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Multivariable Nonlinear Predictive Control of Cement Mills
Lalo Magni, Georges Bastin, and Vincent Wertz

Abstract—A new multivariable controller for cement milling
circuits is presented, which is based on a nonlinear model of
the circuit and on a nonlinear predictive control strategy. Com-
parisons with previous LQ control strategies show improved
performances with respect to an important source of perturba-
tions of the circuit: a change of hardness of the raw material.

Index Terms—Cement industry, multivariable control systems,
nonlinear systems, optimal control, predictive control.

I. INTRODUCTION AND PROCESSDESCRIPTION

T HE introduction of modern control methodologies in
traditional process industries is in steady growth. Model-

based controllers usually allow to tackle multivariable control
where classical PID controllers would only apply to single
input single output feedback loops. In addition, recent nonlin-
ear control techniques also provide additional improvements
by allowing processes to be run over a larger operating
range without controller retuning. This paper presents such
an application of model-based nonlinear multivariable control
to a cement milling circuit.

The schematic layout of a cement milling circuit is shown in
Fig. 1. The mill is fed with raw material (feed). After grinding,
the material is introduced in a high-efficiency classifier and
separated into two classes. The tailings (refused part) are fed
back into the mill while the finished product (accepted part)
exits the milling circuit. The classification of the material is
driven by the rotational speed and by the air flow rate of the
classifier.

Traditionally, the application of feedback control techniques
to cement milling circuits is limited to monovariable classical
proportional integral (PI) control of the tailings flow rate (or
of the circulating load) with either the feed flow rate or the
classifier speed as control action. A typical example can be
found in [1].

Recently, multivariable control techniques (based on the lin-
ear quadratic control theory) have been introduced to improve
the performances of the milling circuit [2]. However, this
controller, whose design is based on a linear approximation
of the process, is only effective in a limited range around the
nominal operating conditions. On some occasions, it has been
observed on real plants that important changes in operating
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Fig. 1. Milling circuit principle.

conditions (due for example to changes of the hardness of the
clinker) have driven the mill to a region where the controller
cannot stabilize the plant.

This paper presents a nonlinear model of a cement mill
motivated by practical observations about the linear quadratic
Gaussian (LQG) controller on an industrial milling circuit
[3]. Starting from this nonlinear model a multivariable non-
linear receding horizon (NRH) control strategy based on the
algorithm presented in [5]–[7] is applied to improve the
performance and to enlarge the stability region obtained with
the LQ controller that is now in operation. With this strategy,
two outputs are simultaneously controlled (finished product
and load in the mill) by using the two available inputs (feed
and classifier speed).

This paper is organized as follows. The control strat-
egy is described in Section II. Then, the nonlinear model
required to take into account the changes of hardness of
input material is described in Section III. The next section
describes an LQ controller designed on the basis of this
nonlinear model. This controller is similar (although not
exactly identical) to the LQ controller that has been de-
scribed in [2], and exhibits similar instabilities as those that
have been occasionally observed on real plants. Section V
describes the nonlinear predictive controller which has been
designed and the simulation results which have been ob-
tained.

II. CONTROL STRATEGY

In steady-state operation, it is clear that the product flow rate
is necessarily equal to the feed flow rate while the tailings
flow rate and the load in the mill may take any arbitrary
constant values. The load in the mill depends on the input
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feed (fresh feed plus tailings flow rate) and on the output
flow rate that depends in a nonlinear way on the load in the
mill and on a very important and time-varying quantity: the
hardness of the material. Sometimes this nonlinearity can also
cause the instability of the system and the obstruction of the
mill (a phenomenon called “plugging”), which then requires
an interruption of the grinding process. These considerations
motivated the introduction of a nonlinear model of the plant
[4]. The load in the mill must be controlled at a well chosen
level because too high a level of the load in the mill leads
to the obstruction of the mill, while too low a circulating
load contributes to fast wear of the mill internal equipment.
Moreover, the energy consumption of the mill (i.e., the ratio
energy per unit product) depends on the output of the mill
that is related to the load in the mill. A usual approach is
to control the tailings flow rate by using the feed flow rate
as control input. This control strategy is, however, not fully
satisfactory since it indirectly induces a loss of control of the
product flow rate.

A correct fineness of the product is also very important [2].
The fineness depends on the composition of the mill feed,
but also on the rotational speed and on the air flow rate
of the classifier. A natural control objective would therefore
be to keep the fineness as close as possible to a desired
value by acting, for example, on the rotational speed of the
classifier. However, in the usual case where on-line fineness
measurements are not available, an indirect control strategy is
necessary.

The following can also be observed in practice.

• For a given feed composition, the fineness will be constant
if the product flow rate and the load in the mill are kept
constant.

• Similarly the energy consumption of the process (ratio
energy/unit product) will be fully under control if the
product flow rate and the load in the mill are regulated
at suitable set points.

This clearly implies that an overall control of both the fineness
and the energy consumption can be achieved at a supervisory
level in the control system, by manipulating and optimizing the
set points of the tailings flow rate or of the product flow rate or
of the load in the mill, using for instance off-line laboratory
measurements of the fineness.

III. N ONLINEAR CONTINUOUS-TIME MODEL

In this section we present the nonlinear model of the
milling circuit which has been introduced in [8]. This model
should describe the evolution of the load in the mill and it
should be able to reproduce some (unstable) behavior that has
been observed with the LQ controller in the feedback loop.
The model consists of three nonlinear differential equations
explaining the evolution of three states

(1)

Fig. 2. Comparison of measured (solid line) and modeled (dotted line) step
responses.

with

Tons/h r/min

h Tons * h

h h

where is the product flow rate (Tons/h),is the load in the
mill (Tons), is the tailings flow rate (Tons/h), is the
output flow rate of the mill (Tons/h), is the feed flow rate
(Tons/h), is the classifier speed (r/min), and represents
the hardness of the material inside the mill with respect to
the nominal one. The values of the various coefficients in this
nonlinear model have been tuned in such a way that the model
step responses fit with experimental step responses described
in [3] (see Fig. 2).

From the second nonlinear differential equation and the
definition of , it is possible to notice that there is a constraint
on the maximum value of the circulating load (feed plus
tailings flow rates). By an easy manipulation of the three
nonlinear differential equations it follows that it is possible
to choose independently only two of the three steady-state
values, the third one being imposed from the model equations.
Choosing setpoints for and would impose a given steady-
state value for which could be unachievable. Instead, we
suggest here to choose the load in the milland the value
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of the product flow rate or of the tailings flow rate as
set-points.

The main problem observed on industrial milling circuits,
controlled by the “linear quadratic multivariable controller,” is
caused by large changes of the feed hardness. In some cases,
the LQ controller is not able to control the mill after such large
changes, plugging occurs in the mill and an interruption of the
grinding process is necessary. So, our aim with the nonlinear
model is to reproduce this behavior at least qualitatively, when
an LQ controller is applied. To see that the nonlinear model
presented here is able to reproduce this practical observation,
we will consider first an LQ controller based on the linearized
approximation of the nonlinear model and we will show that
simulations in closed-loop with the nonlinear model do exhibit
instability when the hardness changes. Then, a nonlinear
control law will be introduced to overcome this problem
without loosing the good nominal performance of the LQ
controller.

IV. LQ CONTROL DESIGN

The nonlinear model (1) is first expanded with the following
two sets of equations in order to ensure zero steady-state error
and weighting of the control increments as well as of the
control variables:

(2)

(3)

With the model (1)–(3), zero steady-state error will be
achieved provided asymptotic stability is obtained with the
feedback controller. Note that parameter changes may modify
the equilibrium values for some of the states, but (3) guarantees
zero steady-state error for the two selected outputs.

Let us rewrite the system (1)–(3) as

(4)

with

where is such that

In order to investigate some properties of the linearized system,
define

Then the system

(5)

with is the linearized system corresponding to
system (4) around the equilibrium point . Note
that the linearized system depends only on the values of
and .

The corresponding state-space representation in discrete
time is given by

(6)

where is an integer index and and are
obtained in a standard way from and with a sam-
pling period min. The LQ-controller, based on the
discrete-time linear system state-space representation, has been
designed using the Matlab Control System Toolbox. Recall
that the design is based on the computation of the matrix gain

of the linear controller

(7)

which minimizes the quadratic criterion

(8)

subject to (6), where and are two symmetric positive
definite matrices.

In Figs. 3 and 4 we present two simulations obtained with
and . This choice is similar to the

one taken in [2], which has been applied on several industrial
cement grinding circuits. Starting from a general equilibrium
point , we choose the set-
point , corresponding to the maximum of
the curve which is the optimum from an economical point
of view, and then, we suppose that the hardnessd changes
from its nominal value 1 to 1.25 in the first example (Fig. 3)
and from its nominal value 1 to 1.34 in the second example
(Fig. 4). For theLQ controller (dotted lines) it is clear that
the nominal response to a set-point change inis correct but
that the rejection of a hardness change is poor in the first case
while in the second case this perturbation causes instability of
the closed loop (plugging).

These simulations show that the nonlinear model is able to
represent the nonlinear behavior of the plant when the hardness
changes. Hence the nonlinear model can be considered as a
good model to synthesize a control law whose aim is to control
the cement mill in a larger operating range.

V. PREDICTIVE CONTROL LAW

In this section the nonlinear receding horizon (NRH) control
law, first presented in [5] and then extended in [6] and [7], is
used to control the cement mill. This NRH control technique
uses a suitable nonquadratic terminal state penalty retaining
the computational advantages of finite-horizon optimization
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Fig. 3. Step inz� from 55 to 75 after 6 min and ind from 1 to 1.25 after
126 min.

without terminal constraints and ensuring the closed loop
stability under very mild conditions (only the stabilizability
of the linearized system is required).

It will be clear in the sequel that the NRH regulator proposed
here can be seen as a consistent nonlinear extension of the local
linear control law. This observation justifies the use of this
control law to improve the performance of an LQ controller
when there are constraints or nonlinearities. The application of
the NRH control law to the present problem goes as follows.

Consider the nonlinear discrete-time system

(9)

obtained from system (4) by discretization holding the manip-
ulated variables constant over the sampling interval. The

Fig. 4. Step inz� from 55 to 75 after 6 min and ind from 1 to 1.34 after
126 min.

state and the input vectors are subject to the constraints

(10)

where and are closed and bounded subsets of and
, respectively, containing and the origin, respectively,

as an interior point.
Define now the set:

, subject to (9)
with

In other words, belongs to if the application
of the LQ control law (7) to the nonlinear system (9) gen-
erates an input sequence guaranteeing the satisfaction of the
constraints (10) and driving the state to the equilibrium point
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asymptotically. Then consider the following finite-horizon
problem.

Finite-Horizon Optimal Control Problem (FHOCP)

Minimize, with respect to
the cost function

(11)

subject to (9) with and defined above. In (11) the
nonquadratic terminal state penalty is defined as

(12)

In other words, is the cost that is incurred
over by applying the LQ control law (7) to
the nonlinear system (9). Note that is
finite if can be driven to by the linear state
feedback controller. In the following, given such that

is stable, a sequence is
saidadmissibleif when applied to (9) the following constraints
are satisfied.

C1: , where
and represent state and control constraint sets and are
closed and bounded subsets of and containing
and the origin, respectively, as an interior point.

C2: where is the set of
states such that the application of the LQ control law
(7) to the nonlinear system (9) starting from these states
generates an input sequence guaranteeing the satisfaction
of the above constraints and driving the state to the
equilibrium point asymptotically.

Associated with (11), the following predictive NRH control
strategy is introduced.

Predictive Control Law

Given the LQ time invariant control law, , define
and find an admissible control sequence

solving the FHOCP. Then, apply the control ,
where is the first column of the optimal sequence

and solve the same problem again at time
(receding horizon strategy).

In the following, will denote the set of states
such that the NRH control is computable (i.e., the set of
admissible sequences is nonempty). The stabilizing property of
the predictive NRH controller is then stated in the following
theorem.

Theorem [5]: Assume that is
stable. Then, if the NRH control law is applied
to the nonlinear system (9), the equilibrium point is an
asymptotically stable equilibrium point of the resulting closed-
loop system with region of attraction .

Remark 1: Note that in view of the enlargement of the
system with the integral action on the tracking error (3), the
NRH control law guarantees zero steady-state error for the
perturbed system if asymptotic stability is achieved.

Remark 2: As seen from the statement of the theorem,
the choice of the optimization horizon is immaterial as
far as local stability is concerned. However, it is clear that
increasing is likely to enlarge the domain of attraction
of the equilibrium point. This is an argument in favor of
long optimization horizons, although computational constraints
could pose a practical upper limit (the difficulty of solving the
FHOCP obviously increases with ).

The computation of in (12) is performed
by iterating

(13)

In theory, this iteration should be performed for an infinite
number of time steps. In practical a good idea is to approximate
the terminal penalty in (12) as

where is the unique nonnegative solution of the al-
gebraic Riccati equation associated with the solution of the
LQ control law and is such that is “large”
compared to the system dynamics. The rationale behind this
choice lies in the assumption that at time the
system has been driven in a sufficiently small neighborhood
of the equilibrium point by the application of the sequence

followed by the linear control law
. In this neighborhood,

the behavior of the system is approximately linear, so that, by
standard results of LQ control theory

Thanks to the above considerations the computational burden
is significantly reduced. In the present application the FHOCP
is solved using the Matlab Optimization Toolbox without any
computational problems.

As for the tuning of the state and input weighting matrices
and , observe that the nonlinear control law

can be seen as a consistent extension of , in the
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Fig. 5. Control law synthesis with linear� (solid line) and with nonlinear
�(z; v; d) (dotted line).

sense that

Consequently, it is reasonable to tune and so as to
optimize the closed-loop performance of the linearized system
trusting that the nonlinear RH controller will be able to
guarantee a satisfactory performance in a larger domain.

A. Results

Consider now the application of this nonlinear predictive
control strategy to the cement mill model and its comparison
with a classical LQ controller based on the linear approxima-
tion of the model. In Figs. 3 to 4 the two simulations with the
LQ controller are compared with the ones obtained using the
NRH control law with the same and and with
(continuous line). Note that the nominal performance, when
the set-point in changes, is very similar to the one obtained
with the LQ controller. Similar conclusions can also be drawn
when the hardness changes, as long as the LQ controller
is still able to stabilize the plant. In that case (see Fig. 3),
the performances of both controllers are quite comparable.
However, in Fig. 4 it is clear that the NRH control stabilizes
the plant even when the LQ controller can not.

These simulations show that if the nonlinear model is a good
representation of the nonlinear behavior of the plant in the case
of hardness changes inside the mill, then the nonlinear RH is
able to solve one problem experienced with the LQ controller
that is now in operation.

Remark 3: One of the main problems of model-based al-
gorithms is that it is not always possible to have a precise
knowledge of all parameters of the model of the process to
be controlled. Hence, it is important for the control algorithm
to be robust with respect to some modeling uncertainties. As
an indication of such robustness for the present algorithm,
we have performed the following simulation. The process
model is still the same nonlinear model (1) but the controller
is computed on the basis of a simplified version where

. In Fig. 5 we report this simulation
under the same conditions as in Fig. 4. It is clear that the
simplified model used in the computation of the control law
does not alter the performance of the controller.

Remark 4: In our simulations we have chosen a sampling
period min and a control horizon . In some
real plants the LQ controller operates with a sampling period

min. In this case, using the same control horizon
and hence with the same computational burden, the

Fig. 6. Comparison betweenTe = 5 min (solid line) andTe = 1 min
(dotted line).

NRH control law achieves a better performance because with a
longer sampling time the FHOCP is based on a longer behavior
of the plant. In Fig. 6 the simulation example of Fig. 4 with
sampling period min is compared with the one with

min.

VI. DISCUSSION

The aim of this work has been to investigate further im-
provements to the multivariable LQ control law that was
recently developed and succesfully implemented on several
cement milling circuits. In particular practical observations had
shown the appearance of mill plugging on some occasions,
a phenomenon which theLQ controller could not prevent
from happening. In this paper, we have presented a nonlinear
model which specifically models the load in the mill, and
subsequently a nonlinear controller which preserves the main
characteristics of the previous LQ controller but enlarges the
operating region in which plugging can be avoided. (See also
[8], where a controller with global stabilizing properties is
presented.)

The real difficulty of the proposed controller is the need
for a measurement of the load of the mill. Various techniques
can be implemented (some of them already exist on industrial
milling circuits).

• The mill itself could be installed on a weighing device so
that its total mass can be measured and the cement load
deduced from it.

• On some mills, an “electronic ear” measures the noise of
the mill, which is inversely proportional to the load in
the mill.

Contrary to general intuition, the electrical power of the mill
motor cannot be used as a indirect measurement of the load
in the mill. Indeed, it can be shown that the mill power is
first increasing with load, reaching an maximum value which
is actually the optimal operating point, and then decreasing
when the load increases further. If precise measurements of
the load cannot be obtained, then a nonlinear observer of this
variable should be studied as an alternative to the presented
scheme. This is left to future work.
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