installation is
analyzed and a block diagram of this installation is derived.
Four standard identification strategies to solve the problem are
reviewed in Section IV and a new method called controller
compensation in closed loop is proposed. Section V describes
data collection and data preprocessing. The five identification
strategies proposed in Section IV are applied to real-life data
of the experimental installation in Section VI. The individual
strategies are evaluated and the most accurate and reliable one
is used to derive a physically interpretable model of the in-
stallation as discussed in Section VII. Section VIII concludes
the paper.

II. PHYSICAL FIRST-ORDER MODELLING

OF LATERAL STRIP MOVEMENT

To develop equations that describe the lateral movement of
a strip is a difficult task. Many factors influence the behavior
of the strip, e.g., the physical properties of the strip, the nature
of the surface of the strip and of the rolls, the misalignment
of the rolls, friction, the mechanical rigidity, and the vibration
of the machine structure. In this section, a first-order physical
model for the lateral strip movement over a cylindrical roll
is discussed.

Consider two parallel rolls shown in Fig. 2. When the strip
moves over a perfect roll, but the wrap of the strip is skewed on
the roll, the strip will move sidewise in a direction that tends to
reduce the unbalanced forces which act upon the strip. The rate
of sideways movement will be approximately in proportion to

Fig. 2. Strip movement over a cylindrical roll.

the angle of skew and to the velocity of the strip. Campbell
[3] derived the following first-order model for the lateral strip
movement over a cylindrical roll:

where (1)

and

Laplace transform of the position signal just after
the roll [m];
Laplace transform of the position signal before
the roll at distance [m];
distance from the point where is measured to
the roll [m];
strip speed [m/s].
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Fig. 3. Measured position at camera 5 (solid) compared with the simulated position of the model given by (3) (dashed-dotted).

The subscript refers to the th subprocess. Shelton [4]
introduced a time delay to this model

(2)

where is the length of the contact area between the roll
and the strip (in meters). The model now becomes

(3)

Four of these first-order models with a delay are connected
in series and applied to predict the lateral strip position at
camera 5 of the experimental installation, using the actual
measurement of the position at camera 1 as input. The model
parameters are obtained by measurements of the necessary
geometrical quantities. Fig. 3 shows the simulation results of
the physical model. The actual model parameters cannot be
given because of industrial confidentiality.

The performance of this model would not be satisfactory for
designing a controller necessary to keep the strip in the center
of the rolls. A series connection of four second-order models
according to Shelton [5] gives similar unsatisfactory results.
This is the reason why an open-loop model of the installation
is derived by identification.

III. M ODELING OF THE EXPERIMENTAL

STRIP GUIDANCE INSTALLATION

In this section, the experimental installation is analyzed. By
dividing the installation into subprocesses, a block diagram
can be derived. The lateral strip displacements from camera
1 to camera 6 are divided into elementary subprocesses as
shown in Fig. 2. Thus, the identified models can be compared
with the theory according to Campell [3] and Shelton [4]. The
first subprocess is from camera 1 to camera 2, the second
subprocess from camera 2 to camera 3 and so on, see also
Figs. 4 and 6.

Another important element of the installation is the steering
roll. An offset pivot guide (OPG) steering roll [2], shown
in Fig. 5, is used. The lateral strip position due to the OPG

Fig. 4. A subprocess.

steering roll is expressed by

where
(4)

where

lateral strip position after the steering roll
[m];
lateral strip position before the steering roll
[m];
lateral strip displacement due to the steering
roll angle [m];
OPG steering roll pivot angle [rad];
length of the offset pivot guide frame [m].
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(a)

(b)

Fig. 5. The offset pivot guide steering roll. (a) Top view. (b) Side view.

Since an offset pivot guide steering roll with only one
roll is used in the experimental installation, the length of the
OPG frame reduces to the diameter of the steering roll. The
OPG steering roll can be divided into two processes. The first
process describes the transfer function from the desired OPG
angle to the actual steering angle. This process contains mainly
the actuator dynamics of the steering roll and is considered
ideal, which means that the transfer function of this process
is equal to one, i.e., the provided steering angle is equal to
the actual steering angle. This consideration is verified by
measurements. The second process introduces a nonlinearity
to the system. This nonlinearity is given by (4) and has a
negligible effect, since the steering roll angle is limited to3 .

There is still one process left. This is the displacement
process from camera 6 via the steering roll back to camera
1. We can consider this as the mechanical feedback in the
process. In Fig. 6, all subprocesses are connected together in
a block diagram. An additional control loop is added which
can be disconnected by switch. This control loop is used to
reduce the effects of disturbances in identification, as explained
later on. Because of the two feedback loops in Fig. 6 a closed-
loop identification method is needed to determine an open-loop
model for the individual subprocesses.

Fig. 6 contains the following signals:

angle computed by the controller [rad];
actual angle of the steering roll [rad];
lateral strip displacement at camera 1 due
to the steering roll angle [m];

lateral strip position at camera 1 due to the
mechanical loop [m];
desired lateral strip position at camera 6
[m];
actual lateral strip position at camera[m];
control on/off switch;
excitation signal (generalized binary noise)
[9] [rad].

IV. CLOSED-LOOP IDENTIFICATION

As shown in Fig. 6, a control loop can be added to the
system. Hence, there are two possibilities to identify the
process:

• identification of the installation without the control loop
(switch open);

• identification of the installation with the control loop
(switch closed).

In this section three identification strategies of the experi-
mental installationwithout the control loopand two strategies
of the installationwith the control loopare discussed.

A. Identification of the Installation Without the
Control Loop (Switch Open)

An advantage of the identification without the control loop
is the reduction of the block diagram of Fig. 6 to a single-
loop problem. Standard techniques can be applied to solve
this problem. The first strategy discussed is an open-loop one.

Method 1—Open-Loop Identification:According to [6],
open-loop identification techniques can be applied to a closed-
loop system if the discrete-time delay of the process
is greater than the order of the system. Hence, a model
of subprocess is obtained by identifying the following
subsystem:

(5)

with

input signal of subprocess;
output signal of subprocess;
transfer function of subprocess;
noise model of subprocess;
zero-mean white noise process.

The argument denotes discrete time.
Method 2—State-Space Identification by MOESP:The sec-

ond strategy requires redrawing the processof Fig. 6 to
a single-input, multiple-output (SIMO) structure shown in
Fig. 7. In this structure, the multivariable output error state
space-past input (MOESP-PI) scheme [8] can be applied to
estimate the open-loop subprocesses from [obtained by

, see (4)] to the positions , for
of the remaining cameras in the first step. In the next

step, noise-free signals are reconstructed
from the obtained models. The subprocesses are identified
between the noise-free signalsand , for
with open-loop techniques in the last step.
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Fig. 6. Closed-loop system with processP and controllerC.

Fig. 7. ProcessP rewritten in a parallel structure.

Method 3—Two-Stage Method:The third strategy for iden-
tification without the control loop is the two-stage method
[7]. In the first stage, the noise-free signal of camera 1 is
reconstructed by identifying the sensitivity functionof the
closed-loop system of Fig. 6

(6)

In the second step, a model of the first subprocess is obtained
by estimating the process between the reconstructed noise-free
signal of camera 1 and the measured signal of camera 2. Then,
the second subprocess can be identified, etc.

The essential difference between method 2 (MOESP) and
method 3 (two-stage method) is that the two-stage tech-
nique must be applied to the subprocesses sequentially, while
MOESP identifies the subsystems in a parallel structure,
avoiding accumulation of errors.

B. Identification of the Installation with the
Control Loop (Switch Closed)

A disadvantage of experiments without the control loop
is the presence of a deterministic disturbance due to the
strip weld. This disturbance can cause biased estimates. The
next section presents two identification strategies which need

experiments with the control loop. The advantage of experi-
ments with the control loop is the absence of a deterministic
disturbance due to the strip weld, as discussed in more detail
in Section V.

Method 4—Two-Stage Method Applied to Two Closed Loops:
The first strategy for identification of the experimental instal-
lation with the additional control loop active (see Fig. 6) is
the two-stage method [7] applied to a system with two closed
loops. These loops are the control loop (outer loop) and the
mechanical feedback loop (inner loop). In the first step, the
sensitivity function of the outer control loop is estimated.
Next, the noise-free signal is reconstructed by

where (7)

In the second step, a noise free signal is constructed by
identifying the sensitivity function of the inner loop. With
this noise-free signal the individual subprocesses are identified
in an open-loop way according to strategy 1.

Method 5: Controller Compensation in Closed Loop:The
last strategy is called controller compensation in closed loop
(CCCL) [10]. The control loop is used to compensate the
internal feedback loop. When the control loop and the internal
feedback loop are equal, the subprocesses can be identified
consistently in an open-loop way. A process with an internal
feedback is considered as shown in Fig. 8.

The output of the system is given by

(8)

with

output signal of the process;
input signal of the process;
zero-mean white noise.

The input signal of the process is

(9)

Defining the difference transfer function of the control
loop and the internal feedback as

(10)

and substituting (9) and (10) into (8), an open-loop expression
of the system can be derived

(11)
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Fig. 8. System with internal feedback and an additional control loop.

The transfer function can be decomposed as

(12)
Here is an error term which equals zero when the control
loop and the internal feedback are exactly the same. Theorem
4.1 states the situation in which open-loop identification of the
process in Fig. 8 is allowed.

Theorem 4.1 (CCCL):Consider the system of Fig. 8. If the
following conditions are satisfied:

1) is stable;
2) ;
3) is persistently exciting of sufficient order;

then can be identified consistently from and
using

(13)

Proof: The proof follows directly by substituting
in (11).
In the ideal situation of Theorem 4.1, the error term

in (12) equals zero. Since in practice this will hold only
approximately, it is useful to estimate this error term from
the experimental data, as stated in Lemma 4.2.

Lemma 4.2 (Normalized Error Function):Let be
the auto-spectral density function of , let be the
cross-spectral density function of and and let
and be statistically independent. An estimate of the
normalized error function is given by

(14)

Proof: In the frequency domain, the error term from
(12) is given by

(15)

Considering the cross-spectral density of and , by us-
ing (11) and the assumption that and are statistically
independent we have

(16)

Fig. 9. Normalized error function�(ej!).

By combining (15) and (16), the normalized error function is
determined by

(17)

Using (9), can be expressed in terms of the cross-
spectral density function of and

(18)

From (18) we express as

(19)

and substitute in (17) to obtain (14).
In practical situations the normalized error function will

never be equal to zero for all frequencies, because the internal
feedback and the control loop will never be exactly the same.
By adjusting the controller , can be made as
small as possible in the frequency range of interest. In this
range, the real process can accurately be estimated by using
open-loop identification techniques. If the normalized error
function is, for example, smaller than 0.1 for all frequencies,
the process is estimated with a relative accuracy of at least
10% in magnitude by using open-loop techniques. Similarly,
the phase of the normalized error function can be checked. The
similarity between the experimental installation and the system
depicted in Fig. 8 can be seen by comparing this figure with
Fig. 6, where .
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Fig. 10. The residual test on a validation data set.

Simulation Example:This section presents a simulation ex-
ample of a process with internal feedback. The following
transfer functions of Fig. 8 are considered:

The internal feedback is considered to be known only
approximately. The controller is adjusted to this internal
feedback as close as possible. This can be done for instance by
minimizing the following norm: [11]. Although
the process is stable, the controller must be stabilizing to
avoid instability of the controlled system. In this example, the
controller was chosen as

The transfer functions and are considered to be
unknown. Generalized binary noise with a variance of
four is used as an excitation signal for identification. is
a zero-mean normally distributed white noise with a variance
of 0.25. This results in a signal-to-noise ratio of approximately
24 dB for the output of the process. The length of the time
sequences are equal to 1000 samples. The first 500 samples
are used to identify the process and the following 500 samples
are used to validate the derived model.

First, the normalized error function is determined using
(14). In Fig. 9, this function is plotted with the 10% accuracy
margin. From this figure one can conclude that the process can
be identified with an accuracy of at least 10% in magnitude.

The standard open-loop output error (OE) identification
routine from the MATLAB Identification toolbox [12] is used
to identify the process . This results in the following
model:

Fig. 10 shows the residual test of the estimation based on
a validation data set. The auto-correlation function of the
residuals has almost white-noise behavior. It can also be seen
that the input signal and the residuals are uncorrelated. Both
properties of the residuals clearly indicate that an appropriate
model has been identified.

V. DATA COLLECTION AND PREPROCESSING

Data of the experimental installation are collected by a
multitasking computer system. Only the camera signals and the
pivot angle are used to identify the subprocesses. The camera
signals are analog signals, converted to discrete sequences by
an A/D converter. The accuracy of the camera signals is 0.3
mm on a measurement range of 150 mm.

To obtain data for identification of the subprocesses, the
steering roll is excited by a generalized binary noise (GBN)
signal [9]. The following aspects are considered for the ex-
periment design:

• the relevant frequency range of the signals;
• the order of the subprocesses;
• the time delays in the process;
• the static gain and the bandwidth of the subprocesses.
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Fig. 11. The spectral density function of the signalx2.

A. Frequency Range of the Signals

A switching probability of the GBN signal of 0.5 is used to
assign white noise properties to the excitation signal
[9]. Almost every frequency from zero to the Nyquist fre-
quency is present in this signal.

Fig. 11 shows the frequency content of the signal at
camera 2. A peak appears at a particular frequency. This
frequency is the revolution frequency of the strip through
the installation. The peak is due to the strip weld and can
be considered as a deterministic disturbance which can cause
biased estimates.

A simple method to filter this disturbance is to cut off the
peak to a predefined level, keeping the phase unchanged. After
this operation the time-domain signal is derived by using the
inverse Fourier transform. This filtering is quite effective but
it cannot fully eliminate the deterministic disturbance. On the
other hand, when the controller is active (switch closed)
it can effectively suppress the sinusoidal disturbance and no
filtering is not necessary.

A set of data measured on the experimental installation
with the control loop active is used to determine the order
of the system. The CCCL method is applied to analyze these
measurements. It is assumed that the internal feedback in the
system, in Fig. 8 represented by the transfer function
is compensated by the controller , taking the latter equal
to a pure time delay. To verify this condition, the normalized
error function (15) is plotted in Fig. 12 for the frequency range
of interest. From this figure it can be concluded that open loop
techniques for the order and delay estimation can be applied,
as the error is less than 10%.

B. Order of the Subprocesses

The order of a subprocess can be determined by using the
singular value test in the class of recently developed subspace
model identification schemes [13]. This test finds the order
by searching a gap between the singular values ordered in
a descending magnitude. Fig. 13 shows the singular values
obtained by identifying a model between the position signals

and for 12 block rows of the Hankel matrices processed
by the PI variant of the MOESP family [8]. One can clearly
observe the presence of a first-order, possibly a second-order

Fig. 12. The normalized error function�(ej!).

dynamics. The singular value test is further combined with the
prediction errors, as suggested in [13] and [8]. As the second-
order model does not lead to any significant decrease of the
prediction error, a first-order model is chosen.

C. Time Delays in the Process

Accurately estimating the time delay is a difficult task [14].
Three techniques are selected to estimate the time delays in
the process:

• cross-correlation function between two camera signals;
• impulse responses of the subprocesses;
• minimizing a loss function.

Cross-Correlation Function:The time delay of a subpro-
cess can be derived from a peak at the cross-correlation of two
camera signals. Fig. 14 shows the cross correlation function
between and .

Impulse Responses of the Subprocesses:The time delay of
a subprocess can also be derived by considering the impulse
response. Fig. 15 shows the estimated finite impulse response
of 30 lags of the first subprocess with the input signaland
the output signal . The time delay is estimated by finding the
first nonzero parameter. The parameter number multiplied by
the sample time gives the time delay. Since in Section V-B it
was concluded that a first-order model is sufficient to represent
the individual subprocesses, the dip in Fig. 15 is assumed to
be due to noise and due to nonminimum phase dynamics, as
the plot might suggest.
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Fig. 13. The singular values with respect to the order of the first subprocess.

Fig. 14. Cross-correlation betweenx1 and x2.

Fig. 15. The finite impulse response estimation of the first subprocess.

Minimizing a Loss Function:As shown in Section V-B, a
subprocess can be satisfactory described by a first-order model.
The following first-order OE model is used to determine the
time delay of a subprocess

(20)

An estimate of the time delay is determined in a classical
way by estimating parameters in (20) and by evaluating the

loss function for different values of , see Fig. 16. The time
delay that corresponds to the minimal value of the loss function
is chosen [15]. This technique is easy to use and it is less
dependent on the noise compared to the other two methods,
because the observed criterion is obtained by minimization of
the prediction errors, therefore averaging the noise effects.

D. Static Gain and Bandwidth of the Subprocesses

In this section, a nonparametric identification technique
is used to obtain an initial estimate of the subprocesses.
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Fig. 16. The loss function with respect to the discrete-time delaynk.

Fig. 17. Bode plot of the subprocessG1.

With spectral analysis the static gain and the bandwidth of
a subprocess can be obtained [15]. Fig. 17 shows the results
of spectral analysis of the first subprocess.

The static gain of the first subprocess is almost equal to
one and the bandwidth is approximately 0.5 Hz. The other
subprocesses yield similar results. The information obtained
by spectral analysis are used to determine the sampling period
and the appropriate filters for data preprocessing.

VI. A PPLICATION OF THE FIVE STRATEGIES

In this section, the application of the five closed-loop
identification strategies from Section IV on real-life data is
discussed. The steering roll is excited with the generalized
binary noise and the lateral strip positions are measured by
cameras. To compare the five different strategies, the results
at camera 3 (signal ) are shown. This signal is chosen delib-
erately, as the results for all the subprocesses are comparable.
Refer to Fig. 1 for the definition of the camera locations and
to the block diagram of Fig. 6 for the definition of different
signals. Fig. 18 shows the measured lateral strip position,
and the input signal (without the control loop).

The signal is influenced by two different effects. The
high-frequency part is due to the GBN signal and the low-
frequency part is a result of the mechanical feedback. First,
the results of the three strategies without the control loop are
compared and simulated with validation data.

TABLE I
THE PARAMETERS OF THESECOND SUBPROCESSG2; SEE FIG. 6

Fig. 19 shows the results of strategy 1 (open-loop identifi-
cation) which gives a rather accurate model. Strategies 2 and
3 yield slightly worse results in this case, see Table I for the
numerical values of the estimated parameters and the related
loss functions. As there is no remarkable difference in the true
and simulated signals with respect to Fig. 19, the graphs are
not shown here.

Second, the identification strategies of the experimental in-
stallation with the control loop are discussed. The deterministic
disturbance due to the strip weld is suppressed by this loop.
For this reason better results are expected with the following
two strategies than with the previous ones. The fourth strategy
is the application of the two-stage method on a system with
two closed-loops. Fig. 20 shows the results of this strategy.

From Table I one can see that this method gives better
results than the first three strategies. The last considered strat-
egy is the CCCL. Because open-loop techniques are applied
to a closed-loop system under the condition that the control
loop is approximately equal to the mechanical loop, fewer
identification stages are needed to identify the subprocesses.
Since inaccuracies are introduced at each stage, fewer stages
will in general give better results. The normalized error
function due to this approximation is shown in Fig. 12.
The results of this strategy are given in Fig. 21, which shows
an accurate approximation of the measured signal .

The results of the five identification strategies are summa-
rized in Table I. In this table the parametersand of the
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Fig. 18. Top: Measured signalx1; bottom: Steering roll angle.

Fig. 19. Method 1 (open-loop identification): Measured (solid) and simulated (dashed) signalx3.

OE model and the loss function [15] of the second subprocess
are given. The parameter is equal to one.

The fifth method gives the lowest value of the loss function.
This is because fewer stages are needed to identify the
subprocesses, or formulated differently, because open-loop
methods are directly applied in the absence of the deterministic
disturbance. The results of the CCCL method are used to
obtain a physically interpretable model of the experimental
installation.

VII. A PHYSICALLY INTERPRETABLE

MODEL OF THE INSTALLATION

In this section, a physically interpretable model for the
strip guidance process over cylindrical rolls is derived. The
assumption made here is that the model parameters depend on
the strip speed and tension. In Section VI, one can see that

the subprocesses are very well represented by a first-order OE
model

(21)

To determine a physically interpretable model, nine different
models are estimated, five for different strip speeds and five
for different strip tensions

The following first-order continuous-time model is used:

(22)
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Fig. 20. Method 4 (two-stage method): Measured (solid) and simulated (dashed) signalx3.

Fig. 21. Method 5 (CCCL): Measured (solid) and simulated (dashed) signalx3.

Fig. 22. The time delays with respect to the strip speed and the pass length.

The discrete-time parameters are translated to continuous time
parameters by

(23)

By plotting these parameters for all the models against the
strip speed and the strip tension, the dependency of the model
parameters can be examined. From the identification results,
it can be concluded that there is no clear correlation between
the time delays and the strip tension. Fig. 22 shows the time
delays with respect to the pass length (see Fig. 4) and
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Fig. 23. Time constant of subprocessG2 with respect to the strip tension.

Fig. 24. Time constant of subprocessG2 with respect to the strip speed.

Fig. 25. Measured signal at camera 5 (solid) compared with the simulated signalx5 of the obtained physical model (dashed) and the simulated signal
of the model according Campbell [3] and Shelton [4] (dashed-dotted).

the strip speed. These time delays are compensated for the
delay due to the roll, as indicated in (2). One can conclude
that the linear approximations intersect the point , and
the time delay of a subprocess can be approximated by

(24)

with

empirically determined length [m];
the pass length [m];
the delay due to the roll [s], see (2);
the total time delay [s];
scaling constant.
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Fig. 23 shows the time constant of the second subprocess with
respect to the strip tension. Again, there is no remarkable
dependency of the time constant on the strip tension.

Fig. 24 shows that the time constant depends on the strip
speed, as is expected. The time constant, as a function of the
strip speed, can be approximated by

(25)

The scaling constants are for each subprocess obtained by
least squares estimation. By observing the values of the con-
stants , no functional dependency in terms of the geometric
parameters of the installation can be directly proposed as in
the case of the time delays. This is a topic of further research.

The last parameter of the continuous model is the gain factor
. The identification results have shown that the gain factors

are independent of the strip speed and tension and are very
close to one. Hence, the gain is approximated by for
all subprocesses.

Finally, these results can be combined in a physically
interpretable model of the experimental installation

(26)
To validate this model a special experiment is conducted

under process conditions different from those used for the
construction of the model. The strip speed and the strip
tension for validation are

and

Again, the position at camera 5 of the installation is simu-
lated. Four first-order models are connected in series. Fig. 25
shows the measured signal at camera 5 (solid line) and the sim-
ulated signal (dashed line) from our physically interpretable
model. The simulated output from the model of Campell [3]
and Shelton [4] (dashed-dotted line) is also plotted. It can be
seen that the model derived in this article gives more accurate
results.

VIII. C ONCLUDING REMARKS

An experimental installation is used at Hoogovens to study
the strip tracking behavior in processing lines. Contrary to
these lines, this installation contains an internal feedback due
to the use of an endless strip. To obtain results transferable
from experiments with the experimental installation to the
processing lines, an open-loop model of the experimental
installation is needed. Application of the models from the
literature to the experimental installation gives unsatisfactory
results. Hence, closed-loop identification is used to obtain
an open-loop model of the installation. Five different iden-
tification strategies are compared for one single operating
condition and the strategy with the minimal prediction error
(loss function) is selected to derive a physically interpretable

model. The CCCL strategy proposed in this paper gives the
minimal loss. The dependencies of the model parameters on
the process parameters are examined and incorporated in
a physically relevant model, which contains a few scaling
constants. The scaling constant denoted, related to the
strip speed, requires further research to obtain a functional
dependency in terms of geometric data of the installation. The
derived model gives more accurate results of the strip guidance
process through the experimental installation than the models
described in [3] and [4].
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