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Abstract—A physically interpretable model of an experimental At Hoogovens IJmuiden, an experimental installation is used
strip guidance installation, operated at Hoogovens Research and to study the strip tracking behavior in processing lines. Fig. 1
Development in the Netherlands, is derived by means of system g,\s this experimental installation containing one steering
identification. This process consists of an offset pivot guide steer- Il and fi lindrical quid Is. The | [ stri "
ing roll with five degrees of freedom, four cylindrical guide rolls, Ol @nd Tive cylindrical guide rolls. the atera .St”p pO.SI'[Ion
and one driving roll. In this experimental installation, an endless IS measured by six line-scan cameras. In this experimental
steel strip is created by welding the ends of the strip to allow for installation an endless steel strip is created by welding the
continuous experimentation. As this endless strip introduces an ends of the strip, which introduces an internal feedback in

internal mechanical feedback in the process, a closed-loop identi- o ocess The lateral strip position at a certain point in
fication problem arises. Five identification strategies are applied

and compared for a single operating condition, determined by the the. experimental installation depend; not only on the §teering
strip speed and tension, using experimental data. One of these action but also on the feedback. This internal feedback is called
strategies i§ called the_ conFroIIer compensation in closed-loop the mechanical feedback.

strategy. This new technique is proposed to reduce the closed-loop However, rather than studying the strip guidance process

identification problem into an open-loop one by using a regulator . . . . . .
to compensate the internal feedback due to the endless strip. in the experimental installation, the aim of this research was

From the preliminary experiments for one operating condition, O dev_elop a model_for real processing lines. In_thesg. "”931
this strategy is selected for further analysis as it yields the smallest there is no mechanical feedback, and thus the identification

prediction error. The physically interpretable model is obtained results obtained for the experimental installation cannot be
by identifying a linear time-invariant system for different opera-  gjractly applied to the processing lines. In order to transfer the

tion conditions, and by expressing the model parameters in terms . . . .
of geometric and kinematic parameters that characterize the '€SUILS t0 the processing lines, a physically interpretable open-

strip guidance installation. The model yields improved prediction 00p model of the experimental installation is needed. In our
capabilities compared to other models proposed in the literature. context, physical interpretability requires that the model pa-

The results presented in this paper are achieved in cooperation rgmeters only depend on geometrical and kinematic quantities
between Hoogovens Research and Development and the Controlﬂ1at characterize the strip guidance in process lines
Laboratory at the Delft University of Technology. . )
T _ _ Apart from achieving the above goal, the presented results
Index Terms—Closed-loop identification, physically interpret-  haye a more general research interest. More precisely, the
able modeling, strip guidance, subspace identification. identification strategy followed shows that identifying physical
real-life systems is far more than collecting data and applying
|. INTRODUCTION standard “black-box” identification techniques. Contrary to this

RACKING problems in processing lines of the Steeepften simple-minded view on system identification, the current

industry generally result in damage and partial rejeStudy does the following:
tion of the steel strip, often combined with damage to the 1) Shows the importance of structuring the identification
installation and delay in the production process [1]. Preshaped Problemat hand. In this step, the different subsystems
rolls and steering rolls are used to reduce these tracking and their relationships are highlighted, resulting in a
problems [2]. To properly control the strip guidance process  block-schematic representation of the system. Based on
by means of steering rolls, a model of this process is needed. this step, the type of identification problem and a class
In the literature, a first-order model of strip guidance over  of suitable identification methods can be selected.
a cylindrical roll was proposed by Campell [3] and Shelton 2) Compares four different identification methodsich
[4]. An extension to a second-order model of this process was can be applied to linear systems operating in closed
suggested by Shelton [5]. loop, with different feedback loops. These four methods
include three existing strategies, namely the direct use of
input and output data of the system when the delay of the
Manuscript received April 30, 1996; revised February 19, 1997 and April process is sufficiently large [6], the two-stage approach
2,'\1/|99;- %ecgmgggg%ia?‘y /gssgcaigi: Egi;gr,wl?- l\-/g*:rf]gzngh are with the [7], and the approach based on subspace identification
Depértrﬁenf of. Electrical E'ngi.neering,' Control .Laboratogy, Delft University [8]. One new technique was developed in the course
of Technology, 2600 GA Delft, The Netherlandsl. of this research, called the controller compensation in

C. H. L. Limpens and J. B. Otten are with the Department of Research closed loop (CCCL).

and Development, Koninklijke Hoogovens, NL-1970 CA IJmuiden, The S . .
Netherlands? : 9 3) Highlights the importance of preprocessing the measured
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Fig. 1. The experimental installation.

deterministic trends as well as for time delays in the
process. —O

The obtained model is validated under experimental condi- <
tions that were not considered in the process of constructing 4 DX,
this model. :

This paper is organized in eight sections: Section Il presents |
a first-order physical model of strip guidance over cylindrical
guide rolls. In Section Ill, the experimental installation is .
analyzed and a block diagram of this installation is derived. :
Four standard identification strategies to solve the problem are ()
reviewed in Section IV and a new method called controller /
compensation in closed loop is proposed. Section V describes BRNAN

5
data collection and data preprocessing. The five identification XnH"*.\ \

90° contact

roll n

strategies proposed in Section IV are applied to real-life data

of the experimental installation in Section VI. The individual

strategies are evaluated and the most accurate and reliable one

is used to derive a physically interpretable model of the ifig- 2. Strip movement over a cylindrical roll
stallation as discussed in Section VII. Section VIII concludes

the paper.
the angle of skew and to the velocity of the strip. Campbell
Il. PHYSICAL FIRST-ORDER MODELLING [3] derived the following first-order model for the lateral strip
OF LATERAL STRIP MOVEMENT movement over a cylindrical roll:
To develop equations that describe the lateral movement of

a strip is a difficult task. Many factors influence the behavior Xnt1(s) 1 L
. . . . = wherer = — 1)

of the strip, e.g., the physical properties of the strip, the nature X,.(s) 1+7s’ Vs

of the surface of the strip and of the rolls, the misalignment

of the rolls, friction, the mechanical rigidity, and the vibration

of the machine structure. In this section, a first-order physicand

model for the lateral strip movement over a cylindrical rollX,,.;(s) Laplace transform of the position signal just after

is discussed. the roll [m];

Consider two parallel rolls shown in Fig. 2. When the strip  X,,(s) Laplace transform of the position signal before
moves over a perfect roll, but the wrap of the strip is skewed on the roll at distance. [m];
the roll, the strip will move sidewise in a direction that tends to L distance from the point wherg, is measured to
reduce the unbalanced forces which act upon the strip. The rate the roll [m];

of sideways movement will be approximately in proportion to vs  Strip speed [m/s].
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Fig. 3. Measured position at camera 5 (solid) compared with the simulated position of the model given by (3) (dashed-dotted).

The subscriptn refers to thenth subprocess. Shelton [4]
introduced a time delay to this model

Vs

where L,o1 is the length of the contact area between the roll
and the strip (in meters). The model now becomes

Xpq1(s) e Tas

X,(s) 1+r7s ®)

pass
Four of these first-order models with a delay are connected

in series and applied to predict the lateral strip position at

camera 5 of the experimental installation, using the actual

measurement of the position at camera 1 as input. The model

parameters are obtained by measurements of the necessary

geometrical quantities. Fig. 3 shows the simulation results of ,F

the physical model. The actual model parameters cannot be

given because of industrial confidentiality. camera n+1
The performance of this model would not be satisfactory for

designing a controller necessary to keep the strip in the center

of the rolls. A series connection of four second-order models \

according to Shelton [5] gives similar unsatisfactory results.
This is the reason why an open-loop model of the installation
is derived by identification. L

roll

Fig. 4. A subprocess.
I1l. M ODELING OF THE EXPERIMENTAL
STRIP GUIDANCE INSTALLATION . .
) ) ) i o steering roll is expressed by
In this section, the experimental installation is analyzed. By

1|l

cameran

Direction

dividing the installation into subprocesses, a block diagran¥(t) = zo(t) + Az(t), whereAz(t) = Lopg sinp™(¢)

can be derived. The lateral strip displacements from camera (4)

1 to camera 6 are divided into elementary subprocessesV‘éi?re

shown in Fig. 2. Thus, the identified models can be compared x(t) lateral strip position after the steering roll

with the theory according to Campell [3] and Shelton [4]. The [m];

first subprocess is from camera 1 to camera 2, the second xo(t) lateral strip position before the steering roll

subprocess from camera 2 to camera 3 and so on, see also [m];

Figs. 4 and 6. Az(t) lateral strip displacement due to the steering
Another important element of the installation is the steering roll angle [m];

roll. An offset pivot guide (OPG) steering roll [2], shown ¢ (t) OPG steering roll pivot angle [rad];

in Fig. 5, is used. The lateral strip position due to the OPG Lops  length of the offset pivot guide frame [m].
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Xl lateral strip position at camera 1 due to the
mechanical loop [m];

Xdes  desired lateral strip position at camera 6
[m];

X, actual lateral strip position at camerdm];

T control on/off switch;

8P excitation signal (generalized binary noise)
[9] [rad].

pivot poant
IV. CLOSED-LOOP IDENTIFICATION
As shown in Fig. 6, a control loop can be added to the
system. Hence, there are two possibilities to identify the
process:
L . + identification of the installation without the control loop
- (switch 77 open);

>
i | . « identification of the installation with the control loop
i : strip .
Pivot point Q C/ / (switch 17 closed).
|

-
b

In this section three identification strategies of the experi-
'* mental installatiorwithout the control loopand two strategies
of the installationwith the control loopare discussed.

Directi e . .
] trection A. ldentification of the Installation Without the

Control Loop (SwitcHl; Open)
An advantage of the identification without the control loop

®) is the reduction of the block diagram of Fig. 6 to a single-

) ) ) ) ] o loop problem. Standard techniques can be applied to solve
Fig. 5. The offset pivot guide steering roll. (a) Top view. (b) Side view. this problem. The first strategy discussed is an open-loop one.

Since an offset pivot guide steering roll with only one Method 1—Open-Loop ldentificatiomccording  to  [6],

roll is used in the experimental installation, the length of t %pen-loop |der_1t|f|cat|or_1 technlques can be applied to a closed-
OPG frame reduces to the diameter of the steering roll. T 0P system if the discrete-time delay, of the process
OPG steering roll can be divided into two processes. The fifg; greater than '.[he ord.er of thg sys_tem. Hence, a _model
process describes the transfer function from the desired oP subproc.essm is obtained by identifying the following
angle to the actual steering angle. This process contains main system:

the actuator dynamics of the steering roll and is considered

ideal, which means that the transfer function of this process Tpy1(k) = Gu(@)zn(k) + Hu(g)eo(k) (5)

is equal to one, i.e., the provided steering angle is equal to

the actual steering angle. This consideration is verified lith

measurements. The second process introduces a nonlinearity 7, (k) input signal of subprocess;

to the system. This nonlinearity is given by (4) and has a zn41(k) output signal of subprocess

negligible effect, since the steering roll angle is limitedH8°. Gn(q) transfer function of subprocess
There is still one process left. This is the displacement H,(q) noise model of subprocess

process from camera 6 via the steering roll back to camera eo(k) zero-mean white noise process.

1. We can consider this as the mechanical feedback in tge argument: denotes discrete time.

process. In Fig. 6, all subprocesses are connected together \ethod 2—State-Space Identification by MOESPre sec-

a block diagram. An additional control loop is added whicq strategy requires redrawing the procgsf Fig. 6 to

can be disconnected by swit@h. This control loop is used to g single-input, multiple-output (SIMO) structure shown in
reduce the effects of disturbances in identification, as explainp@_ 7. In this structure, the multivariable output error state
later on. Because of the two feedback loops in Fig. 6 a closegyace-past input (MOESP-PI) scheme [8] can be applied to
loop identification method is needed to determine an open-loggtimate the open-loop subprocesses frejn [obtained by

model for the individual subprocesses. 2 = 2Rsing™, see (4)] to the positions:;, for i =
Fig. 6 contains the following signals: 1,2,---,6 of the remaining cameras in the first step. In the next
veon  angle computed by the controller [rad]; step, noise-free signals;, : = 1,2,---,6 are reconstructed
o actual angle of the steering roll [rad]; from the obtained models. The subprocesses are identified
X3 lateral strip displacement at camera 1 dubetween the noise-free signalsandz;,;, fori =1,2,---,5

to the steering roll angle [m]; with open-loop techniques in the last step.
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Fig. 6. Closed-loop system with proce$s and controllerC.

. X, experiments with the control loop. The advantage of experi-
ments with the control loop is the absence of a deterministic

Process disturbance due to the strip weld, as discussed in more detail
X, = X, " % in Section V.
Method 4—Two-Stage Method Applied to Two Closed Loops:
Process X The first strategy for identification of the experimental instal-
X, =X ’ lation with the additional control loop active (see Fig. 6) is
the two-stage method [7] applied to a system with two closed
% + LI RN Pmi)ess .+ x, loops. These loops are the control loop (outer loop) and the
+ X X mechanical feedback loop (inner loop). In the first step, the
sensitivity functionsS; of the outer control loop is estimated.
Process . . or :
—lxox [ — X Next, the noise-free signal;" is reconstructed by
Xfr = 2Rsing™ wheregs = S, @)
1 Process

S —— X . . .
X, = X § In the second step, a noise free sigmalis constructed by
identifying the sensitivity functiorb, of the inner loop. With

X" Process this noise-free signal the individual subprocesses are identified
™ x - in an open-loop way according to strategy 1.
: ‘ Method 5: Controller Compensation in Closed Loophe

last strategy is called controller compensation in closed loop
(CCCL) [10]. The control loop is used to compensate the
. ) internal feedback loop. When the control loop and the internal
Method 3—Two-Stage Methodthe third strategy for iden- feedback loop are equal, the subprocesses can be identified

tification W't_hOUt the control I_oop IS th_e two-stage metho‘éonsistently in an open-loop way. A process with an internal
[7]. In the first stage, the noise-free signal of camera 1 {8edback is considered as shown in Fig. 8.
reconstructed by identifying the sensitivity functighof the The output of the system is given by
closed-loop system of Fig. 6
1 y(k) = Go(q)u(k) + Ho(g)eo(k) (8)

S=— - 6
1+ GGy Gg ©) with

In the second step, a model of the first subprocess is obtained y(k) output signal of the process;
by estimating the process between the reconstructed noise-free u(k) input signal of the process;
signal of camera 1 and the measured signal of camera 2. Then, co(k)  zero-mean white noise.
the second subprocess can be identified, etc. The input signaki(k) of the processGo(q) is

The essential difference between method 2 (MOESP) and
method 3 (two-stage method) is that the two-stage techtk) = (k) + (Fo(g) — C(q))y(k) — Fo(q)Ho(@)eo(k). (9)
nigue must be applied to the subprocesses sequentially, whil
MOESP identifies the subsystems in a parallel structu
avoiding accumulation of errors.

Fig. 7. Procesd” rewritten in a parallel structure.

?)efining the difference transfer functidiiq) of the control
rIgbp C(g) and the internal feedbacky(g) as

8(q) = C(q) — Fo(q) (10)

B. Identification of the Installation with the N . .
Control Loop (SwitchT} Closed) and substituting (9) and (10) into (8), an open-loop expression
of the system can be derived

A disadvantage of experiments without the control loop
is the presence of a deterministic disturbance due to thg(k) — Goi@T k) M}I (q)eo(k)
strip weld. This disturbance can cause biased estimates. The 1+ Go(g)é(q) 1+ Go(g)é(q)
next section presents two identification strategies which need = G(q)r(k) + H(q)eo(k). (11)
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Fig. 8. System with internal feedback and an additional control loop.

The transfer functiorG(¢) can be decomposed as

5 5(q)Gola) )
Glg) =G 1— —2 20 ) = Golg)(1 — .
(@ = Gola) (1~ 719290} — Gola .
Heree(q) is an error term which equals zero when the contro}i o1 10% aceuracy marein 7
loop and the internal feedback are exactly the same. Theoram, - o Chheemmermasm o

function
=
[

4.1 states the situation in which open-loop identification of th§ |

process(d, in Fig. 8 is allowed. 5005 [\f/\/v\ -
Theorem 4.1 (CCCL):Consider the system of Fig. 8. If the — N\/\/W WM

following conditions are satisfied: 10072 ’ ' o ‘ “mo 0
]_) GO((]) is Stab|e; Frequency [rad/scc]

2) 6(q) = Clg) — Fo(q) = 0, Vg
3) r(k) is persistently exciting of sufficient order;
then Gy(q) can be identified consistently from{k) andy(k)
using By combining (15) and (16), the normalized error function is
determined by

Fig. 9. Normalized error functiom(e’*).

y(k) = Go(g)r(k) + Ho(q)(1 — Go(@)Fo(g))eo(k). (13)

¢, (w
Proof: The proof follows directly by substituting(q) = (W)
0in (12). o , _
In the ideal situation of Theorem 4.1, the error terfy) USing (9), 6(¢’*) can be expressed in terms of the cross-
in (12) equals zero. Since in practice this will hold onlyPectral density function of(k) and u(F)
approximately, it is useful to estimate this error term from o
the experimental data, as stated in Lemma 4.2. Cru(w) = Crr(w) = (") Lry (). (18)
Lemma 4.2 (Normalized Error Function}et ¢,..(w) be
the auto-spectral density function efk), let ®,.,(w) be the

~—

o) = 8(e)

(17)

K

From (18) we expresé(c’*) as

cross-spectral density function efk) and (k) and letr(k) o By (w) — (W)
and ¢(k) be statistically independent. An estimate of the 6(e’) = ) (19)
normalized error function:(¢?*) is given by "
- By () — Br () and substi_tute in (17_) to obtain (14)._ _ O _
() = = A (14) In practical situations the normalized error function will

@rr(w) never be equal to zero for all frequencies, because the internal

feedback and the control loop will never be exactly the same.
By adjusting the controllelC(q), §(¢’*) can be made as
small as possible in the frequency range of interest. In this
8(e7)Go(e?*) 15 range, the real process can accurately be estimated by using
(15) open-loop identification techniques. If the normalized error
function is, for example, smaller than 0.1 for all frequencies,
Considering the cross-spectral density-0f) andy(k), by us- the process is estimated with a relative accuracy of at least
ing (11) and the assumption thaf(k) andr(k) are statistically 10% in magnitude by using open-loop techniques. Similarly,
independent we have the phase of the normalized error function can be checked. The
G (o similarity between the experimental installation and the system
@, (w) = Q(fz ) — B, (w). (16) depicted in Fig. 8 can be seen by comparing this figure with
1+ 6(e’)Go(e’*) Fig. 6, wherezdes = 0.

Proof: In the frequency domain, the error teafy) from
(12) is given by

() =13 5(e7)Goleiw)’
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Fig. 10. The residual test on a validation data set.

Simulation Example:This section presents a simulation ex- The standard open-loop output error (OE) identification
ample of a process with internal feedback. The followingputine from the MATLAB Identification toolbox [12] is used

transfer functions of Fig. 8 are considered: to identify the process7o(g). This results in the following
0.1362-1 model:
G _ 01362
* T 10872271 ) 0.1415-1
0.362 Glz)= ————.
Fo = 1—0.869z~1

1-0.3412—1 - 0.15322
Ho=1.
0 Fig. 10 shows the residual test of the estimation based on

The internal feedbaclké), is considered to be known onlya validation data set. The auto-correlation function of the
approximately. The controller is adjusted to this internaksiduals has almost white-noise behavior. It can also be seen
feedback as close as possible. This can be done for instancetat the input signal and the residuals are uncorrelated. Both
minimizing the following norm:||Fy — Co||oo [11]. Although properties of the residuals clearly indicate that an appropriate
the process7, is stable, the controller must be stabilizing tanodel has been identified.

avoid instability of the controlled system. In this example, the

controller was chosen as

o 0.2 V. DATA COLLECTION AND PREPROCESSING
1-05z71 Data of the experimental installation are collected by a
The transfer functionsG, and H, are considered to be multitasking computer system. Only the camera signals and the
unknown. Generalized binary nois¢k) with a variance of Pivot angle are used to identify the subprocesses. The camera
four is used as an excitation signal for identificatiop(k) is ~Signals are analog signals, converted to discrete sequences by
a zero-mean normally distributed white noise with a varian@ A/D converter. The accuracy of the camera signals is 0.3
of 0.25. This results in a signal-to-noise ratio of approximatefjm on a measurement range of 150 mm.
24 dB for the outpuy(k) of the process. The length of the time  TO obtain data for identification of the subprocesses, the
sequences are equal to 1000 samples. The first 500 samplesring roll is excited by a generalized binary noise (GBN)
are used to identify the process and the following 500 sampRignal [9]. The following aspects are considered for the ex-
are used to validate the derived model. periment design:

First, the normalized error function is determined using ¢ the relevant frequency range of the signals;
(14). In Fig. 9, this function is plotted with the 10% accuracy ¢ the order of the subprocesses;
margin. From this figure one can conclude that the process cam the time delays in the process;
be identified with an accuracy of at least 10% in magnitude. ¢ the static gain and the bandwidth of the subprocesses.
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A. Frequency Range of the Signals

A switching probability of the GBN signal of 0.5 is used to

assign white noise properties to the excitation sight&r (k) g 02

[9]. Almost every frequency from zero to the Nyquist fre-E

guency is present in this signal. 50157 _ 1
Fig. 11 shows the frequency content of the sigmal at é I B 10% accuracy margin ]

camera 2. A peak appears at a particular frequency. T

. ; : £
frequency is the revolution frequency of the strip throughzso_gs
the installation. The peak is due to the strip weld and can

be considered as a deterministic disturbance which can cause 0" ——— ——— "
biased estimates. Frequency [rad/sec]

A simple method to filter this disturbance is to cut off the
peak to a predefined level, keeping the phase unchanged. Afigr12. The normalized error functior(e’*).
this operation the time-domain signal is derived by using the
inverse Fourier transform. This filtering is quite effective budlynamics. The singular value test is further combined with the
it cannot fully eliminate the deterministic disturbance. On thgrediction errors, as suggested in [13] and [8]. As the second-
other hand, when the controller is active (swith closed) order model does not lead to any significant decrease of the
it can effectively suppress the sinusoidal disturbance and piediction error, a first-order model is chosen.
filtering is not necessary.

A set of data measured on the experimental installati@ Time Delays in the Process

Wf'thh the contro_lniooggétlve 'Shuje.d to cli_et(;armme :he oLderAccurater estimating the time delay is a difficult task [14].
of the system. € method Is applie to analyze t, firee techniques are selected to estimate the time delays in
measurements. It is assumed that the internal feedback in [I}I?g process:
system, in Fig. 8 represented by the transfer func ) . . .
Y 9 P y 1#0y) ¢ cross-correlation function between two camera signals;

is compensated by the controlléX(q), taking the latter equal ) | f th b i
to a pure time delay. To verify this condition, the normalized IMPUISe TESponses ot the SUbprocesses,
* minimizing a loss function.

error function (15) is plotted in Fig. 12 for the frequency range i ) _
of interest. From this figure it can be concluded that open loop Cross-Correlation Function:The time delay of a subpro-

techniques for the order and delay estimation can be appli€§SS can be derived from a peak at the cross-correlation of two
as the error is less than 10%. camera signals. Fig. 14 shows the cross correlation function

betweenz; and xz-.
Impulse Responses of the SubprocesSdw time delay of

B. Order of the Subprocesses a subprocess can also be derived by considering the impulse

The order of a subprocess can be determined by using teeponse. Fig. 15 shows the estimated finite impulse response
singular value test in the class of recently developed subspate0 lags of the first subprocess with the input signaland
model identification schemes [13]. This test finds the ordére output signat,. The time delay is estimated by finding the
by searching a gap between the singular values orderedfiist nonzero parameter. The parameter number multiplied by
a descending magnitude. Fig. 13 shows the singular valube sample time gives the time delay. Since in Section V-B it
obtained by identifying a model between the position signalgas concluded that a first-order model is sufficient to represent
x1 andz, for 12 block rows of the Hankel matrices processette individual subprocesses, the dip in Fig. 15 is assumed to
by the PI variant of the MOESP family [8]. One can clearlype due to noise and due to nonminimum phase dynamics, as
observe the presence of a first-order, possibly a second-ortter plot might suggest.
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Minimizing a Loss Function:As shown in Section V-B, a loss function for different values of;, see Fig. 16. The time
subprocess can be satisfactory described by a first-order modelay that corresponds to the minimal value of the loss function
The following first-order OE model is used to determine this chosen [15]. This technique is easy to use and it is less

time delay of a subprocess dependent on the noise compared to the other two methods,
because the observed criterion is obtained by minimization of
Tpy1(k) + frzn(k—1) the prediction errors, therefore averaging the noise effects.

= b zall =) + e(k) + fre(k —1). (20) D. Static Gain and Bandwidth of the Subprocesses

An estimate of the time delay is determined in a classical In this section, a nonparametric identification technique
way by estimating parameters in (20) and by evaluating tige used to obtain an initial estimate of the subprocesses.
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Fig. 16. The loss function with respect to the discrete-time delay

10" N o R TABLE |
THE PARAMETERS OF THE SECOND SUBPROCESS#2; SEE FIG. 6
ﬁlOO F method  parameter by parameter f; (fo = 1) loss function
[aa]
=]
3 ! ] 1 0.1676 + 4.754e-3  -0.8371 + 5.141e-3 0.4184
B
g 2 0.1804 + 6.662¢-4 -0.8072 £ 7.506e-4 0.4221
2
10
3 0.1562 £ 1.229¢e-2  -0.8346 + 1.422¢-2 0.6884
00 e e g 0.1706 £+ 4.246e-3 -0.8335 + 4.500e-3  0.4741
10 10 10 10
Frequency frad/s] 5 0.1718 + 2.485¢-3 -0.8326 + 2.621e-3 02721

Fig. 17. Bode plot of the subproceés; .

With spectral analysis the static gain and the bandwidth of19- 19 shows the results of strategy 1 (open-loop identifi-
a subprocess can be obtained [15]. Fig. 17 shows the resG@EON) which gives a rather accurate model. Strategies 2 and
of spectral analysis of the first subprocess. 3 yleld_ slightly worse result_s in this case, see Table | for the
The static gain of the first subprocess is almost equal %Jmencal_ values of the_estlmated parame_ters and _the related
one and the bandwidth is approximately 0.5 Hz. The othl9ss fL_mctlons. A_s there is no remarkable_ difference in the true
subprocesses yield similar results. The information obtain88d Simulated signals with respect to Fig. 19, the graphs are
by spectral analysis are used to determine the sampling peritfi Shown here. , , ,
and the appropriate filters for data preprocessing. Sec.ond, .the identification strateg|es of the expenmenFa! in-
stallation with the control loop are discussed. The deterministic
disturbance due to the strip weld is suppressed by this loop.
For this reason better results are expected with the following
In this section, the application of the five closed-loopwo strategies than with the previous ones. The fourth strategy
identification strategies from Section IV on real-life data i the application of the two-stage method on a system with
discussed. The steering roll is excited with the generalizédo closed-loops. Fig. 20 shows the results of this strategy.
binary noise and the lateral strip positions are measured byrrom Table | one can see that this method gives better
cameras. To compare the five different strategies, the resudsults than the first three strategies. The last considered strat-
at camera 3 (signalz) are shown. This signal is chosen delibegy is the CCCL. Because open-loop techniques are applied
erately, as the results for all the subprocesses are comparatlea closed-loop system under the condition that the control
Refer to Fig. 1 for the definition of the camera locations arldop is approximately equal to the mechanical loop, fewer
to the block diagram of Fig. 6 for the definition of differentidentification stages are needed to identify the subprocesses.
signals. Fig. 18 shows the measured lateral strip positign Since inaccuracies are introduced at each stage, fewer stages
and the input signaps>»(k) (without the control loop). will in general give better results. The normalized error
The signalz; (k) is influenced by two different effects. Thefunctione(e?>) due to this approximation is shown in Fig. 12.
high-frequency part is due to the GBN signal and the lowFhe results of this strategy are given in Fig. 21, which shows
frequency part is a result of the mechanical feedback. Firaf) accurate approximation of the measured sigaét).
the results of the three strategies without the control loop areThe results of the five identification strategies are summa-
compared and simulated with validation data. rized in Table I. In this table the parametégsand f; of the

VI. APPLICATION OF THE FIVE STRATEGIES
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Fig. 19. Method 1 (open-loop identification): Measured (solid) and simulated (dashed) signal

OE model and the loss function [15] of the second subproceahs subprocesses are very well represented by a first-order OE

(G, are given. The parametdy is equal to one. model
The fifth method gives the lowest value of the loss function. b
This is because fewer stages are needed to identify the y(k) = ¢ ™ 0 u(k). (21)

subprocesses, or formulated differently, because open-loop 1+ fig™?

methods are directly applied in the absence of the determlmsflg determine a physically interpretable model, nine different

disturbance. The results of the CCCL method are used t0 . , . . i
. . ; . odels are estimated, five for different strip speeds and five
obtain a physically interpretable model of the experiment ; . '

or different strip tensions

installation.
(Usv 0'5) = [(Ulv 05)7 (U27 05)7 (U37 05)7 (U47 05)7 (Uf)v 05)
VII. A PHYSICALLY INTERPRETABLE (vs,04), (vs,03), (vs, 02), (vs,01)].
MODEL OF THE INSTALLATION

In this section, a physically interpretable model for théhe following first-order continuous-time model is used:
strip guidance process over cylindrical rolls is derived. The
assumption made here is that the model parameters depend on Xnt1(s) __ K o Tus. (22)
the strip speed and tension. In Section VI, one can see that Xn(s) I+7s
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Fig. 22. The time delays with respect to the strip speed and the pass length.

The discrete-time parameters are translated to continuous tiBye plotting these parameters for all the models against the

parameters by strip speed and the strip tension, the dependency of the model
parameters can be examined. From the identification results,
it can be concluded that there is no clear correlation between

Ty = npTs. (23) the time delays and the strip tension. Fig. 22 shows the time
delays with respect to the pass lendih..; (see Fig. 4) and
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Fig. 25. Measured signal at camera 5 (solid) compared with the simulated signafl the obtained physical model (dashed) and the simulated signal
of the model according Campbell [3] and Shelton [4] (dashed-dotted).

the strip speed. These time delays are compensated for it

delay due to the roll, as indicated in (2). One can conclude Lo empirically determined length [m];
that the linear approximations intersect the pdibg, 0), and Lpass  the pass length [m];
the time delay of a subprocess can be approximated by T.on  the delay due to the roll [s], see (2);
Lpass — Lo Ty the total time delay [s];
Ti=Ton+p——— (24)

Vs 15} scaling constant.
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Fig. 23 shows the time constant of the second subprocess withdel. The CCCL strategy proposed in this paper gives the
respect to the strip tension. Again, there is no remarkabt@nimal loss. The dependencies of the model parameters on
dependency of the time constant on the strip tension. the process parameters are examined and incorporated in
Fig. 24 shows that the time constant depends on the stapphysically relevant model, which contains a few scaling
speed, as is expected. The time constant, as a function of teastants. The scaling constant denoted related to the
strip speed, can be approximated by strip speed, requires further research to obtain a functional
dependency in terms of geometric data of the installation. The
) derived model gives more accurate results of the strip guidance
process through the experimental installation than the models

&
Tn:_n- (
Vs

described in [3] and [4].

The scaling constants,, are for each subprocess obtained by
least squares estimation. By observing the values of the con-
stantsa,,, no functional dependency in terms of the geometrkil]
parameters of the installation can be directly proposed as in
the case of the time delays. This is a topic of further research.
The last parameter of the continuous model is the gain factof!
K. The identification results have shown that the gain factorg]

are independent of the strip speed and tension and are ve[fﬂ/

close to one. Hence, the gain is approximatediby= 1 for

all subprocesses. [5]
Finally, these results can be combined in a physically

interpretable model of the experimental installation 6]

Xn-l-l(s)

_ K [7]
= e
1+ 7s
(26) (g
To validate this model a special experiment is conducted
under process conditions different from those used for tth]
construction of the model. The strip speed and the strip

tensiono, for validation are

—Tys _ 1 6_(Troll +5W)S
1+ s

[10]

v3 <wvy <wg and o3 <o, <oy

(11]

Again, the position at camera 5 of the installation is simu*?!
lated. Four first-order models are connected in series. Fig. @9
shows the measured signal at camera 5 (solid line) and the sim-
ulated signal (dashed line) from our physically interpretablg,
model. The simulated output from the model of Campell [3
and Shelton [4] (dashed-dotted line) is also plotted. It can g%]
seen that the model derived in this article gives more accur J[e
results.

VIII.

An experimental installation is used at Hoogovens to study
the strip tracking behavior in processing lines. Contrary to
these lines, this installation contains an internal feedback due
to the use of an endless strip. To obtain results transfera
from experiments with the experimental installation to th
processing lines, an open-loop model of the experimen
installation is needed. Application of the models from th
literature to the experimental installation gives unsatisfact
results. Hence, closed-loop identification is used to obt
an open-loop model of the installation. Five different ide
tification strategies are compared for one single operati

C ONCLUDING REMARKS
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