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ABSTRACT

Heatwole, Craig M. PhD., Purdue University, May 1997. Robust Feedback Con-
trol of Flow Induced Structural Radiation of Sound. Major Professors: Dr. Robert
J.Bernhard and Dr. Matthew A. Franchek, School of Mechanical Engineering.

A significant component of the interior noise of aircraft and automobiles is a
result of turbulent boundary layer excitation of the vehicular structure. In this work,
active robust feedback control of the noise due to this non-predictable excitation is
investigated.

Both an analytical model and experimental investigations are used to determine
the characteristics of the flow induced structural sound radiation problem. The prob-
lem is shown to be broadband in nature with large system uncertainties associated
with the various operating conditions. Furthermore the delay associated with sound
propagatidn is shown to restrict the use of microphone feedback. The state of the art
control methodologies, 1 synthesis and adaptive feedback control, are evaluated and
shown to have limited success for solving this problem.

A robust frequency domain controller design methodology is developed for the
problem of sound radiated from turbulent flow driven plates. The control design
methodology uses frequency domain sequential loop shaping techniques. System un-
certainty, sound pressure level reduction performance, and actuator constraints are
included in the design process. Using this design method, phase lag was added us-
ing non-minimum phase zeros such that the beneficial plant dynamics could be used.
This general control approach has application to lightly damped vibration and sound
radiation problems where there are high bandwidth control objectives requiring a low

controller DC gain and controller order.
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The controller design methodology developed in this work was verified experimen-
tally. A multiple-input-multiple-output controller using accelerometer feedback and
shaker control was able to achieve robust control up to 1000 Hz. Sound pressure
level reductions of as much as 15 dB were achieved at multiple microphone locations.
Overall reductions over the 100-1000 Hz band were approximately 5 dB. The con-
troller was found to be robust to large changes in the system parameters due to speed

variations from 35.8 m/s to 51.5 m/s and changes in the plate mass up to 40 percent.



CHAPTER 1. INTRODUCTION

The structural radiation of sound resulting from a turbulent boundary layer is a
major consideration in a variety of engineering applications. This phenomenon has
been investigated by sonar, aircraft, and automobile designers. The turbulent flow
pressure fluctuations from the propulsion of ships drive the sonar dome and induce
structural radiation of sound which interferes with the sonar receiver. As a result,
the background noise is increased which limits sonar performance. Sound radiated
into an aircraft interior is a result of skin panel vibration which is excited by such
sources as the unsteady boundary layer flow over the fuselage, jet and propeller noise,
comﬁressor whine, and thrust reversal noise. These skin vibrations act as a transducer
to radiate sound into the interior. With the reduction of aircraft engine and turbine
noise, turbulent boundary layer noise has become a significant contributor to the
interior sound field. Similarly, automotive engineers are increasingly concerned with
the occupied environment for passengers. Major advances have been made to reduce
the sound transmitted to the interior from the engine, transmission, and tires. As a
result, reduction of aeroacoustic noise has become a priority.

Until recently, the only methods for controlling sound radiation were passive tech-
niques. For control of sound radiated to an interior space, sound absorptive material,
such as fiber linings, has been utilized. These treatments are reasonably effective for
frequencies above 500 Hz. However, passive techniques are often ineffective for fre-
quencies below 200 Hz. This is because fiber linings are most effective when applied
using a thickness approaching 1/4 of the wavelength of the sound to be controlled.
Since the wavelength at 200 Hz is large, control of noise at these frequencies by passive

techniques requires a large amount of material which increases weight and reduces



interior space. Consequently, passive sound absorpt ve material has not been utilized
for control of sound in this frequency range.

Additional methods of controlling sound radiation have involved modifying the
vibrational characteristics of the structure radiating sound. Passive methods such
as composite layers to increase damping, vibration isolators, and tuned vibration
absorbers have been utilized with some success. However, these devices increase the
weight of the structure and are often limited to control of a narrow frequency range.

With the development of high speed microprocessors chips, active noise control
has now become a potential solution for the control of structural radiation of sound
problems. With active control one or more secondary sources are utilized to change
the dynamics of the structure such that the radiation of sound is reduced.

Recently, adaptive feedforward control schemes have been utilized to control noise
problems. These methods require a deterministic excitation or a reference transducer.
Furthermore, the disturbance information from the reference must be provided to the
controller prior to the impact of the disturbance on the system. For turbulent flow
excitation, the excitation is broadband in nature and a suitable reference source is
not available. Thus, adaptive feedforward control is not a viable solution for this
problem.

The only active control study of the turbulence induced structural radiation of
sound to date addressed the problem using optimal feedback control. However, opti-
mal control is not practical for this problem since it -equires full state information. It
is unlikely that the state information associated witl the turbulent boundary layer or
the sound radiation could be obtained through measurement or accurately modeled.
Furthermore an optimal controller does not allow for uncertainty such as unmodeled
modes and plant variations. For this reason, impl:mentation of optimal control is
rarely attempted.

As adaptive feedforward control and optimal control are not solutions to this prob-
lem, robust feedback control is studied in this investigation. Robust feedback control

has not been widely applied to noise control problems. As a result, many associated



problems have not been fully addressed. In this investigation robust feedback control
methodologies are utilized to identify and resolve these problems.

In this investigation a Multiple-Input-Multiple-Output (MIMO) robust feedback
control methodology is investigated. The method is based on loop shaping the con-
troller according to frequency domain design criteria. Using this approach, the con-
troller is designed to be stable for all operating conditions while achieving prespecified
sound pressure level reductions without saturating the control actuator. With this
method, the sound pressure level of error microphones are specified as the perfor-
mance parameter while plate acceleration feedback is used. In this work, appropriate
modifications are made to the approach such that this method can be applied to
lightly damped structural radiation of sound problems.

This work is organized as follows. Chapter 2 is a summary of the work related to
the modeling and control of the flow induced structural radiation of sound problem.
In Chapter 3, the analytical model of this problem is developed and evaluated experi-
mentally. In Chapter 4, x synthesis and adaptive feedback control methodologies are
evaluated. In Chapter 5, robust frequency domain control is developed and evaluated
for the flow induced structural radiation of sound problem. Conclusions and proposed

future work are presented in Chapter 6.



CHAPTER 2. LITERATURE REVIEW

In this chapter, two areas of research pertaining to active control of flow induced
structural radiation of sound are reviewed. Work related to modeling this problem is
reviewed in the first section. In the second section, related active control investigations
are discussed. The active control section is divided into active structural acoustic
control, control of the sound radiated due to a turbulent boundary layer, and robust

feedback vibration control.

2.1 Turbulent Flow Structural Excitation and Sound Radiation

The most common analytical solutions to aeroacoustic noise problems utilize the
methods related to the Lighthill Analogy [1]. Such methods have been developed
to model turbulent flow noise. One such method is given by Ffowcs Williams [2]
who extended the Lighthill-Curle theory of aerodynamic sound to include convective
motion of coherent structures. Turbulent eddies are shown to be equivalent to a
quadrupole source which is coherent within spatial and temporal scales corresponding
to the correlating length and lifetime of the turbul:nt eddy. For flow over one side
of a plate, the Ffowcs Williams equation is useful only for sound radiated into the
turbulent flow field. For the interior noise problem, there is not a direct path between
the turbulent boundary layer and the interior acoustic field. Rather, the sound is
generated from structural radiation through vibration induced by the turbulent flow.
Thus, the Lighthill Analogy methods can not be us:d for the interior noise problem.

Researchers have separated the problem of the structural radiation of sound from

turbulent flow into the three parts shown in Figure 2.1. The first part is a model of



the pressure field of the turbulent boundary layer impinging on the plate. The second
part is a model of the structural response due to the turbulent pressure field. The
final part is a model for the structural radiation of sound into an interior space. In an
effort to keep the model as simple as possible, researchers have generally considered
the structure to be a simply supported plate. Furthermore, the influence of the interior
space is neglected by assuming the plate radiates into free space. Finally, the effect
of the acoustic loading on the plate and the influence of the structural vibrations on

the flow field are generally neglected.

2.1.1 Modeling the Turbulent Flow Field

An accurate model of the turbulent flow field has not been found. Despite many
years of research and a large body of literature devoted to the fluid dynamics of
turbulent flow, this phenomenon is poorly understood. The current state of turbulent
boundary layer knowledge is given in a literature review by Robinson [3]. He states
that many controversial issues exist in boundary layer theory such as the near-wall
streak formation, the bursting process, mass and momentum transfer to and from the
inner and outer fluid layers, the appropriate scaling variables for near-wall turbulence

production events, and the existence and role of hairpin, horseshoe, and ring vortices.

2.1.1.1 Numerical Techniques for Modeling the Turbulent Flow Field

Although there is a lack of understanding of turbulent flow, many attempts have
been made to calculate the flow quantities. Recent attempts have involved numerical
simulations. Two popular techniques are the large-eddy simulation (LES) and the
direct numerical simulation (DNS). In the LES model, the smallest scales of the flow
are modeled while the remaining scales are computed directly from first principles
using the Navier-Stokes equations. This is based on the observation that small scales
in a turbulent flow are nearly universal while the larger scales are strong functions

of the flow geometry and gross flow parameters. Unlike the LES, the DNS attempts



to resolve the turbulent motions at all relevant scales. Due to the intensive compu-
tational requirements of the DNS and LES, they have been limited to low Reynolds
number flows. As a result, they are currently unusable for describing the fully devel-
oped outer layer of turbulent flow. Since the pressure signal felt in the wall region
originates in the outer layer, the studies can not yet be used to accurately model the
pressure at the wall. Thus, direct numerical methods are not useful for the structural
excitation model being developed.

Various researchers have sought to reduce the computation time by using simple
models based on observed turbulent flow characteristics. One such characteristic is
the burst phenomenon. The burst is a localized ejection of fluid from the wall caused
by the passage of one or more tilted quasi-stream-wise vortices which persist for longer
time scales than do the observed ejection motions [3]. Breuer attempted to model the
burst events as initial disturbances produced by a pair of counter-rotating eddies [4].
The mean flow profile was a Blasius velocity profile. The author states that the linear
term in the Poisson equation dominates for large-scale fluctuations. Using the linear
Poisson term (%—g%) and assuming inviscid equations, Breuer developed a system
of equations which were solved numerically using a Crank-Nicholson scheme. The
theoretical results for a single burst as it is convected downstream were compared
qualitatively to experimental results. The model is said to differ from experimental
results because of its neglect of viscous and nonlinear terms.

Another flow characteristic which has been studied using simplified numerical
models is the hairpin vortices. The turbulence produced in the near-wall region is
intermittent in space and time. A dominant model for this characteristic is the hairpin
shaped vortex described by Smith [5]. The vortices are oriented in the stream-wise
direction at an angle of 45 degrees to the wall. The legs of the hairpin are said to be
counter rotating vortices that pump fluid.

Using the idea of the hairpin vortex, Bandyopudhyay attempted to numerically
calculate the wall pressure fluctuation for a turbu.ent boundary layer [6]. He used

an elliptic vortex inclined at a 45 degree angle as a model of a hairpin vortices.
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As in the Breuer approximation, a Blasius mean velocity profile was used. The
Navier-Stokes equations were solved numerically and the model was compared to
experimentally obtained results. Comparisons were made to experimental data for the
correlation coefficient between the wall pressure and the stream-wise velocity and the
wall pressure and the surface normal velocity. The data obtained from the theoretical
model is significantly different than that obtained experimentally. Furthermore, the
theoretical model was found to be strongly influenced by the circulation chosen for
the vortex. Although the experimental data did not confirm the theoretical model,

it was deemed to be encouraging by the author.

2.1.1.2 Statistical Methods for Modeling the Turbulent Flow Field

Statistical models of the turbulent wall pressure levels have been utilized since
the early 1960’s. These methods are based on empirically obtained data. Unlike the
recent numerical attempts, these models are able to characterize the pressure field on
a plate for a fully developed turbulent flow. Furthermore, they have been shown to
be accurate for a wide range of turbulent flow problems.

A well documented characteristic of a turbulent flow field is that coherent motions,
with different structural characteristics, exist in the sublayer, buffer region, and outer
region of the flow field [3]. Furthermore, the most common near-wall coherent mo-
tions (quasi-stream-wise vortices, shear layers, and velocity peaks) travel a significant
distance downstream during their lifetimes. Willmarth reports that coherent motions
can exist for distances on the order of 9 times the momentum thickness and have
a stream-wise extent of 0.5 times the momentum thickness [7]. Various researchers
have attempted to quantify the wall pressure fluctuations related to these coherent
structures.

Astolfi performed an experimental study to find the relationship between the tur-
bulent wall pressure fluctuations and the turbulent internal shear layer structures [8].

A velocity gradient probe, two wall pressure transducers in the stream-wise direction,



and three wall pressure transducers in the spanwise direction were used. The instan-
taneous velocity gradient, wall pressure fluctuations. and the stream-wise and normal
velocities were measured simultaneously. Data acquisition was triggered when the
normal gradient of the stream-wise velocity fluctuation (%“—;) exceeded its RMS value
by a specified amount. A typical result is shown in Figure 2.2. The large normal
gradient of the stream-wise velocity which triggered the measurement is shown in the
top trace. The signals from two wall pressure transducers are shown in the bottom
two traces. The wall pressure “foot-print” is a positive peak pressure at the wall
with two negative pressure regions on each side. The pressure pattern is convected
downstream from p; to p, in a time of At.

The periodic convection of these pressure footprints is the primary contributer
to the wall pressure level. Schewe determined that the wall-pressure fluctuations are
a very intermittent process where short time segments with large fluctuations follow
long time segments with small fluctuations [9]. He suggests that the large fluctuations
occur only 1% of the time but contribute approximately 40% to the RMS pressure.

In 1962, Willmarth et al. made measurements of the statistical properties of
the wall pressure [10]. The correlation coefficient was calculated as a function of
the dimensionless stream-wise separation and temporal parameters. The results are
shown in Figure 2.3. The largest correlation is along the ridge in the first quadrant.
This indicates that the coherent pressure producing eddies are carried downstream at
a convection speed equal to the slope of this line in the space-time plane. The fact that
the eddies gradually lose their correlation as they are transmitted downstream is seen
by the decreasing amplitude of the ridge. An interes ing note is that the ridge curves
slightly towards the spatial axis. This is because the large pressure disturbances
remain correlated for a longer time than smaller disturbances. Since these large
disturbances extend further into the flow where the raean velocity is greater, they are
pulled along by the higher mean velocity. Thus, tleir convective velocity is larger

than smaller disturbances. Willmarth et al. reports hat these large disturbances are



responsible for the majority of the low-frequency contributions to the the correlation
coeflicient.

A breakthrough in the statistical modeling of the wall pressure field was made by
Corcos in 1963 [11]. Corcos was investigating the limitations of finite sized pressure
transducers in turbulent flows. The spatial resolution of the wall pressure causes
errors in the measurements of turbulent pressure fields. Corcos developed a correction
method for these spatial errors. In his derivation, he considered the flow field to be
stationary and homogeneous. Thus, the wall pressure cross-correlation is considered
to be a function only of the spatial and temporal separation and not absolute position.
This assumption is valid if the turbulent boundary layer thickness is constant and the
mean pressure gradient is small [12]. With this assumption, Corcos postulated that

the cross-spectral density of the wall pressure can be represented as

S11(w,€,m) = Spp(w) A(WE/Ue) Bwn/Us)ezp(—iwe /U.) (2.1)

where U, is the convective speed, £ is the longitudinal separation, 7 is the lateral
separation, and S,,(w) is the ordinary power spectrum. Although the Corcos model
is simplistic, it is widely used in aeroacoustic models today. Modern texts, such
as Blake, continue to use this method in the evaluation of the wall pressure for a
turbulent boundary layer {13}.

Various researchers have fit the A and B functions to empirical data. Originally,
Corcos used empirical data from Willmarth and Wooldridge {10] to determine these
functions. In 1967, Corcos compared his model to different sets of data [14]. Using
data from Bull [15] and Priestly [16], Corcos was able to show that his form of
the pressure cross-spectra was valid. Additionally, Strawderman utilized exponential
decays to fit A and B [17]. Willmarth suggested the stream-wise decay is more rapid
in adverse pressure gradients and less rapid in favorable pressure gradients [7].

Various values for the convection velocity have been suggested. Willmarth reports
that the very small scale pressure fluctuations can travel as slow as 0.39 times the free

stream velocity while large fluctuations can have a convective velocity of 0.8 times
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the free stream velocity [7]. Strawderman [17] suggests using a constant convective
velocity of U, = 0.65U, while Schewe [9] suggests a convection velocity of U, =
0.53U .

Bhat [18] measured the exterior pressure fluctuations on a Boeing model 737 air-
plane using an array of microphones. The measurements were performed at 7624
meters (25,000 ft) and Mach numbers of 0.45 and 0.78. The decay rate of the pres-
sure cross-spectra was found to be slightly larger than that measured in laboratory
tests. This was attributed to the angle of attack, wall roughness, and fuselage cur-
vature. However, Bhat found that the spectrum, coavection velocity, and space-time
correlation measured in flight were comparable to the laboratory measurements of
the turbulent boundary pressure fluctuations on a flat plate.

A crude model for the power spectrum of the wall pressure was suggested by
Skudrzyk and Haddle [19] and more recently, by Schewe [9]. Both models assume
that the power spectra of the turbulent boundary leyer is approximately constant at
low frequencies.

Other more complicated statistical models for the wall pressure field have been
developed. Maestrello [20] developed a model of the cross correlation of pressure in
which the A and B terms are exponential decay functions of the Reynolds number
and the boundary layer thickness as well as the se>aration distance. Efimtsov [21]
used a function of the Strouhal number and three empirical constants to describe
each of the decay terms. At high frequencies Efimtsov’s decay terms correspond to
constant exponential decays.

The Corcos, Maestrello, and Efimtsov models have been compared by Tang et
al. [22]. The Corcos model was found to estimate a slightly higher excitation at low
frequencies. However, at frequencies greater than 500 Hz, each of the models provided
similar results. The authors concluded that there is 1 ttle significant differences among

the results given by these models.
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2.1.2 The Structural Response

An accurate model of the structural response is important for the stability of an
active feedback controller design. However, in practice an exact model will never be
obtained. Slight differences in the boundary conditions and unmodeled modes of a
structure will cause variations in the structural response. Significant uncertainty is
caused by variability in the manufacturing process as has been observed for new same
model automobiles by Kompella and Bernhard {23]. Uncertainty is also caused by
fatigue and aging of the structure. Finally, environmental changes significantly affect
the structural response. For example, changes in aircraft altitude alter the response
of the aircraft structure. The controller design must account for the uncertainty
associated with a given model.

Prior to the development of the Corcos model, researchers had determined how
to calculate the structural response of a plate to an external pressure field. In 1957,
Eringen published such a method [24]. Eringen utilized generalized Fourier analysis
techniques and a modal solution to determine the vibration of bars and plates under
stochastic loads. The cross-power spectra of the force was written as a function of the
cross-power spectra, of the pressure fleld. The modal analysis technique he described
is commonly used in today’s research.

Dyer [25] was one of the first to attempt to find the excitation of a plate by a
turbulent pressure field. The thin plate equation for a simply supported plate model
was solved using a modal solution similar to that of Eringen. Dyer assumed the
pressure from a turbulent flow field is random having a correlation which decays with
time, has a spatial extent that is vanishingly small, and is convected along the surface
of the plate. The approximation of the pressure field is less accurate than that of the
Corcos model because it assumes the flow is fully correlated over a finite correlation
area and uncorrelated outside this area. For short correlation lifetimes, Dyer’s flow

field model describes a non-convecting purely random pressure field.
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In 1968, Strawderman [17] used a modal soluticn, similar to that of Eringen, to
find the plate velocity of a turbulent flow excited, simply supported, rectangular flat
plate. The boundary layer pressure model was that suggested by Corcos [11]. The
convection velocity was taken to be a constant (L, = 0.65U,) and the Skudrzyk
and Haddle [19] approximation for the pressure power spectrum was employed. The
pressure on the plate due to the radiation of sound was considered negligible compared
to the turbulent boundary layer pressure fluctuations. Thus, the boundary layer
provided the only excitation in the model. This approximation is valid when the
fluid is air. Strawderman found that the modal frequencies in his predictions varied
slightly from experimental data. He attributed these errors to differences between
the analytical and experimental boundary conditions. Despite the difference in the
modal frequencies, the vibration amplitudes were found to be similar to predicted
results.

In 1968, Strawderman [12] compared the results ke obtained for his modal solution
to results obtained using a wavenumber transform solution. Although useful estimates
were obtained, he stated that neither model produces results that fully agree with

experimental results.

2.1.3 The Radiation of Sound

The radiation of sound is the final part of the turbulent flow induced structural
sound radiation model. There have been numerous methods developed to calculate
the sound pressure and sound power radiated by a panel. White used a joint accep-
tance method to calculate the sound power radiated ‘rom a plate excited by turbulent
flow [26]. Each joint acceptance is a function of the -:ross-correlation functions of the
pressure on the plate and the mode shapes of the plate. The joint acceptances for
each mode are multiplied together and the average is taken for a frequency band

around the modal frequency.
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Using his method of joint acceptances and the Corcos model of the flow excitation,
White estimated the sound power radiated from a plate due to a turbulent boundary
layer [26]. In order to simplify the complicated computation of the average joint
acceptance, White assumed the correlation length of the turbulence was less than
the panel dimension. In this manner, the exponential terms in the Corcos model
were neglected. The resulting integral for the average joint acceptance was evaluated
numerically. The White model was not found to accurately predict experimental
results. The author suggests a better knowledge of the boundary layer constants and
a more accurate knowledge of the plate radiation resistance would have improved the
model.

Maestrello [27] obtained good results for his prediction of the sound power radiated
from a simply supported plate under turbulent pressure fluctuations. He used a model
similar to that of Corcos to represent the space-time correlation of the wall pressure
fluctuation. However, Maestrello used a larger convective velocity for lower frequency
wave numbers and a smaller convective velocity for higher frequency wave numbers.
A modal approach, where both acoustic and structural damping were considered,
was used to determine the cross-power spectra of the panel displacement. Due to
limited computer resources, the numerical integration was too time intensive. As a
result, the structural cross-modal coupling was neglected. With this assumption the
sound power level was estimated by a modal volume displacement method. With this
method, the sound radiation of the panel is related to the volume velocity of each
mode. The theory and experiment were shown to be in good agreement for various

experimental configurations.

2.2 _Active Control Related to the Flow Induced Structural Radiation of Sound

Practical solutions to the problem of active control of flow induced structural

sound radiation have not been published. This problem includes many characteristics
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which make it a challenging system to control. Turbulent flow excitation is broadband
in nature with no suitable reference signal available. Therefore, feedforward control
algorithms cannot be used for this problem. Furthermore, the states associated with
turbulent flow excitation and sound radiation are unmeasurable and an accurate
model is not available. Thus, state space based control schemes are also ineffective for
practical implementation. Since pressure levels are significant over a large frequency
range and the frequency response of the lightly damped structures does not roll off
significantly, a large controller bandwidth is a requirement for this problem. The
system delay is also a significant characteristic of this problem. Not accounting for
this delay leads to poor system performance or system instability. Non-linearities and
unmodeled system dynamics must also be considered. Furthermore, since the plant
dynamics exhibit large system uncertainty, robustness must be addressed.

In the first part of the following section, recent active structural acoustic control
schemes are summarized. Next, several active control schemes for reducing the flow
induced structural radiation of sound are described and problems associated with
the implementation of these schemes are identified. In the concluding section, the
limited application of robust feedback control to both vibration and sound radiation

problems is described.

2.2.1 Active Structural Acoustic Control

Significant work in Active Structural Acoustic Control (ASAC) has been per-
formed using feedforward control techniques. Suct methods require either a deter-
ministic excitation or a reference transducer which provides highly coherent distur-
bance information. The disturbance information from the reference must be provided
to the controller prior to the excitation of the system by the disturbance. Since the

boundary layer excitation has limited correlation in space and time, a highly coherent
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reference source is not available. Therefore, feedforward control schemes are ineffec-
tive. Although the feedforward control schemes are not an effective solution for the
flow induced structural radiation problem, specific case studies have led to an un-
derstanding of the active control of the structural radiation problem. Therefore, the
relevant portion of the feedforward ASAC literature is reviewed. Simple feedback and
optimal control ASAC schemes are also reviewed.

Guigou et al. [28, 29] utilized a Filtered-X feedforward controller to reduce the
sound from a clamped edge semi-infinite vibrating beam. Shakers mounted near the
clamped edge were used as control actuators and microphones were used as error
sensors. The disturbance was a harmonic point force excitation of the beam. This
excitation signal was also supplied to the feedforward controller as a reference input.
Two key results were reported. Through experimentation Guigou et al. showed that
the attenuation of the radiated acoustic field may not correspond to a decrease in
amplitude of the global vibration response of the system. Thus, vibration control
may not provide the best acoustic control. Secondly, it was shown that control of
the pressure level at one point in the acoustic field also provided acoustic far-field
sound radiation attenuation. Therefore, it is possible to achieve global sound pressure
level reduction by considering control of the sound pressure at one or more discrete
locations.

A feedforward filtered-X controller was also used by Clark et al. [30] to control the
sound radiated from a vibrating, simply supported rectangular plate. The plate was
driven by a harmonic excitation from a shaker. As in the work of Guigou et al., it
was shown that the modal response of the plate increased while the acoustic response
was reduced. Additionally, piezoelectric film was shown to be as effective an error
sensor as a microphone. Thus, measurement of the sound pressure was not required
to achieve sound pressure level reductions.

In addition to feedforward controllers, simple feedback ASAC schemes have been
used with a varying degree of success. The simple feedback schemes feed an error

signal directly into a control actuator. Little or no controller dynamics are included.
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Thus, the open loop transfer function is completelv based on the system dynamics.
Since controller dynamics are not used to ensure stability margins or to roll off the
controller response at high frequencies, the simple feedback schemes can result in
closed loop unstable systems.

Akishita and Mitani [31] considered active control of the vibration of a panel for
acoustic purposes. An acoustic disturbance was applied to one side of the panel
using a loudspeaker. Piezoelectric devices were used both as controller actuators and
sensors. The feedback controller was a proportional-derivative scheme. Numerical
simulations showed 20-30 dB reductions in the sound pressure level. However, upon
implementation, the controller was found to be unstable at high frequencies. Although
the authors attribute the instability to nonlinearities in the actuators, the actual cause
of the instability is unmodeled higher frequency plant modes.

Another simple feedback scheme was proposed by Hong et al. [32]. This work in-
vestigated the active control of an automobile fuel tank for acoustic purposes. Piezo-
electric discs were used both as actuators and sensors. Control was achieved with
constant gain velocity feedback and a phase shifter. The gain and phase were ad-
justed manually to provide the best noise reduction. Unlike Akishita and Mitani, a
low pass filter was also included in the controller. The low pass filter rolled off the
controller response such that the higher modal resonances would not be driven to
instability. Parametric system uncertainty, the key justification for feedback control,
was not considered in their work. Therefore differing levels of fuel in the tank re-
quired different controller phase and gain settings. For properly adjusted controller
settings, the first mode was controlled by 25 dB and the second and third modes were
controlled by 18 dB and 14 dB respectively.

Falangeas et al. [33] considered active damping of a plate using rate feedback
control. Accelerometers were used for feedback and piezoelectric actuators were used
for control. The disturbance was a random shaker excitation of the plate. To obtain
rate information the accelerometer signals were integrated. The integrated signals

were amplified and used to drive the control actuator. The gain was experimentally
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tuned until the system became unstable. Instability was observed at high frequencies
because of phase lag in the actuators and computational delay. One problem with
rate feedback is that all the modes are controlled even when control is not necessary.
To reduce the control effort at higher frequencies, roll-off filters were tested. However
the additional phase lag of these filters was not considered and the controller became
unstable.

The popular full state feedback methodology has also been investigated for ASAC.
Full state feedback controllers require an accurate model of the system and measur-
able system states. For some ASAC problems, these states do not correspond to
measurable quantities. Doyle has shown that if an observer is used to estimate the
unmeasurable states, the gain margins may be arbitrarily small [34]. Furthermore,
since parametric and unstructured system uncertainty are not included in the model,
the controller is not robust. For these reasons full state feedback control is not often
implementable.

Meirovitch and Thangjitham [35, 36] investigated active control of sound radiated
from a plate using a state space model of the plate vibration. Uniform single frequency
plate disturbances were considered and ideal modal sensing was assumed. The control
actuators were multiple point force inputs. LQR theory was used to design the optimal
controller. However, the selection of the terms of the @ and R weighting matrices was
not discussed. The Rayleigh integral was used to calculate the sound pressure level at
various locations. Numerical simulations were used to determine the effect of various
excitation frequencies, differing number of controller actuators, and two different
actuator arrangements. It was shown that considerably more controller actuators
were necessary to control high frequency excitation than low frequency excitation.
Furthermore, the choice of which modes to control influenced the results more than the
actuator arrangement. The best results were obtained by controlling the modes having
frequencies near the excitation frequency. State measurement, unmodeled dynamics,
non-linearities, system delay, and system uncertainty were not considered. These

are significant factors associated with control of flow induced structural radiation
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of sound. Thus, this work has not shown that state space control schemes can be
successfully used for this problem.

From feedforward ASAC studies, it was shown that vibration control does not
guarantee the lowest sound pressure level reductions. For this reason, several re-
searchers have developed state space models that can be used to weight modal accel-
erations to improve ASAC. Such methods are useful when the acoustic field cannot
be directly measured. This is often the case for feedback control where the delay
associated with the propagation of sound severely limits controller performance.

Baumann et al. [37] have developed one method of designing state space based
feedback controllers to attenuate sound radiation without directly measuring sound
pressure levels. The acoustic dynamics associated with the radiated power are con-
tained within the plant model. A radiation resistance matrix M (s) is derived using
the Rayleigh integral equation. Off-diagonal terms correspond to the mutual radi-
ation efficiencies while the diagonal entries represent the self-radiation efficiencies.
The off-diagonal terms represent the radiated power due to one structural mode as
influenced by the amplitudes of the other structura: modes. A spectral factorization
of M(s) is performed which results in a matrix of causal radiation filter transfer func-
tions which give the time histories of each radiation mode from the time histories of
the structural vibration modes. The 2 norm of the cutput from these radiation filters
is the power radiated from the structure. In pracice it is difficult to perform the
spectral factorization on M (s). The radiation filters are placed in state space form
which allows their use in designing a controller to minimize radiated power.

More recently, Elliott and Johnson [38] have developed expressions for the total
acoustic power output in terms of the velocities of an array of elemental radiators.
Their method is equivalent to that suggested by Baumann et al. [37]. The elemen-
tal radiators are used such that the amplitudes of the radiation modes are defined
without reference to structural mode amplitudes. Ia this way, the amplitudes of the

structural modes do not have to be calculated. Rather, an array of point vibration
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sensors could be measured and weighted to achieve sound power reduction. Alter-
natively, distributed sensors could be shaped to respond to the structural excitation
corresponding to a radiation mode.

Several studies have used the method of Baumann et al. [37] to design optimal
feedback controllers for ASAC. One such study by Baumann et al. [39] considered
control of the sound radiation from a baffled clamped-clamped beam. The disturbance
was a bandpassed white noise point force input. The controller actuation was also a.
point force input to the beam. The beam was modeled using’ the first three modes
and ideal sensing was assumed. The dynamics associated with the radiated power
were 12th order. A LQG controller was designed with minimal weighting on the
contro] effort. This control was compared to that from a LQG controller designed
to attenuate the modal vibration. Numerical simulations showed that the acoustic
controller attenuates the sound power by 10 dB more than the vibration controller.

System uncertainty and the implementation of full state feedback were not discussed.

2.2.2 Active Control of the Flow Induced Structural Radiation of Sound

Only a handful of studies have addressed active control of low induced structural
radiation of sound. Parker et al. [40, 41] purport to have studied the reduction of
flow-induced vibration in aircraft panels using active control. They reported using an
adaptive nonlinear infinite impulse response (IIR) polynomial neural network based
feedback controller. A two mode clamped beam model was considered. The covari-
ance structure of the turbulent flow field was described using the Maestrello turbulent
flow model [42] and used to generate time history inputs to each mode. The controller
was designed with the assumption that individual modes can be measured and con-
trolled. A third order IIR feedback controller filter fit was developed off line using
a guided random search on 1000 0.25 second white noise input sequences. No mea-

surement error or uncertainty was considered. With this filter, the average modal
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vibration energy was reduced by 31 dB. However, the sound radiation from the beam
was not considered.

Peterson et al. [43] implemented a multichannel active control approach which was
motivated by the broadband random noise in aircraft cabins. The authors approached
this problem as a sound transmission problem rather than a structural sound radia-
tion problem. The turbulent boundary layer was said to be a sound source rather than
a excitation source. As a simple case of this problem, sound transmission through
a rectangular panel mounted in a transmission loss test facility was investigated.
Broadband pseudo-random noise was generated by a loudspeaker in the source room.
A feedforward control scheme was implemented. Feedforward control was made pos-
sible in their investigation by utilizing a microphone placed directly in front of the
loudspeaker as a reference transducer. No other study of flow induced structural radi-
ation of sound has assumed a reference transducer is available. The control actuators
were eight piezoceramic actuators bonded to the panel. The controller filters were
chosen to minimize the sound pressure radiated at seven error microphone locations.
Although the transmission loss was increased by 5-10 dB at the error microphone lo-
cations, it was decreased up to 8 dB at other microphone locations. These poor results
were attributed to overdriving the control actuators. The results were improved by
shortening the periodicity of the excitation source. This suggests that the controller
was adapting to the deterministic pseudo-random patterns of the source rather than
controlling a broadband excitation. Furthermore, tlie authors acknowledged that an
appropriate sensor for measuring the turbulent induced noise source will have to be
found in order to utilize their controller. However, 110 suggestions as to what such a
sensor would be were given.

Thomas and Nelson [44] performed a simplified e<perimental investigation of feed-
back control to reduce the sound transmission of turbulent boundary layer noise. A
double walled panel was driven using broadband striactural excitation to emulate the
turbulent flow excitation of an aircraft panel. The acceleration of the center of the

second panel was used as feedback and a loudspeaker mounted between the panels
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was used as the control actuator. Since the panels were mounted on flexible gaskets,
the radiated sound of the second panel was dominated by the rigid body mode. For
this configuration, a reduction in the velocity of the center of the panel yielded a
significant reduction in the radiated sound. Assuming rigid panels, a first principles
state space model of the plate dynamics was developed. Fourth order lowpass anti-
aliasing and reconstruction filters were also included in the model. A LQR controller
was designed and implemented digitally as an IIR filter. The experimental results
did not match the predicted results. Although sound pressure level reductions at
105 Hz were predicted to be 19 dB, only 8 dB of reduction was achieved. Addition-
ally, significant control was achieved only for frequencies below 100 Hz. The results
were disappointing and the authors suggest improvements could be made by using a
system identification based model of the plant. However, the delay associated with
the loudspeaker actuator was not included and was a potential factor limiting the
controller performance.

Thomas and Nelson [45, 46] improved on their previous double panel investigations
by utilizing a discrete time feedback controller. By assuming the plant dynamics are
known through measurement, the feedback problem was formulated as a feedforward
problem. In this way a SISO feedback LQG controller was designed by solving the
Weiner-Hopf equation. The causal part of Weiner-Hopf filter was extracted using the
Diophantine equation. The plant transfer function used in the controller design was
estimated using a 15th order ARX model. The controller was implemented on the
same two-panel system described previously. The controller was designed to minimize
a cost function based on control effort and the acceleration of the center of the second
panel. Between 5 and 15 dB of reduction were obtained over the 50-150 Hz region.
The sound pressure levels were increased at higher frequencies. This increase was
attributed to the dynamics of the panel.

Recently, Thomas et al. {47, 48, 49, 50] performed an extensive evaluation of the
active control of sound radiation from a simply supported panel excited by a turbulent

boundary layer. To evaluate active control, a numerical model of the system was
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developed. The Corcos statistical description was utilized to represent the effects
of the turbulent flow. One assumption was that the vibration of the plate does
not couple with the turbulent boundary layer. Furthermore, the cross-terms in the
power spectral density of the velocity of the plate were neglected. This assumption
is valid only if the correlation lengths in both the longitudinal and lateral directions
are significantly smaller than the dimensions of the plate. Although this condition
was not satisfied, it was anticipated that the results will be valid near the resonances
of the various modes when the modal density and structural damping are low. By
neglecting the cross-terms, the power spectral density of the boundary layer pressure
was written as a sum of modal forces excited by the turbulent boundary layer. In this
manner, the integral solution for the spectral density of the generalized force exciting
the nth mode was analytically evaluated. A state equation representation of the force
due to the boundary layer excitation was developed using a spectral factorization of
the generalized force. For this study a seven mode model of the plate dynamics
was utilized. The proposed method of Baumann et al. {37} was used to develop the
transfer function from the modal acceleration to sound power.

With this model Thomas et al. used numerical simulations to evaluate optimal
feedback control. Controllers having both one and two point force actuators were
evaluated. The two channel controller was able to achieve significant reductions at all
frequencies while the single control actuator case could not control the radiated sound
power between the modal peaks. Sound power redu:tions of 30 dB at the first mode
and approximately 10 dB at the other 6 modeled :nodes were found. The authors
state that full state feedback, as used in this simulation, is impractical. Further-
more, an accurate model of the dynamics of the excitation, structural response, and
sound radiation is unrealistic. Finally, delays, unmrodeled dynamics, nonlinearities,
and other uncertainties are not incorporated in the analysis. These characteristics

of the flow induced structural sound radiation problam will reduced the performance
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of an actual implementation. Despite the apparent success of this state space opti-
mal control simulation, the problems with implementation of the method make this

solution inappropriate for this problem.

2.2.3 Robust Feedback Vibration Control

Because feedforward and optimal full state feedback control techniques are not
well suited for the active control of the structural radiation of sound due to a tur-
bulent boundary layer, other control methods must be considered. Robust feedback
control methods such as H,, i synthesis, and QFT offer the most promise. Vibration
control of lightly damped modal systems and a few ASAC studies have utilized robust
feedback control. These studies are reviewed here. ‘

Banks et al. [51) performed an analytic study of active control of structural sound
radiation. They considered control of sound inside a concrete cylinder with a thin
circular flexible plate at one end. A two dimensional model was developed using
a Galerkin discretization scheme. A piezoceramic strain model was used for both
control actuation and feedback information. The excitation of the plate was harmonic
in nature and supplied via an exterior noise field. The H,, control methodology was
utilized to design a controller based on the plant output. Three displacement sensors,
three velocity sensors, and 5 microphones were used for feedback. The results of
this controller were compared to those of an LQR controller for the same system.
The LQR controller development is described in an earlier publication by Banks et
al. [52]. Although the LQR controller performed better than the H,, controller, the
H, controller was reported to perform satisfactorily. In general 12-15 dB of reduction
was predicted at a microphone location. At off resonant excitation, the Ho, controller
increased the sound pressure level of higher frequencies. The initial conditions were
found to substantially effect the H,, controller results. Furthermore, the location and

number of microphones used as feedback influenced the conditioning of the Riccati
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solution. Solutions where the condition number was poor resulted in unbounded
sound pressure levels. These configurations were said to be poor.

Falangeas et al. [33] considered H,, control for the active damping of a plate. Ac-
celerometers were used for feedback and piezoelectric actuators were used for control.
A random shaker excitation of the plate served as the disturbance. A two mode state
model was used to describe the system. Neither the uncertainty of the plant model
nor the time delay were included in the model. To prevent the unmodeled modes
from causing closed loop instabilities, the high frequency modes were filtered using a
low pass filter. In addition, a high pass filter ensured a low gain at DC such that a
constant deflection did not occur. The first H,, design resulted in system instability.
Consequently the plant was augmented with the additional dynamics of a notch filter
so that the controller gain would be attenuated at the frequencies causing instability.
The redesigned controller was a 15 order three-input three-output controller. The
first and second mode of vibration were reduced by 10 dB and 7 dB respectively.

Smith et al. [53] utilized Ho, synthesis to design controllers for vibration control
of a lightly damped flexible truss. The feedback sensors were three accelerometers
mounted at the end of the truss. The control actuators were three adjustable truss
members. The importance of the uncertainty classi:ication was illustrated by design-
ing controllers based on two different uncertainty structures. In the first structure,
both additive and multiplicative uncertainty were included on the output. Imple-
mentation of the controller resulted in unstable closed loop systems. The authors
concluded that the uncertainty did not adequatey characterize the errors in the
system model. The second uncertainty structure :ncluded additional additive and
multiplicative uncertainty on the output and multiplicative uncertainty on the in-
put. The revised uncertainty structure resulted in a stable closed loop system. The
authors suggest design iterations based on experimeatal investigations in order to im-
prove stability and performance since it is difficult to pick the appropriate uncertainty

structure aprior:.
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Balas and Doyle [54] utilized u synthesis to control the vibration of a lightly
damped, modal structure. The disturbance was air blowing over the surface of the
structure. The structure was empirically modeled by fitting transfer functions to
experimental data. Additive uncertainty was used to represent the unmodeled high
frequency dynamics in order to avoid instability in the closed-loop system. The addi-
tive uncertainty was such that at higher frequencies the controller gain rolled-off and
the higher frequency modes were not destabilized. Frequency domain weights were
also included to limit the actuator responses. The performance weight for vibration
attenuation was a constant scaling on each sensor output. Controllers were designed
using various levels of additive uncertainty. A D-K iteration procedure approximat-
ing p synthesis was employed to design the controllers. A three-input three-output,
90th order controller was developed. Experimental results indicated significant at-
tenuation of the first two modes. As with the Smith investigation, the key step in
the controller design procedure was to accurately capture the amount of uncertainty.
Underestimating the system uncertainty either destabilized higher frequency modes
or led to severe performance degradation. However, over estimating the uncertainty
restricted controller performance.

Yang et al. [55, 56] utilized an H,, feedback control for sound pressure reductions
inside an enclosure. Their work is unique in that sound pressure measured by a mi-
crophone was used directly as feedback. Sound pressure feedback was possible for
this case due to the size of the enclosure (1.0 x.75 x 0.45 m) which limited the delay
associated with the propagation of sound. Two loudspeakers were used, one as the
control actuator and one as the disturbance. The disturbance transfer function was
modeled as a 31 state system and the plant was modeled with 28 states. Since the H
controller has the same number of states as the system model, the model order had
to be reduced. For this reason the plant model was simplified leading to a reduced
controller order of 12 states. Additive uncertainty was used to account for unmod-
eled dynamics. The additive uncertainty was a transfer function that bounded the

magnitude difference between the frequency response derived from experimental data
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and the frequency response of the reduced-order model. The closed loop sensitivity
was weighted to ensure a 16 dB reduction of the firct acoustic mode. To account for
sensor noise and actuator output limitations, the complementary sensitivity was also
weighted. The 20th order controller was implemented on a DSP board. With this
controller the resonant peak was suppressed by 16 dB.

Chait et al. 57, 58] have utilized a combination of QF T and H, to control noise in
a duct. Since a reference sensor is available for duct applications, feedforward control
is possible. However, feedback control is useful for dealing with system uncertainty.
For this reason, the authors implemented a combination feedforward and feedback
controller. The authors state that their fixed filter design guarantees performance
and does not have the stability problems associated with adaptive control schemes.
The controller inputs were a detection microphone and an error microphone.’ The
controller actuator was a speaker. H,, synthesis was utilized to design an initial
controller. QFT was then utilized to reduce the conservativeness in the controller
design thereby increasing the controller performance. Due to the acoustic feedback
path, the two control loops could not be designed sequentially. Therefore, in the QFT
design process the feedback portion of the controller was fixed while the feedforward
portion was designed. Next, the feedforward portion was fixed while the feedback
portion was designed. The controllers were 50th order and were implemented on
a DSP system. Reductions of 10-20 dB were achieved over the 100-500 Hz band.
The authors suggest further research is necessary .n the area of robust design for
environmental and geometric variations in the duct.

Fluder and Kashani [59] investigated robust control of structure-borne noise using
a u synthesis design technique. Although vibration feedback was used, emphasis was
placed on those modes which most efficiently radiate sound. A simply-supported
rectangular plate with a broadband point force distu:-bance excitation was considered.
A five mode model of the plate dynamics was deeloped. Co-located point force
actuators and point acceleration sensors were used. A model of the radiation of

sound from the plate was not used as it would have added many additional states. To
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account for the sound radiation, each modal acceleration was weighted by its sound
radiation efficiency. To prevent actuator saturation, a weight was also developed
to limit controller effort. Structured uncertainty was included for a one percent
variation in the natural frequencies and five percent variation in the damping ratio.
Unstructured uncertainty, introduced as additive uncertainty, was used to account
for the unmodeled modes. A second order transfer function was used to bound the
difference between the 5 mode model and a more accurate model of the system. A
D-K iteration procedure was used to determine the p controller. Constant D-scales
were used such that no additional states were added to the model. The synthesized
controller was 14th order. Although robust performance was not guaranteed, robust
stability was guaranteed. Numerical simulations showed that approximately 20 dB
of attenuation of the SPL associated with the first mode was achieved. Furthermore

there was no control spillover to higher modes.

2.3 _Conclusions

The problem of modeling the flow induced structural radiation of sound has been
approached in three steps, the model of the turbulence induced pressure field on
a panel, the model of the structural response of the panel, and the model of the
structural radiation of sound. Various modeling methods have been described for
each of these steps. The structural response of the panel to a pressure field and the
radiation of sound from the panel are relatively well understood. However, there
is a lack of accurate models of the turbulence induced pressure field on the panel.
Consequently statistical based models, such as that proposed by Corcos, have been
utilized. These methods are apparently the state of the art and will be used for this
investigation.

Active structural acoustic control has been implemented primarily with feedfor-

ward control methods. These studies illustrate the principles of structural acoustic
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radiation and are useful for understanding how active controllers should be configured.
However, the reference input required for a feedforward controller is not available for
the turbulent flow excitation problem. For this reason, feedback control is considered
in this study.

Currently the active control of flow induced structural radiation of sound has not
been effectively addressed. A realistic experimental controller implementation has not
been performed. Furthermore, the controller design techniques have not considered
robustness to plant variations and other practical implementation challenges.

In the only significant study of sound radiation from a plate excited by a turbulent
boundary layer, Thomas and Nelson used an optimal full state feedback controller.
Optimal control is not practical for implementation as it is difficult or impossible to
measure the state information required by the controller. Furthermore, the effects of
delays, nonlinearities, unmodeled modes, and other uncertainties cannot be included
in optimal control design techniques.

Various robust control strategies have been successfully applied to vibration con-
trol problems. Furthermore, a few researchers have used robust feedback control for
noise reduction applications. Robust feedback con rol methodologies offer the best
prospects for the active control of the structural radiation of sound due to a turbulent
boundary layer. In this investigation robust feedback control will be investigated for
active control of the flow induced structural radiation of sound problem. A robust
frequency domain approach will be developed which considers system uncertainty, uti-
lizes favorable plant characteristics, and achieves d:sired sound attenuation subject

to an actuator output constraint.
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Figure 2.2 Pressure “foot-print” for a Large Velocity Fluctuation (Astolfi, 1993)
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Figure 2.3 Space-Time Correlation Coefficient of 'Nall Pressure (Willmarth, 1962)
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CHAPTER 3. ANALYTICAL MODEL DEVELOPMENT AND EVALUATION

In this chapter an analytical model is developed for the problem of structural radi-
ation of sound from a simply supported panel excited by a turbulent boundary layer.
Using this model, the predicted sound pressure level is compared to experimental
data. A description of the experimental apparatus used to perform the investigation
is also included.

The analytical model is necessary to estimate the sound pressure resulting from
the structural response of a simply supported panel to a turbulent boundary layer.
The model is used to evaluate H,, and p synthesis controller design techniques for
this ;;roblem. It is also used to develop the frequency domain design technique for the
turbulent flow structural sound radiation problem. In addition, the analytical model
is used in the optimization of the controller actuator and sensor locations.

The model is composed of three sets of transfer functions as shown in Figure 3.1.
The first set (Gp(s)) is the generalized modal forces which capture the modal ex-
citation of the plate due to the turbulent boundary layer. For a disturbance due
to a point force excitation, these transfer functions are constants. However, for the
turbulent boundary layer excitation they are shaping filters that give the appropriate
modal force assuming a white noise input. The second transfer function set (Gy(s))
represents the modal response of the plate. The third transfer function set (Gg(s))
models the relationship between the modal amplitudes of the plate and the sound

pressure level at a specified location. The complete analytical model uses 50 modes.



32

3.1 Structural Response Model

The structural response of the plate is obtained from the classical equation of

motion for a thin damped flexible structure

0%y

9
D,Viu + ca—:f +m=s = f(z,y,1) (3.1)

where u is the normal displacement of the plate, D, is the flexural rigidity, c is the
viscous damping coefficient, m is the mass per unit area of the plate, f(z,y,t) =

f(z,y)s(t) is the excitation pressure of the plate, and V* is given by

& +2 o + ¥
drt T Ox?0y®: Oyt

Using the modal analysis method and assuming simply supported boundary con-

Vi =

(3.2)

ditions, Equation (3.1) can be transformed into a set of algebraic equations. The

assumed solution is given by

u= i ¥, (z,y) (3.3)

r=1

where 7, is the modal displacement associated with the rth mode and ¥, is the
corresponding mode shape of the plate. For simply supported boundary conditions

VU, is given by

pTT
)

. qry
sin( - )-

V. (z,y) = sin( 7 (3.4)

2
(ab)1/2
where a, b are the z and y dimensions of the plate and p and ¢ are the 7th modal

indices. The modal equation can be written as

Ty + 20w,y + Wi = ¢, (3.5)

where ( is the damping ratio (¢ = 2{mw.), ¢. is the generalized modal force given by

¢ = —;- JRZERVERREH (3.6)
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and w, is the natural frequency of the rth mode given by

- Z[E) (5] o

For a point excitation of the plate, the generalized modal forces are given as

gr = %sin <%) sin (q1y0> s(t) (3.8)

where z,, y, are the coordinates of the excitation. For the turbulent boundary layer
excitation, the output of the spectral factorization shaping filters (Gp(s)) are the

generalized modal forces.

3.2 Turbulent Flow Model

As shown in the literature review, accurate models of turbulent flow fields do
not exist. The fluid dynamics of the turbulent flow phenomenon remain an area of
fundamental research. Fortunately, stability of the robust feedback regulator problem
does not require an accurate disturbance model. In this section, an empirically based

turbulent flow disturbance model is developed for use in the controller design process.

3.2.1 Turbulent Flow Power Spectra

The most commonly used models of a turbulent flow field are statistically based.
Statistical models of the turbulent wall pressure levels have been utilized since the
early 1960’s and are based on empirically obtained data. These models are used to
characterize the pressure field on a plate for a fully developed turbulent flow. Fur-
thermore, these models have been shown to be accurate for a wide range of turbulent
flow problems.

The pioneering work by Corcus described in Chapter 2 led to a statistical model of

the wall pressure cross-spectral density (Equation 2.1) which is used in this work. The
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A and B functions are those suggested by Strawde ‘man for a zero pressure gradient

flow

A(wEJU,) = e~mlwt/Uel (3.9)
B(wn/U,) = e~ mlwn/Uel
where y; = 0.115 and 3 = 0.7 [17]. The convective velocity (U.) is assumed to be a
constant given by U, = 0.65 U,, where U, is the free stream velocity. The model for
the power spectral density of the wall pressure suggested by Skudrzyk and Haddle is

used [19]. At the low normalized frequencies, which are of concern here, the power

spectral density of the pressure field is approximately the constant

Spp = 7.5 x 107°A22U2 6 (3.10)

where A = 3 for air, p, is the density of the fluid, and 6* is the boundary layer
displacement thickness. This approximation is reported to be valid up to a frequency

of

271U
56%

For this investigation 6* is assumed to be constant across the plate and is chosen to

(3.11)

be the displacement thickness at the trailing edge of the plate. The boundary layer
is assumed to begin at the leading edge of the plete. With these assumptions the
displacement thickness given by White for turbulent flow [60] is used

0.16a

where Re, is the Reynolds number.
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3.2.2 Power Spectra of the Generalized Force

In order to incorporate the wall pressure power spectra into the model of the force
on the plate, the generalized force spectral density for the rth mode (Q,) must be
found. A similar derivation to that used by Eringen [24] and Richards and Mead [61]
is used. The second order differential modal equation (Equation 3.5) is solved using

the Fourier transform pair given by

X(f) = % 7 atesera (3.13)
and
z(t) = /_ T X(f)eduw. (3.14)

The Fourier transform of each 7, is expressed as a function of the Fourier transform
of the rth generalized modal force (Q,). The result is substituted into Equation (3.3)

to give the Fourier transform of the normal displacement of the plate as

o=@ (7, W)Y, (2)
U(Z,w)= ; Z(0) (3.15)
where
Z(w) = w? — w? + 120w, (3.16)
and Z = (z,y). Using the definition of the power spectral density
Spe = lim tix*(w)X(w) (3.17)

o

where * represents the complex conjugate operator, the power spectral density of the

displacement is written as

e TR QEWT(E) & QF,w)Ts(3)
Suu-t}glwzmzl Zr0) ; ABEE (3.18)

Expanding Equation (3.18) gives
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(3.19)

where Sy, is the power spectral density function of the generalized force for the rth
mode and Sy, is the cross-spectral density between two different modes. The first
series gives the sum of the individual modal spectra. The double series contains cross
terms which correct for the correlations between the responses in different modes. For
this investigation, the cross terms are neglected. Thomas and Nelson state that the
cross terms are negligible when the main concern is the response at resonance and
the system is of low modal density [50].

The derivation of the equation of the power spectral density of the generalized
force of the rth mode is found by taking the Fourier transform of the rth modal

generalized force Equation (3.6)

Q.(Z,w) = lim _/: /\I' (Z,t)e7“*dSdt. (3.20)

to—00 2T

The power spectral density of the rth mode generalized force is

.11 _ -
Seq. = t}gl})oa47rm2 /52 -/51 ¥.(21)¥,(Z2)
(3.21)

/ f $1, tl)f<527 t2)e‘:w(t1_tz)dtldtgdsldSQ

Making the change of variable ¢t; = ¢; + 7 and using the definition of the cross-

correlation function

Rff(xl,:cz, )— lim 2—-/t f .’L‘l,tl)f(xz,tl +T)dt1 (3.22)

and the cross-spectral density
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1
2w

allows the power spectral density of the rth modal generalized force to be written as

Sff(.rl,l‘g,t) / Rff(.’L‘l,IL‘Q, ) _iWTdT (323)

qq, /92 /5'1 2’52 Sff(xl,x2, )dS1dSQ (324)

Since the flow field is assumed to be stationary and homogeneous,

Sp1(Z1, T2, w) = Syp(€ M w) (3.25)

when { = z; — z; and # = y, — y;. By utilizing the Corcus model (Equation 2.1),
the empirically fit exponential decays suggested by Strawderman (Equation 3.9), and
the power spectral density of the pressure field given by Skudrzyk and Haddle (Equa-
tion 3.10), the cross-spectral density in (Equation 3.24) is integrated giving

4S.
Sgq (W) = —&%A(Bl + B2 + B3 + B4) (3.26)
where
Ao B 21— cos(gm) expTE)
7+ (5 (CECU.
(ﬂ%ﬂly + (BE)2
(552 + (B)?
—-wa("/ +1)
B3 = (Z)*(1 — cos(pm) exp' )
(£t 4 (2222
and et
a _ (1 = cos(pm) exp =)

(2502 + ()2
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3.2.3 Spectral Factorization

To determine a state space representation of the turbulent flow excitation, transfer
functions between the assumed white noise input and the generalized forces must be
found from the power spectra of the generalized forces derived in Equation (3.26).
The transfer functions are found using a spectral factorization of the power spectra
(Thomas and Nelson [50]). A transfer function having ten numerator and denominator
coeficients is fit to the frequency information of the power spectra using a least
squares procedure. A least squares fitting routine for a Z domain transfer function
given by Parks and Burrus has been adapted for the S domain transfer function

fit [62]. The equations for the least squares fit are developed using

Cact(w) = Crit(8)|s=jw (3.27)

where Co; is the actual transfer function and Cy;; is the transfer function to be fit.

Using an IIR filter for Cy;,, Equation 3.27 can be written as

Couf) bo+ byst + - + by, s™
act ~ 1+a131+a282+---+ana8"“

Using Equation (3.28), an equation can be written for each of the N frequencies.

(3.28)

S=tw

These equations can be put into matrix form as

{y} = [X[{©} + {e} (3.29)

where

{5} = {Cact{w1), Cact{w2), - - -, Cact{wn )}

[X] = [[Xa] [X.]

[ —Coctw)(@w)'  —Cace(w)(iwn'? -+ —Coerlivs)™

[Xa] — - GCt(u')?)(iw?)l _Cact(w2)(iw2: L —Cact(‘l:(.Uz)na

i _Cact(wN)(in)l - c'zct("‘)l‘f)('l:("JN)2 = cnct(ll:(-‘-)N)n‘z i
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[ 1 (iw)' (wy)? -o- (dwp)™ ]
(X = 1 (iwg)l  (iwg)?® - (dwg)™
|1 (iwn)! (wy)? oo (iwn)™ |

{e} = {alv"'aanaabOr' "abnb}T

{e} ={e(f1). e(f2), -, e(fn)}T. (3.30)

The error (e) is the difference between the actual frequency response and the fitted
frequency response. The error is minimized using a complex version of a least squares
minimization routine [62].

Since the power spectra is real, even, and positive, the odd ordered terms of the
fitted transfer function are zero. Furthermore, the transfer function poles and zeros
are symmetric about the real and imaginary (jw) axes. Thus, the modal excitation
filter is obtained by taking the left half plane poles and zeros of the fitted transfer
function. In this way, a transfer function of fifth order is sufficient to model each
generalized force. Finally, the modal excitation filter is converted from a transfer
function representation to an observable canonical state space representation. A
total of 250 states were used to describe the 50 modal excitation filters. The input
to the modal excitation filters is normally distributed broadband noise.

The power spectra calculated from Equation (3.24) for the first mode is shown in
Figure 3.2 as a solid line. The power spectra given by the spectral decomposition is
shown as the dashed line in Figure 3.2. The fit is within two dB over the frequency
range from 10 to 10000 rad/s. As a result of the limited number of coefficients, more
complicated excitation filters were not as accurately fit. For example, the fit for the
fourteenth mode is shown in Figure 3.3. Although the exact dynamics associated

with the 14th mode were not captured with the spectral decomposition, the general
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shape was. The spectral decomposition process restlted in transfer functions that fit
the 50 modal excitation filters within 5 dB over the frequency range of 10 to 10000
rad/s.

3.3 Sound Pressure Model

The third part of the analytical model is used to predict the sound pressure level
at a specified location resulting from the panel excitation. This is accomplished using

the Rayleigh integral

_ JWPo e [ w({rs})erRU{R—{r})
p({R},t) = —27:_—6J /S (I{R} — {Ts}l) ds (3.31)

where p, is the density of air, k is the acoustic wavenumber, @ is the normal velocity
of the plate, {rs(x,y)} is the position vector to the surface element, and {R(R, ¢, )}
is the position vector to the control point. A spherical coordinate system with the
origin at the center of the plate is used. The coordinate system is shown in Figure 3.4.

By assuming that (|{R} — {rs}|) > a, b the approximation

({R} —{rs}|]) R —zsinfcos¢ — ysinfsin ¢ (3.32)

can be made. For a simply supported plate, the normal velocity due to the rth mode

can be written in terms of the modal acceleration a3

_ T . (PTT L gTY
= S0 )" sin{ - ) sin( ) )-

By utilizing the approximation given in Equation 3 32 and by substituting Equation

iy (3.33)

(3.33) into Equation (3.31) and integrating, the fiequency response G,(w) for the

component of the Rayleigh integral associated with each modal acceleration is

6.0 = Pelab) 2 [<—1>ffefﬂ - 1} [ (~1peie - 1] J—

mpgR | (B/gr)2—1] | (a/pr)2 =1 (3.34)
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where

a = kasinfcos ¢
B = kbsin @sin ¢.

The sound pressure level at the location (R, ®,8) is calculated by using a modal

summation of all G,(w)n,.(w).

3.4 Experimental Configuration

An experimental setup was devised to investigate the problem of flow induced
structural radiation of sound. The experimental apparatus was configured to ap-
proximate the assumptions used in the analytic model. The apparatus consisted of
a rectangular panel which was flush mounted in the floor of a quiet flow wind tun-
nel facility test section. Sound radiated from the panel into an acoustically treated
enclosure below the panel. The sound pressure at various microphone locations was
compared to that predicted using the analytical model.

In order to use the analytical model for the structural excitation of the plate, sim-
ply supported boundary conditions were necessary. However, the analytical model
for turbulent flow excitation assumes a boundary layer over a flush mounted plate.
Therefore, the apparatus used to support the panel could not interfere with the turbu-
lent flow field. One such design has been suggested by investigators at the University
of Sherbrooke [63]. In their work, they approximated simply supported boundary
conditions by attaching a plate to the top edge of an L channel beam with small bolts
screwed into the sides of the plate. By utilizing bolt sizes that are small compared
to the thickness of the panel and by machining the edge of the L channel to 1.5 mm,
reasonable results were achieved. However, this design required extensive construc-
tion time, is unworkable for thin panels, and does not achieve continuous boundary

conditions.
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The plate boundary design utilized in this wo 'k is approximately simply sup-
ported, does not interfere with the turbulent boundary layer, and overcomes the
drawbacks of the Sherbrooke design. The panel was a rectangular 46 x 33 x 0.48 cm
(18" x 13" x 3/16") 6061 aluminum plate. The boundary condition design is uniform
on all four sides of the plate and is shown in Figure 3.5. The 4.8 mm (3/16") thick
6061 aluminum plate is connected to a sub-frame via four 1.6 mm (1/16”) thick alu-
minum strips. Both the plate and sub-frame were dadoed with high tolerances to
tightly host the aluminum strip. The sub-frame was designed such that a 1.6 mm
(1/16”) gap separated the plate from the sub-frame on all sides. To minimize the
moment applied to the plate, the thickness of the aluminum strips in the gap area
was milled to less than one millimeter.

The sub-frame described above was fastened to . massive frame every 5 ¢m using
small countersunk machine screws. The frame was constructed from 7.6 x 3.8 cm
(1.5" x 3") steel bar stock and provided rigid support of the sub-frame. The complete
plate assembly is shown in Figure 3.6.

The assembly, which weighs approximately 45 Kg (100 lbs), was then attached to
an acoustically treated wooden enclosure. The enclosure provided additional mass,
isolated the plate from the wind tunnel test section structure, and isolated the sound
radiated from the panel. The wooden enclosure was constructed using sand filled
double plywood walls. The walls were covered with acoustic wedges. A hole matching
the plate dimensions was cut in the top of the enclosure to allow sound from the plate
to radiate into the enclosure interior. The enclosure was isolated from the test section
structure of the wind tunnel. A schematic of the complete enclosure assembly is shown
in Figure 3.7.

The assembly, with the longer plate dimension oriented in the streamwise direc-
tion, was flush mounted by extending the sub-franie through a hole in the bottom

wall of the wind tunnel test section. The air gap between the sub-frame and the floor
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of the wind tunnel was covered using Nashua metallic tape. A schematic of the orien-
tation of the plate assembly in the test section is shown in Figure 3.8. A photograph
depicting the flush mounted plate and the test section is shown in Figure 3.9.

The Herrick Laboratories low-noise wind tunnel facility has been designed to re-
duce the amount of noise generated from the operation of the wind tunnel [64]. A
special anechoic diffuser and muffler have been included for this purpose. A drawing
of the wind tunnel facility is shown in Figure 3.10. The wind tunnel is capable of

achieving flow speeds of up to 51 m/s (115 MPH) in the test section.

3.5 Comparison of Analytical Model to Experimental Results

The experimental configuration was used to test the validity of the analytical
model. The plate dynamics, structural excitation, and sound radiation portions of
the model were investigated.

The analytic plate dynamics were compared to the measured system. A B&K
10 N Type 4810 mini-shaker was co-located with a Kistler 5130 accelerometer. The
shaker and accelerometer were mounted in the center of the plate. For this reason,
only the odd-odd modes could be sensed or actuated. The transfer function between
the input voltage of the shaker and the accelerometer was measured. Since the input
force was not measured, it was assumed that the impedance of the plate only consists
of the mass of the plate. With this assumption, the approximate transfer function
from input force to acceleration was calculated. This transfer function is compared
to that for the analytical model and is shown in Figure 3.11. The natural frequencies
of the first and fourth mode are close to those calculated by the model. However, the
natural frequency of the eighth mode was measured to be approximately 900 Hz while
the model predicts it to be 956 Hz. The decrease in the natural frequency is most
likely a result of the additional mass associated with the accelerometer and shaker

assembly. In addition to lower natural frequencies, the phase of the measured system
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decreases with frequency. This characteristic is a result of the delay in the shaker
and accelerometer system. As the delay was not included in the analytic model, this
characteristic was not predicted.

A microphone was located in the enclosure to compare the sound pressure pre-
dictions. The microphone was located at R=36.6 cm, ¢ = 159.4°, and § = 17.3°.
The predicted and measured sound pressure level for a flow of 35.8 m/s (80 MPH)
is shown in Figure 3.12. The most significant sound pressure levels for both the pre-
dicted and measured cases occur at the frequencies associated with the modes of the
plate. However, there are significant differences in the spectra.

In order to determine the amount of background noise in the sound pressure level
measurements, the noise radiated from the panel was blocked. This was accomplished
by applying two layers of fiberglass and a piece of plywood to the opening in the top
of the enclosure. With this configuration the amount of noise entering the enclosure
by paths other than through the panel could be eva.uated.

The sound pressure level for the 35.8 m/s (80 MPH) flow case is compared to no
flow and to 35.8 m/s (80 MPH) flow where the sound radiation from the panel is
blocked in Figure 3.13. Except at the frequency of the first mode (150 Hz), the sound
pressure level for the blocked flow is as large as for t1e unblocked flow for frequencies
below 400 Hz. Both the blocked and unblocked cases have sound pressure levels 15
dB higher than the zero flow case. Thus, the noise associated with the operation of
the wind tunnel is very significant at low frequencies. A similar conclusion is made for
the frequency range near 775 Hz. Since the sound radiated at the first mode is only 5
dB greater than for the blocked case, the noise in tl.e low frequencies is a significant
problem.

The sound radiation associated with the fourth mode (580 Hz) is significantly
larger for the unblocked case than for the blocked sr zero flow cases. Similarly, for
frequencies above 700 Hz the sound pressure level for unblocked case is much larger
than that for the blocked flow or the zero flow case. In these regions, the sound

pressure level is primarily a result of radiation from the panel.
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In order to improve the measurement quality, the sound radiated from the panel
was increased. This was accomplished by adding a 2.54 c¢m high fence that extended
laterally across the test section. The fence was located 11.4 cm before the leading
edge of the panel (Figure 3.8). The fence increased the power spectrum of the pressure
field which caused greater structural excitation of the panel. The wake flow created
by this fence is complicated in nature. For this reason, there is not a good estimate
for the displacement thickness or the power spectra of the wall pressure.

Fei Han [65] measured the wall pressure with and without the fence in place. The
measurements were made using microphones flush mounted in an aluminum floor of
the wind tunnel test section. The pressure for the case with the fence was found
to be approximately ten times the pressure for the case with no fence. However,
the pressure spectra measured with the fence in place was not as constant over the
100-1000 Hz region as was the spectra measured without a fence.

By assuming that the Skudrzyk and Haddle approximation is still applicable,
a displacement thickness of 12.8 cm gives the correct value for the pressure power
spectra. This value was used in the calculation of the turbulent excitation filters. Al-
though the wall pressure spectra impacts the overall magnitude of the sound pressure
level in the analytic model, it does not influence the shape of the sound pressure level
spectra.

With the increased excitation level, the analytic model was compared to experi-
mental results. As before, a microphone was used to measure sound pressure levels.
The microphone was located at R=54.6 cm, ¢ = —40°, and € = 33°. In addition, an
accelerometer was located in the center of the plate and used to evaluate excitation
levels. Since the accelerometer is located in the center of the plate, only the odd-odd
modes can be sensed. Various flow velocities were tested.

The model of the acceleration at 35.8 m/s (80 MPH) is compared to the actual
measurements in Figure 3.14. The comparison is within 5 dB up to a frequency of 700
Hz. However, the response near the eighth mode (960 Hz) is not accurately predicted.

The model overpredicts the acceleration by approximately 10 dB in this region and
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the sound radiation associated with the eighth resonance occurs at a frequency near
900 Hz.

The low acceleration magnitude predicted across the 700-900 Hz region was not
measured. A potential source of error in this region is measurement noise. As illus-
trated in Figure 3.13, the operation of the wind tunnel adds significant noise to the
measurements. An additional contribution to the noise floor is associated with the
limited dynamic range of the analyzer. The noise flcor has the potential to mask low
plate acceleration magnitudes.

The predicted and measured sound pressure levels are shown in Figure 3.15. The
general shapes of the spectra are similar. The model accurately predicts that the
majority of the sound pressure level occurs at the modal resonances of the plate.
The magnitudes of the sound pressure level at the frequencies of the first, second,
fourth, and eighth modes are predicted within 5 dB of the measured values. How-
ever, the sound pressure levels predicted near the frequencies of the third and fifth
modes are overpredicted by approximately 10 dB. Furthermore, the sound pressure
level is underpredicted at frequencies not associated with the modal resonances. The
measurement noise floor is a potential reason for underpredicting the sound at these
frequencies.

The predicted and measured sound pressure levels associated with flow velocities
of 26.8 m/s and 40.2 m/s (60 and 90 MPH) are shown in Figures 3.16 and 3.17
respectively. As predicted using the analytical model, the overall sound pressure
levels increased with an increase in flow velocity. The predicted results were similar
to those of the 35.8 m/s (80 MPH) case in that the  ost accurate sound pressure level
prediction occurred near the natural frequencies of ~he plate and the sound pressure

levels at frequencies not associated with modal resoaances were underpredicted
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3.6 _Conclusions

The development of an analytical model for the structural radiation of sound due
to a turbulent boundary layer excitation has been presented iﬁ this chapter. The
structural response, turbulent flow excitation, and sound radiation have each been
developed separately. The model was based on a 50 mode approximation. This
analytical model will be utilized in the development and analysis of robust feedback
control.

Although the model provides a useful estimate of the sound pressure, many ap-
proximations have been made in the analytical model which have resulted in errors in
the sound pressure level predictions. The flow was assumed to have no pressure gradi-
ent, to be stationary and homogeneous, and to have a constant momentum thickness
over the plate. These assumptions are unrealistic for flow in a test section. Further-
more, the cross-modal excitation terms have been neglected resulting in inaccurate
predictions of the response at off resonant frequencies. There are also inaccuracies
associated with the spectral factorization of the modal turbulent flow power spectra.
Additionally, the vibration of the panel is not assumed to effect the turbulent flow
pressure field. Inaccuracies in the dynamic response of the plate include the additional
mass and stiffness associated with the accelerometer and shaker assembly. There are
also potential errors associated with the assumption of simply supported boundary
conditions. Furthermore, the sound is assumed to radiate into a free field and there
is assumed to be no loading of the plate due to the sound radiation. Finally, in all
parts of the model, system delay has been neglected. The delay is highly important
in the design and implementation of control systems.

An experiment has been devised to investigate the turbulent flow induced struc-
tural radiation of sound phenomena. The experimental results have been compared
to those predicted by the analytical model. Despite the many simplifications of the
analytical model, it is capable of predicting the general characteristics of the sound

pressure level spectra for this problem. Most of the sound pressure levels associated
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with the natural frequencies of the plate are accurately predicted. For this reason, the
model is useful in the development and evaluation of various control methodologies.

While the model is acceptable for investigating the relative merits of various con-
trol methodologies, controllers designed using the model will not work as expected on
the experimental apparatus. Thus, for model based control methodologies a system

identification based on experimental measurements is required.
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Figure 3.5 Cross-Section of Plate Support Assembly
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CHAPTER 4. EVALUATION OF CONTROL METHODOLOGIES

In this chapter, various active control methods for the problem of flow induced
structural radiation of sound are investigated. State space methods are described first.
Next, © synthesis controllers are evaluated using the analytical model developed in
the previous chapter. Lastly, an adaptive feedback methodology is implemented in
an experimental investigation. Relevant issues associated with these controller design

methods are identified.

4.1 State Space Control

State feedback controllers require measurable states or an accurate model of the
system. For the turbulent flow induced structural radiation of sound problem, the
states associated with the turbulent flow excitatioa and structural sound radiation
are non-physical. Therefore, an observer is required for state feedback control. As
shown in Chapter 3, an accurate model of the turbulent flow excitation and structural
sound radiation is not realistic. Although the general characteristics of the turbulent
flow excitation can be modeled using a high order modal representation, the system
cannot be described to the accuracy required to estimate states. Doyle has shown
that errors in the model used to estimate unmeasurable states can result in arbitrarily
small stability margins [34].

In addition to unobtainable states, there are generally difficulties associated with
the truncation of measurable states. Although the states associated with the struc-

tural excitation are measurable, for practical reasons the number of states measured
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must be finite. Thus, the structural model must be truncated. The truncation of the
structural excitation states could reduce closed loop stability and performance.

The effects of delays cannot be incorporated in a state space model. Since delays
are present in acoustic systems, this is a significant practical limitation of state space
control. The delay associated with many sound radiation problems is the significant
limiter of controller performance. This limitation cannot be accurately considered
with state space controller design.

Nonlinearities, unmodeled modes, parameter changes, and other system uncertain-
ties are not addressed in state space controller design. All physical systems include
uncertainty and large uncertainty is expected for the turbulent flow induced struc-
tural radiation of sound problem. Since uncertainty is not included in the controller
design, the controller is not robust. For these reasons full state feedback control is
not often implemenfable or practical. Consequently, for this class of systems, state
feedback control represents the best that active control can achieve but does not offer

a practical solution.

4.2 p Synthesis Controller Design

In this section robust controller design using the u synthesis technique is inves-
tigated. The controllers were designed and evaluated based on the analytical model

developed in Chapter 3.

4.2.1 System Configuration

The system to be controlled was a simply supported rectangular plate with a
turbulent boundary layer excitation on one side. The plate was assumed to radiate

sound into an anechoic environment and the fluid loading of the air was neglected. A
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flow speed of 38 m/s (85 MPH) was considered. Thae plate and fluid parameters are
shown in Table 4.1. A pictorial representation of the system is shown in Figure 4.1.

A single-input-single-output controller with a point force input was used. The
feedback was acceleration co-located with the point force in the center of the plate.
This location is such that it couples into the odd-odd modes of the plate. This is
desirable since the odd-odd modes are the most efficient radiators of noise [66].

The feedback structure associated with the turbulent flow induced sound radia-
tion problem is shown in Figure 4.2. Gp(s) represents the modal excitation due to
the turbulent boundary layer given by the spectral factorization of Equation (3.26),
Gu(a, s) represents the dynamics of the plate, Gr{s) represents the sound pressure
radiation to the control point due to the modal excitation given by Equation (3.34),
and G¢(s) is the feedback controller. H and F are the modal participation coeffi-
cients associated with the sensor and actuator locations, respectively. The heavy lines
indicate modal representations while the thin lines indicate measurable signals.

The system uncertainty was specified using both unstructured and parametric
uncertainty. Unstructured uncertainty was used to represent the modeling errors
associated with the truncation of modes. This uncortainty is the difference between
the nominal system model containing eight modes and the fifty mode model assumed
to be the actual system. This type of uncértainty accounts for errors in the system
model rather than actual uncertainty that the system might exhibit. Parametric
uncertainty was associated with variation in the natural frequencies and the damping
ratio. As such, parametric uncertainty represents uncertainty associated with the
actual system.

The performance goal was to reduce the sound nressure at a specified location to
less than the desired sound pressure level, P, subject to a control effort limit, .
However, the sound pressure level was not used as ferdback since for most applications
it would be impractical to locate microphones at tle locations where sound pressure
level reduction is desired. Furthermore, using the sound pressure level as the feedback

signal would restrict the controller bandwidth, which in turn would limit closed loop
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performance. This is a direct result of the phase lag associated with the delay of
the sound propagation between the panel and the sensor location. As the distance
between the sound pressure feedback sensor and the radiating surface increases, so
does the amount of delay.

Although the sound pressure level was not used for feedback, it can be controlled
indirectly when plate acceleration is used as feedback. Minimization of the plate
acceleration at discrete points does not guarantee that the sound pressure level will be
minimized. To effectively reduce sound radiation, the individual modal acceleration
coeflicients are weighted based on their sound pressure level contribution at the output
location. Radiating modes are heavily weighted and non-radiating modes are lightly
weighted. In this way, the structural response of the plate is controlled such that the

residual plate vibration occurs only in modes which do not efficiently radiate sound.

4.2.2 u Synthesis Controller Methodology

In this section a robust controller design using the y synthesis technique is pre-
sented. Because a controller designed using u synthesis is of the same order as the
sum of the plant and disturbance models, it was impractical to use the model of the
turbulent flow excitation containing 250 states. Instead, the disturbance was assumed
to be broadband excitation from a point force. The point force is located at (a/2.3,
b/2.3) such that all of the modeled modes of the plate are excited. Because the turbu-
lent flow filters are smooth and contain few resonant peaks over the frequency range
to be considered, the broadband point force excitation is similar to the broadband
nature of the turbulent flow excitation. Thus, it was anticipated that the controller
design based on a point force excitation will perform satisfactorily for the turbulent
flow excitation.

To achieve sound pressure level reductions, the relative magnitudes of the radiation

frequency responses (|G,|) from Equation (3.34) were used to weight the accelerations
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of each mode in the state space model. The weigh-ing function for each closed loop
modal acceleration is given by
|G lloo

& = Py (4.1)

where P, is the desired sound pressure level. For this work, P, was taken to be a

constant across the frequency range of interest.

The control effort was specified as a performance objective by weighting the closed
loop control effort transfer function. The control effort weighting is given by £, = 1/«
where k is the maximum control effort transfer function magnitude. The weighted
modal accelerations and control effort were collectively used to construct the overall

performance goal given as

Z 61‘ TT

€T

where T, is the closed loop transfer function associated with the rth modal accelera-

1 (4.2)

tion and T, is the closed loop transfer function for the control effort.

The parametric uncertainty matrices used to des:ribe perturbations in the natural
frequencies and damping ratio were obtained using the method outlined by Stein-
bunch et al. [67]. Steinbunch showed how structured complex perturbations for two

parameters (@ = Gnom + Seba, b = bnom + $36) for the equation

z= anombnomx + ('716a + 72606b + '7361))1' (43)

can be formulated in state space form using additional uncertainty states. With his
method, the variation in the natural frequencies and damping ratios were incorporated
into the state space model. A triple complex repeated uncertainty and an additional
complex uncertainty were used for each mode of th: nominal model.

The unstructured uncertainty was obtained by bounding the difference between

the actual system transfer function (50th order) and the nominal transfer function
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(8th order). The magnitude of the unstructured uncertainty was bounded by the

second order transfer function
1.5 x 107352
(mw + U(gw+1)
The bounding of the unstructured uncertainty using Equation (4.4) is shown in Fig-

(4.4)

ure 4.3.
Similar to the work of Fluder and Kashani [59], the problem was formulated in

the general framework for an H,, or y synthesis problem

Y Py Py P %
Y, = | Py Py Py U, (4-5)
Y; Py Py Ps Us

where Uy, U,, U;, Y1, Y3, and Y3 are the uncertainty output, disturbance input,
control input, uncertainty input, desired output, and measured output, respectively.
U, and Y] are composed of eight triple complex repeated uncertainty blocks and eight
single complex uncertainty blocks associated with the parametric uncertainty and an
additional complex uncertainty block associated with the unstructured uncertainty.
There is a single disturbance input (U-), controller input (Us), and measured output
(Y3). The desired output (Y2) is composed of the first eight modal accelerations
and the control effort. A block diagram representation is shown in Figure 4.4. In
Figure 4.4, A is the 33 input-33 output uncertainty matrix, P is the 35 input-43
output model of the plant, disturbance, and uncertainty, and K is the SISO controller
to be synthesized.

In this investigation, the u synthesis problem is solved using the D-K iteration
method proposed by Doyle [68, 69]. In the D-K iteration procedure, the minimization
of

IDF(P, K)D™ | < 1 (4.6)

is solved iteratively for either K" or D while holding the other constant. For a fixed

D, the problem is an H., optimization problem, while for a fixed K, the problem is
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a convex optimization problem at each frequency. The convex optimization problem

is expressed as

min g|[D.F(P,K)D]. (4.7)

The solution to the convex optimization problem gives an optimal frequency depen-
dent scaling matrix (D,) which corresponds to the system perturbation matrix A.
The magnitude of the optimal matrix (D,,) is fit with a stable, minimum-phase trans-
fer function (D). For D chosen to be a constant no additional states are added to
P and subsequently to the controller K. However, for a better approximation of the
i solution, dynamics can be used in D. The order of the controller will increase by
the number of states associated with these dynamics. Although the D-K iteration
procedure works well on many engineering problems, it is not guaranteed to converge
to a global minimum.

The controlled system can be represented as

i|_|Qu Qo {Ul (438)
Y, Qu Qx| | U

This representation is depicted in Figure 4.5 where A is the system uncertainty and

Q is the linear fractional transformation of the controller and the plant given by

Q = E(P, K) = le + szK(I - P32K)—1P31. (49)

The maximum Structured Singular Values (SSV) of Q provide information on the
controlled system performance and stability. For eich D-K iteration, the SSV more

closely approximates u(Q@) where

/—1:-(155 =min{d : A € A,det(] - QA) = 0}. (4.10)

If u(Q) does not exceed unity for any frequency, obust performance and stability

are guaranteed [68, 69]. The SSV of @; is used to evaluate robust stability and
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the SSV of Q5 is used to evaluate nominal performance. For this work, the Perron
eigenvalues are used to estimate the SSV. These eigenvalues were shown to be a good

upper bound on the SSV by Safonov [70].

4.2.3 Controller Design and Evaluation

Fluder and Kashani [59] reported difficulty in obtaining a controller which satisfied
both robust performance and robust stability. Similar difficulties were encountered
in this investigation. A g synthesis controller was developed for the case where
k = 10 N and P, = 105 dB. The control effort constraint was chosen to be 10
times the RMS value of the disturbance force. The degree of parametric uncertainty
was assumed to be one percent variation in the natural frequencies and five percent
variation in the damping ratio. The SSV of @ for each of three D-K iterations are
shown in Figure 4.6. For each iteration, the D matrix was fit using constants. Since
each of the iterations has singular values which exceed unity, robust performance was
not guaranteed. Additional iterations did not significantly improve the closed loop
performance. Robust stability was not guaranteed since the SSV for @;; for each
of the three iterations shown in Figure 4.7 was greater than unity. Although robust
stability was not guaranteed, nominal performance was. The SSV for @,; for each
of the three iterations is shown in Figure 4.8. Since the maximum SSV is less than
unity, nominal performance was guaranteed.

In order to satisfy robust stability, another u synthesis controller was designed for
a reduced parametric uncertainty of 0.1 percent variation in the natural frequencies
and 0.5 percent variation in the damping ratios. The control effort was restricted
using k = 10/N. The desired sound pressure level was changed from Pj.; = 105 dB to
Py = 100 dB. Thus, larger sound pressure level reductions are required. The SSV
of @ for each three D-K iterations are shown in Figure 4.9. As before, the SSV for

Q exceeded unity and therefore robust performance was not achieved. However, the
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SSV for @;; for each of the three iterations, as shown in Figure 4.10, was less than
unity. Therefore, robust stability was achieved for the reduced degree of parametric
uncertainty. The SSV for @, for each of the three iterations is greater than unity
and is shown in Figure 4.11. Thus, the increased performance requirement was not
satisfied for the nominal case.

A u synthesis controller was developed for the reduced parametric uncertainty of
0.1 percent variation in the natural frequencies and 0.5 percent variation in the damp-
ing ratios and the sound pressure level performance requirement of P, = 105 dB.
As before, the control effort was restricted by « = 10/N. The SSV for @ for each of
- the three iterations is less than unity and is shown in Figure 4.12. Therefore, robust
performance and hence robust stability and nominal performance were guaranteed.

Since the controller order is contingent upon the number of states of P, the
controller order is large (18 states). The Bode plot of the controller is shown in
Figure 4.13. The maximum controller gain was spproximately -75 dB. There are
significant lightly damped controller dynamics in th: 500-2000 rad/s frequency band.

The sound pressure level for the broadband poiit force disturbance input for the
uncontrolled and the controlled system are shown in Figure 4.14. The sound pressure
level was calculated as the sum of the sound pressure levels due to the individual
modal accelerations. The full 50 mode model was used for both the controlled and
uncontrolled responses. The sound radiation associated with the first mode was
reduced by approximately 5 dB and that associated with the third mode was reduced
by approximately 2 dB. The desired sound pressure level of 105 dB was achieved and
there was no control spillover into higher modes. T e closed loop frequency response
of the control effort is shown in Figure 4.15. The res ponse was less than the allowable
limit of 10 N.

The sound pressure level at the control point was also calculated for the flow noise
disturbance model. The performance was evaluated using the full 50 mode model.
The uncontrolled and controlled sound pressure level responses are both shown in

Figure 4.16. As with the point force disturbance, approximately 5 and 2 dB of sound
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pressure level reductions were achieved at the first and third resonances, respectively.
The time history of the acceleration at the sensor location is shown in Figure 4.17.
The acceleration was only slightly attenuated as is indicated by the fact that the RMS
value of the controlled acceleration is 4.1 x 1073m/s? while that of the uncontrolled
acceleration is 4.4 x 1073m/s?. The control effort is less than 0.6 4N and is shown
in Figure 4.18.

The use of dynamic scaling in the D matrix was also investigated. The controller
performance parameters were specified as k = 10V, Py = 105 dB with parametric
uncertainty of 0.5 percent variation in the natural frequencies and 2.5 percent vari-
ation in the damping ratio. The SSV for @ for three iterations with no additional
dynamics in D is shown in Figure 4.19. Robust performance is not guaranteed for
this design. The sound pressure level for the turbulent flow disturbance is shown
in Figure 4.20. Approximately 5 and 3 dB of sound pressure level reductions were
achieved at the first and third modal resonance respectively.

The same parameters were used to design a controller where dynamics were in-
cluded in the D scale. The approximation of the y bound was most sensitive to
the uncertainty associated with the unstructured uncertainty block. A second order
transfer function was used to fit the portion of the D matrix associated with the
unstructured uncertainty block. The other uncertainty blocks were fit with constant
D scaling. This allowed for improved accuracy in the approximation of the x4 bound.
The resulting SSV for @ for three iterations is shown in Figure 4.21. Additional
iterations did not improve the controller design. As shown in Figure 4.21, robust
performance is not achieved. However, the additional dynamics in D did improve the
controller design. The maximum SSV for the non-constant D weighting are less than
those for the constant D weighting. Furthermore, the SSV has been changed from
approximately 2 to approximately 0.8 in the 500 rad/s region.

The sound pressure level for the turbulent flow disturbance is shown in Figure 4.22.
Approximately 8 and 5 dB of sound pressure level reductions were achieved at the

first and third modal resonance respectively. The sound pressure level at the second
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resonance frequency (312 Hz) was not controlled since the shaker and accelerometer
were on a node line of this mode. The additional dynamics in D better approximate u
and thereby achieve improved system performance. However, the dynamic weighting
increases the controller order.

It should be noted that the p synthesis method was sensitive to changes in the
performance objectives. For example, for a constant D matrix, P, = 72 dB, and
k = 0.2N, robust performance, nominal performance, and robust stability were not
achieved. However, sound pressure level reductions are achieved. The controlled and
uncontrolled sound pressure levels for the turbulent flow disturbance are shown in
Figure 4.23. Approximately 18 dB of sound pressure level reduction is achieved at
the first resonance. Additional reductions of approximately 2 and 4 dB are achieved
at the third and eighth resonances respectively. Although the closed loop nominal
performance is significant, the controller itself is unacceptable because a right half
plane complex conjugate pole pair has been included in the controller. A Nichols
chart of the open loop transfer function is shown ir Figure 4.24. Note that the open
loop transfer function makes a clockwise encircleent of the stability point (0 dB,
-180 degrees). This corresponds to two counterclockwise encirclements of the stability
point in a Nyquist plot. Thus, the Nyquist stability criteria is satisfied. The plant
has been used to stabilize the controller. Although closed loop stability is achieved,
a failure of the feedback sensor or a variation in the controller gain would result in
an unstable system. The p synthesis technique offers no a priori means of avoiding

right half plane controller poles.

4.2.4 p Synthesis Conc usions

The u synthesis technique was successfully employed to design a robust controller
for the flow induced structural radiation of sounc problem. Sound pressure level

reductions were approximately 5 dB at the first modal frequency for both the flow
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and point force disturbance excitations. However, robust stability was not achieved
except in the case of small parametric uncertainty. Furthermore, robust performance
was not achieved except for small parametric uncertainty and reduced sound pressure
level reduction requirements.

The impact of the performance criteria and uncertainty on the controller design
is not clear during the u synthesis controller design procedure. When robust stability
is not achieved, it is not known whether the unstructured uncertainty or a particular
modal parameter variation is responsible for the design failure. Likewise, when nom-
inal performance is not satisfied it is unknown whether the control effort restriction
is too severe or the desired sound pressure level is too small.

The 1 synthesis controller is of the same order as the system model. For this
reason, the large flow noise disturbance model was impractical and a more simplistic
point source disturbance was used. Even if robust performance is achieved for a
point force disturbance, it does not guarantee robust performance for the turbulent
flow induced structural radiation of sound problem.

Another drawback of the u synthesis techniques is that a model of the system
is required. Appropriate uncertainty must be incorporated in the system to account
for any inaccuracies in the model. This uncertainty is in addition to any uncertainty
associated with actual changes in the system. This additional uncertainty reduces

the controller performance.

4.3 Adaptive Feedback Controller Investigation

In this section, adaptive feedback control is considered. With an adaptive feedback
controller, a reference transducer is not required. Therefore, it is possible to imple-
ment adaptive feedback control for the turbulent flow induced structural radiation of
sound problem. Adaptive feedback control requires no a priori system information.

An online system identification procedure is utilized to obtain a model of the plant
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transfer function. Once a plant model has been obtained, a gradient based adaptive

algorithm is utilized to adapt the controller dynamics.

4.3.1 Adaptive Feedback Controller Methodology

Adaptive feedback control is accomplished by configuring the feedback system such
that a feedforward methodology can be used. Nelson and Thomas [46] have shown
that if an accurate model of the plant transfer function is known, the controller can
be configured such that adaptive feedforward algorithms can be used. This is accom-
plished by using the controller configuration shown in Figure 4.25. The controller is

given by

_ H(s)
o) = T H0Gs)

(4.11)

where H(s) is the equivalent feedforward controller and Gy (s) is an estimate of the
plant transfer function. With this controller, the closed loop transfer function between

the disturbance and the system output is given as

Y _ _ Go(s)1+H(s)Gu(s))
D 1+ (Gu(s) ~ Gula.s)H(s)

With an accurate controller model of the plant (Gy(s) = Gy(a, s)), the closed loop

(4.12)

transfer function is the same as for a feedforward system

= = Go(s)(1 + H(s)Gu(a, ). (4.13)

By utilizing an accurate model of the plant transfer function in the controller, a feed-
back configuration is converted to a feedforward ccnfiguration for the control filter
H(s). In this way the controller H(s) does not have to satisfy any stability crite-
ria. Furthermore, standard feedforward adaptation algorithms such as the filtered-U

algorithm can be used to adapt the controller filter H(s).
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The problem with utilizing this type of controller is that errors in the controller
plant model can result in stability problems. The system stability is determined by
the denominator of Equation 4.12. Thus, the function L(s) = (Gy(s)— Gy (e, s))H(s)
must satisfy the Nyquist stability criteria. There is a possibility for instability when
the magnitude of L is greater than one. Therefore, the plant transfer function model
must be accurate at the frequencies where the controller gain |H(s)| is large.

In order to explore the effect of plant model errors on the stability of the system,

the single mode plant

0.2(s/500 + 1)

Gu(s) = 77100072 + 2(0.02)/ 1000 + 1)

(4.14)

is considered. The plant is plotted as a heavy solid line on an extended Nichols chart
in Figure 4.26. A unit gain controller (H(s) = 1) will achieve control and is considered
in this example. The dashed line in Figure 4.26 is the Nichols plot of L(s) for an
error in the frequency of the mode. The modeled plant is the same as the actual plant
excepf that the resonance is at 995 Hz rather than 1000 Hz. The modeled plant is
given by

. 0.2(s/500 + 1)

Cu(s) = (57905) + 2(0.02)5/995 + 1) (4.15)

As shown in Figure 4.26, L(s) encircles the stability point at -180 degrees. This error

in the plant model would cause the system to be unstable.
An error in the gain of the plant model is also investigated. The dashed dotted
line in Figure 4.26 corresponds to L(s) for a gain error of 15 percent. As in the

previous case, the stability point is encircled and the system is unstable.

4.3.2 Adaptive Feedback Controller Experimentation

Using the controller configuration of Figure 4.25, the adaptive feedback control
approach was investigated experimentally for the turbulent flow induced structural
radiation of sound problem. The experimental configuration described in Chapter 3

was utilized. A single-input-single-output controller consisting of a point force control
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actuator and a microphone feedback sensor was used. The point force control actuator
was located in the center of the plate. The microphone was located at R=54.6 cm,
¢ = —40° 6 = 33°. This location was 46 cm away from the plate. The delay
associated with the sound radiation was approximately 1.3 ms.

The control was implemented on a Digisonix dX-100 adaptive digital filter sys-
tem. This system incorporates A/D and D/A architecture with a TMS320C30 DSP
processor. Various adaptive algorithms have been programmed for implementation
on this system. For this investigation, the filtered-U algorithm [71] was utilized to
update the IIR filter H. The filtered-U algorithm was also utilized in the online
system identification of the plant Gy. The number of numerator and denominator
coefficients used in the controller was selectable for the experiment. Both the plant
filter and the controller filter were configured with 30 numerator and 29 denominator
coefficients. The sample rate of the controller was limited by the computation speed
of the DSP chip to 5000 Hz. The anti-aliasing filters on the A/D were removed from
the Digisonix hardware. The anti-aliasing was accomplished by adding a Wavetex
Model 852 low-pass filter set at 2000 Hz to the plart.

Wind tunnel flow speeds of 26.9, 35.8, and 40.2 m/s (60, 80, and 90 MPH) were
investigated. Gaussian noise was used to perform the on-line system identification of
the plant transfer function. This system identification was performed for each wind
tunnel speed prior to the adaptation of the controlle; filter. The identification process
was continued until the plant filter coefficients stabilized. This identification process
required several minutes.

For each of the flow speeds tested, the closed loop system became unstable. The
instability is a direct result of the delay associated with microphone feedback. The
delay associated with the time for the sound radiated from the structure to arrive
at the microphone causes phase lag in the plant t:ansfer function. This phase lag
can not be accurately modeled using a discrete filter. Figure 4.27 shows the actual
and modeled plant transfer function. Although the plant transfer function used 30

numerator and 29 denominator coefficients, an accurate model was not achieved. The
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model contained many non-minimum phase zeros in an attempt to match the phase
lag associated with the delay. However, phase differences on the order of 200 degrees
occurred. Furthermore, the magnitude of the transfer function was not accurately
matched.

Additional filter coefficients were included in the plant model in order to better
model the plant. The case for 60 numerator coefficients and 59 denominator coef-
ficients is shown in Figure 4.28. Although the additional coefficients improved the
model, neither the phase nor the magnitude were accurately modeled. An additional
configuration using a 120 coefficient FIR filter was tested. The comparison between
the model and the actual plant transfer function is shown in Figure 4.29. As be-
fore, the phase was not accurately modeled. Furthermore, the lack of denominator
coeflicients results in a poor approximation of the actual transfer function magni-
tude. Without an accurate plant model, the feedback system was not equivalent to a
feedforward configuration which resulted in the observed instability.

To reduce the delay, a microphone located closer to the plate was used as the
feedback sensor. The new microphone location was R=13.3 cm, ¢ = 131°, § = 62°.
This location is 6 ¢m from the plate. At this distance the delay associated with
sound radiation is approximately 0.19 ms. This delay is almost 1/7 of that for the
previous microphone location. With the smaller delay, the plant model’s accuracy was
improved which allowed the adaptive algorithm to achieve control. Both the plant
filter and the controller filter contained 30 numerator and 29 denominator coefficients.
The controlled and uncontrolled sound pressure levels for 35.8 m/s (80 MPH) flow are
shown in Figure 4.30. The only sound pressure level reduction is near the frequencies
associated with the first resonance of the panel. Approximately 5 dB is removed from
the sound associated with this resonance. The total sound pressure level reductions
across the 100-1000 Hz band are 1.9 dB. Similar control was achieved at flow speeds
of 26.9 and 40.2 m/s (60 and 90 MPH).

In order to eliminate the problems associated with the acoustic delay, experiments

were performed using acceleration feedback. As before, the dX-100 system was used to
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implement a single-input-single-output adaptive feedback controller. The accelerom-
eter and control actuator were located at the center of the plate. At this location
the sensor and actuator couple with the odd-odd modes of the plate. A microphone
mounted inside the box (R=54.6 cm, ¢ = —40°, § = 33°) was used to evaluate the
controller performance but was not used as feedback.

By using acceleration feedback, the controller is trying to minimize vibration
rather than sound pressure. With current adaptive feedback technology there is no
weighting associated with the interaction between the structural vibration and the
sound radiation. Therefore, there is no guarantee of sound pressure level reductions.
Since most of the vibration occurs at the structural resonances of the problem, only
sound at these frequencies will be controlled. Thus, if the acoustic field is strongly
coupled to an off resonant structural excitation, little sound pressure level reductions
could be achieved.

The plant identification procedure described previously was utilized to determine
the plant filter coefficients. An estimate of the plant was obtained for each wind
tunnel speed prior to the adaptation of the controller filter. As before, the plant
transfer function was modeled using a 30 numerztor, 29 denominator IIR digital
filter. For accelerometer feedback, the plant transfer function was from the shaker
input to the accelerometer output. In order to improve the adaptation algorithm, the
plant transfer function included a second order Butterworth high pass filter set at 40
Hz and a second order low pass Butterworth filter et at 1000 Hz. These filters were
implemented in software by the dX-100.

The plant transfer function estimate is compared to the experimentally measured
transfer function in Figure 4.31. The measured transfer function was modified to
include the effects of the controller software filte;s. The plant filter was able to
accurately fit the magnitude and phase of the first two measured resonances. However,
both the high frequencies and the low frequencies were not accurately modeled using

the limited number of filter coefficients. Although the general characteristics of the
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phase were captured, there were inaccuracies as large as 80 degrees over the 100-8000
Hz range.

After modeling the plant transfer function, the adaptation of the controller filter
was begun. The controller filter was an IIR filter with 30 numerator coefficients
and 29 denominator coefficients. The adaptation was left on during testing. The
acceleration from the feedback sensor and the sound pressure at a microphone location
were measured. The controlled and uncontrolled acceleration power spectra for a flow
speed of 26.9 m/s (60 MPH) are shown in Figure 4.32. As expected, the controller
reduced the acceleration at the feedback sensor location. The primary reductions
occurred at the modal resonances of the plate. The Nichols chart of the open loop
transfer function is shown in Figure 4.33. This plot shows that the lowest sensitivity
was achieved at the first and fourth structural resonance 981 rad/sec and 3542 rad/sec
respectively. The controller has phased the resonances to achieve the lowest sensitivity
near these frequencies. This was accomplished using a pair of complex non-minimum
phase zeros at w = 3400 rad/s,{ = 0.13. The controller gain decreased at higher
frequencies which kept the higher order modes from becoming unstable.

Improved results could have been achieved if additional phase lag were used to
lag the eighth resonance near 5655 rad/sec. This would have pushed this resonance
away from the stability point at —900 degrees. With this additional phase lag, the
controller gain could have been increased resulting in improved attenuation while
maintaining stability.

Although the sound pressure level played no part in the controller implementa-
tion, sound pressure level reductions were achieved. The sound pressure levels of the
microphone for the uncontrolled and the controlled case are shown in Figure 4.34.
The sound pressure level reductions were achieved at the structural resonances of the
plate. Approximately 4 dB of control was achieved at the first structural resonance
and 3 dB of control at the fourth structural resonance. The sound pressure level

reduction across the 100-1000 Hz band was 1.3 dB.
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The controller performed slightly better for a flow speed of 35.8 m/s (80 MPH).
As before, the acceleration of the resonance frequencies was reduced (Figure 4.35).
The reduction in acceleration resulted in the sound pressure level reduction shown
in Figure 4.36. Approximately 8 dB and 5 dB of reduction were achieved at the
frequencies of the first and fourth structural resonance respectively. The Nichols
chart of the open loop for the 35.8 m/s (80 MPH) case is shown in Figure 4.37.
The plot is similar to that of the 26.9 m/s (60 MPH) case. The primary sensitivity
reductions are achieved at the first and fourth modal resonances. As in the 26.9
m/s (60 MPH) case, the eighth modal resonance is near the —900° degrees stability
point. Since the sensitivity near the eighth mode is greater than unity, disturbance
rejection in this region is poor. In fact, the acceleration in this region increased by
approximately 2 dB (Figure 4.35).

The closed loop system did not remain stable for the 40.2 m/s (90 MPH) test.
Although the controller filter was stable at the start, after approximately 2 minutes of
adaptation an unstable controller design was reached. The adaptation algorithm could
not recover from the unstable state. Repeated investigations resulted in the same
outcome. To better understand the cause of the ins-ability, the controller adaptation
was turned off prior to the occurrence of instability and the controller coefficients,
acceleration, and sound pressure level were recorded.

The Nichols chart of the open loop transfer function is shown in Figure 4.38. The
open loop was similar to those for the 26.9 and 35.8 m/s (60 and 80 MPH) cases
over most of the frequency range of interest. The frst and fourth modal resonances
had sensitivity reduction and would have achieved acceleration attenuation. As in
the other cases, the eighth modal resonance did not have enough phase lag and
is centered under the 900° stability point. For the 40.2 m/s (90 MPH) case the
frequencies associated with the eighth mode (5200 rad/sec) are much closer to the
stability point. The gain margin is approximately 5 dB less for the 40.2 m/s (90
MPH) case at this gain crossover frequency than for the 26.9 m/s (60 MPH) case.
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Therefore the frequencies in the 5200 rad/sec region have an increased sensitivity
resulting in poor performance.

The most significant difference in the open loop transfer function was the increased
gain near 1520 rad/sec. The frequencies near 1520 rad/sec were close to the stability
point of —540°. Furthermore, the frequencies near 1520 rad/sec did not correspond
with high levels of acceleration. Therefore, the controller gain in this region was
unnecessary. It is believed that the gain near the 1520 rad/sec frequency increases
with continued adaptation. As the gain increased the open loop encircled the —540°
stability point resulting in closed loop instability.

The controlled and uncontrolled vibration spectra for the 40.2 m/s (90 MPH)
case are shown in Figure 4.39. As expected, the first and fourth modal resonance are
attenuated. The attenuation is similar to that achieved in the 35.8 m/s (80 MPH)
case. The predicted poor performance near the eighth modal resonance is shown
in the plot as an increase in the acceleration by approximately 4 dB. Additionally,
the poor performance near 1520 rad/sec caused an increase in the acceleration of
approximately 4 dB. As shown in the plot there was not a significant amount of
acceleration in this frequency region. Thus, the time domain gradient based adaptive
algorithm converged to a solution that does not make sense from a frequency domain
design point of view. The controlled and uncontrolled sound pressure levels are shown
in Figure 4.40. Aside from the increase in the sound pressure level near the 1520 and
5200 rad/sec bands, the reduction is similar to that achieved in the 35.8 m/s (80
MPH) case.

Bode plots of the adaptive feedback controllers for each flow speed are shown in
Figure 4.41. All of the controllers had non-minimum phase zeros near w = 3400
with damping ratios near { = 0.13. These non-minimum phase zeros added phase
lag such that the fourth modal resonance is between the —540° and —900° stability
points. The controller for the 26.9 m/s (60 MPH) case had a gain less than one at
all frequencies. The controllers for the 35.8 and 40.2 m/s (80 and 90 MPH) cases

had gains greater than one at some frequencies. Both of these controllers had a
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pair of lightly damped zeros ({ = 0.053, w = 961 rad/sec) near the first resonance.
This reduced the gain and therefore the acceleration attenuation of the first mode.
The high frequency oscillation of the transfer functions occurred as a result of lightly
damped poles and zeros which are equally spaced in frequency. This indicates that
more controller filter coefficients were used than were necessary.

The problem with the 40.2 m/s (90 MPH) case is shown in its controller Bode plot
(Figure 4.41). A pair of lightly damped poles (¢ = 0.026, w = 1527 rad/sec) resulted
in a large gain in the 1520 rad/sec region. The z domain plot of the controller poles
and zeros is shown in Figure 4.42. The poles at w = 1527 rad/sec are close to the unit
circle. Thus, the IIR controller filter is close to being unstable. As these poles moved
closer to the unit circle, the open loop gain increased causing closed loop instability.

The adaptation of IIR filter coefficients which results in unstable filters has been
observed by Scheper [72]. In her investigations, adapting filters were observed to
cross_the stability boundaries several times before finally converging to the proper
values. Thus, the adaptation algorithm was able to recover from the filter instability.
However, in this investigation a feedback configuration was used. As a result, the
filter instability caused a closed loop instability from which the adaptation algorithm

did not recover.

4.3.3 Adaptive Feedback Controller Conclusions

The experimental investigation has yielded important information regarding the
use of adaptive feedback algorithms for active control of structural sound radiation
problems. The adaptive feedback algorithm was found to be ineffective when sound
pressure was used as the feedback variable. This wes a direct result of the difficulties
associated in modeling the pure delay associated wi h sound propagation. In order to

avoid these problems, acceleration feedback was used. However, acceleration feedback
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is not guaranteed to minimize the sound pressure levels. Therefore, the largest sound
pressure level reductions may not be achieved by minimizing the acceleration.

With acceleration feedback, sound pressure level reductions were achieved at the
frequencies associated with the resonances of the structure. After adaptation, the
controller filter included non-minimum phase zeros which provided phase lag to space
the system resonances. In this way the plant dynamics were utilized by the controller.
However, additional gain could have been used to improve performance.

An important aspect of broadband vibration and noise problems is the bandwidth
that can be controlled. In adaptive feedback control the processing time associated
with the adaptation algorithm is a primary consideration. In this investigation, the
sample rate was limited to 5000 Hz which restricted the controller performance.

Another major drawback to adaptive feedback control is its apparent instability
under certain conditions. The instability was shown to be a result of the adaptation
to unstable IIR filters. If adaptive feedback control is to be considered, techniques

for maintaining closed loop stability must be found.

4.4 Conclusions

In this chapter the active control of flow induced structural sound radiation has
been shown to present many challenges for active control. The dynamic systems de-
scribing the flow excitation, structural response, and sound radiation are complex. As
a result analytical models are inaccurate. Thus, model based controller methodologies
require the inclusion of large amounts of uncertainty in order to describe the errors
associated with the model. Furthermore, the inclusion of a large system model re-
sults in high order controllers in some control methodologies. Therefore, a non-model
based control methodology is desirable.

The flow induced structural sound radiation problem is broadband in nature.

This necessitates a high bandwidth controller. Therefore, computationally intensive
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control algorithms are not feasible. Although sound pressure reductions are required,
the sound pressure level cannot be utilized as feedback. This is a consequence of the
delay associated with sound propagation. Furthermore, the blind use of acceleration
feedback does not necessarily result in sound pressure level reductions. Therefore,
the controller must relate the acceleration feedback to the amount of sound radiated
from the structure.

Another difficulty associated with this problem is that the plant transfer functions
change significantly over the operating range of the system. Thus, the controller must
account for a large degree of system uncertainty. Furthermore, the controller must
maintain robust stability and performance over the entire operating region. Control
methodologies which do not consider robustness can not be utilized.

Finally, it is important that the control methodology guarantee that specific per-
formance criteria are satisfied. The impact of these criteria on the controller design
should be clear to the designer. In this way, the impact of the performance require-

ments on the number of control actuators, sensors, and control effort can be discerned.



Table 4.1 System Parameters

Plate Material

Aluminum

Plate Dimensions (a,b,h)

(0.4,0.2,0.001) m

Modal Damping Ratio 0.01
Actuator Location (a/2,b/2)
Sensor Locations (a/2,b/2)
Controlled Location (2m,45deg,45deg)
Fluid Air
Air Velocity Uy 38 m/s (85 mi/hr)
Convected Velocity U, 0.65 Uy
M 0.115
3 0.7
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CHAPTER 5. ROBUST FREQUENCY DOMAIN CONTROLLER DESIGN AND
EVALUATION

In this chapter a robust frequency domain controller design methodology is de-
veloped and evaluated for control of turbulent flow induced structural radiation of
sound. Both SISO and MIMO controllers were designed and tested. Additionally,
an optimization considering both performance and controller issues is performed to
determine the best actuator and sensor locations to be used. Finally, the robustness

of the MIMO controller to unmeasured system variations is evaluated.

5.1 Controller Configuration

The performance of acoustical control problems is typically measured by the re-
duction of the power spectrum of the sound pressure level measured over a specified
frequency range. As a result, in this work the controller is designed to achieve specified
performance in the frequency domain rather than the time domain. The controller
objective is to robustly reduce the radiated noise such that the time averaged power
spectra of the sound pressure at the prespecified locations are less than the desired
sound pressure level P, subject to control effort limitation.

Although sound pressure is to be controlled, the sound pressure level is not used as
feedback. For most applications, it would be impractical to position microphones at
the locations where sound pressure level reduction is desired. Furthermore, using the
sound pressure level as the feedback signal restricts the controller bandwidth which
in turn limits closed loop performance. This is a direct result of the excessive phase

lag associated with the delay of the sound propagation between the panel and the
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sensor location. As the distance between the sound pressure feedback sensor and the
radiating surface increases, so does the amount of delay.
The problem associated with system delay is illustrated using the single mode

plant given by
0.2(s/500 + 1)
((s/1000)2 + 2(0.02)5/1000 + 1)

which is plotted as a heavy solid line on an extended Nichols chart in Figure 5.1.

Gy(s) = (5.1)

Since the total phase associated with the mode is less than 180° and the resonance is
centered between the Nyquist stability points at 180° and —180°, a unit gain feedback
controller which utilizes the system dynamics can bie used. For a unit gain feedback
controller the closed loop sensitivity is low at the modal resonance (1000 rad/s).

Consider the same modal plant containing a 6 msec delay which is representative
of a microphone sensor located 2 m from the structure. This delay introduces phase
lag at all frequencies. The resulting transfer functior is plotted as a heavy dashed line
in Figure 5.1. The delay has significantly increased -he phase lag associated with the
mode. As a result, the response is unacceptably close to the stability points located
at —180° and —540°. To achieve acceptable stability margins, the controller gain
would have to be less than one. Since the controller must attenuate the response, the
controller bandwidth has been limited. The spreadiig of the phase associated with a
modal response due to the delay, as demonstrated ir this example, is worse for higher
modal frequencies or increased delay. Furthermore. controller dynamics can not be
used to overcome large amounts of delay. For this reason, it is of great importance
to avoid system delay.

To eliminate the delay associated with microphone feedback for acoustic systems,
plate acceleration feedback rather than sound pressire level feedback is utilized. Al-
though the sound pressure level is not used for feedback, it can be controlled indirectly
using plate acceleration as feedback. Contrary to nitial impressions, minimization
of the plate acceleration does not guarantee that the sound pressure level will be
minimized. Instead, the acceleration feedback must be weighted based on the uncon-

trolled sound pressure levels of the locations to be controlled. Thus microphones are
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necessary for the controller design process, but are not part of the feedback control
system. With this design method the structural response of the plate is modified such
that it rejects the excitation of the turbulent flow field in the frequency regions that
strongly contribute to the sound pressure levels at the locations to be controlled. The

control actuation is provided by point force inputs to the plate.

5.2 Controller Design Methodology

The flow induced radiation of sound problem can be described using the feedback
structure shown in Figure 5.2. Gp(s) represents the modal excitation of the plate
due to the turbulent boundary layer, Gy(a, s) represents the dynamics of the plate
including uncertainty, Gg(s) represents the sound level radiation to the control point
due to the modal responses, and G¢(s) is the feedback controller. H and F are the
modal participation coefficients associated with the sensor and actuator, respectively.
In Figure 5.2 the heavy lines indicate modal representations while the thin lines
indicate measurable signals.

For this frequency domain controller design methodology, the open loop transfer
functions are loop shaped on a Nichols chart using classical frequency domain de-
sign tools. The Nichols chart provides closed loop information, such as sensitivity
and complementary sensitivity, based upon the open loop transfer function. The

complementary sensitivity is the closed loop transfer function

L
1+L

where L is the open loop transfer function. In general, lower complementary sensi-

(5.2)

tivity transfer functions utilize less control effort. Open loop transfer function values
having a constant complementary sensitivity magnitude are M circles on the Nichols

chart. The sensitivity transfer function is given by
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1
1+L

The sensitivity transfer function gives the influence of the disturbance on the closed

(5.3)

loop output. A lower sensitivity gives greater disturbance rejection. Open loop
transfer functions values having a constant sensitivity magnitude are inverted M
circles on the Nichols chart.

The loop shaping procedure involves augmenting the natural plant dynamics
Guy(a,s) with the dynamics of the controller such that the design objectives are
achieved. The design objectives, sound pressure reduction, stability, and control ef-
fort limitations, are introduced into the design process in terms of bounds on the
Nichols chart. These performance bounds define the acceptable design region by
imposing amplitude and phase conditions on the open loop transfer functions to be
designed.

The open loop transfer functions are loop shap=d sequentially. The dynamics of
the transfer function loops already designed are included in the bound development
for the subsequent loops. If the bounds cannot be satisfied, additional control loops

are added.

5.2.1 Performance Bound (ieneration

Performance bounds are generated by limiting the sound pressure level at the lo-
cations to be controlled to be less than a specific pressure level (R(jw) < Ppes(jw)).
Since sound pressure levels rather than acceleration are to be controlled, the unique
approach of developing performance bounds for a aon-measured parameter is used.
In this novel approach, these bounds can be developed as if the control system were
a MISO system. The interaction between the loops is considered in the performance
bound development by including the dynamics associated with the previously de-

signed loops in the generation of the performance bounds for the current loop. When
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the sound pressure levels are to be controlled at multiple points, bounds are generated

for each of the points. In this way multiple, MISO control problems are solved.
Using the system block diagram (Figure 5.2), the transfer function between the

disturbance (D) and the sound pressure level at the microphone location to be con-

trolled (R) for a controller having ¢ loops is written as

Gr(jw)Gu(a, jw)Gp(jw)

R y =
(1) = T T e jw) + Lol jw) + -+ Ly(@3)

D(jw). (5.4)

where L,,(a, jw) is the mth open loop transfer function given by

L (@, jw) = Gu(@, jw)FuGe,, (jw) Hom- (5:5)

The performance criteria at each microphone location is given by

|R(jw)| < | Paes(jw)!- (5.6)

Equation 5.4 is substituted into the performance criteria (Equation 5.6) and used to
develop the frequency domain bound associated with the kth loop of the controller.

The bound is written as

1
1+ L3 (o, jw)Pr(a, jw)

1+ an_zll Lm(av ]w)
Gr(jw)Gu(a, jw)Gp(jw)D(jw)

where Pi(a, jw) accounts for the measured system uncertainty and the dynamics of

S Pdes(jw) (57)

the control loops which have already been designed. Pi(c, jw) is given by

) Gy(a, jw)FiHy !
_ 5.8
Pk(a)Jw) GU(ao,jw)Fka 1+ Efn-:}l Lm(a’Jw) ( )

and L{(a, jw) is the nominal open loop transfer function given by

L2 (0, jw) = Gu(tto, jw) FxG i (jw) Hi. (5.9)

The inequality expression of Equation 5.7 gives a sensitivity bound on the Nichols

chart for the set of open loop transfer functions L{«, jw). The sensitivity bound is
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an inverted M circle bound. There is a different bound associated with each w and «
pair. For loop shaping purposes it is desirable to loop shape a single transfer function
rather than the entire set of transfer functions L(a, jw). Therefore, the bound is
shifted in magnitude and phase by the normalized plant P (a, jw) so that it becomes
an amplitude bound on the nominal open loop transfer function, L¢(a,,jw). Each
Pr(a, jw) is a function of the system uncertainty o and is determined by measuring the
plant transfer functions for various operating conditions. Thus, the sensitivity bound
at each frequency is shifted by multiple Pis corresponding to different measured plant
transfer functions.

A unique Gg(jw) exists for each location where the sound pressure level is to be
controlled. Therefore, each Ggr(jw) is used with Equation 5.7 to develop sensitivity
bounds associated with each of the locations to be controlled. Each set of bounds is
shifted by P; and plotted on the Nichols chart to define a design region for controller
k at each frequency. To satisfy the inequalities from Equation 5.7, the magnitude of
the nominal open loop transfer function at w for uncertainty o must be greater than
the shifted bound. Additional control loops are add2d only if Equation 5.7 cannot be
satisfied with the existing loops. Note that the bounds associated with the kth loop

incorporate the dynamics of the previously designed loops.

5.2.2 Stability Bound Geaeration

Stability bounds are also shown on the Nichols chart. The stability bounds are
used to insure stability to measured system uncertainty. They also provide additional
robustness to unmeasured system uncertainty. Stability is guaranteed if the design
of each control loop robustly satisfies the stability t-ounds [73]. The stability bounds
are based upon the plant dynamics and do not include the dynamics associated with
sound radiation. Therefore, the sound pressure level transfer function Gr{jw) is not

necessary for this development since it is not contained in the feedback loop. Thus,
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the stability bounds are generated in the same manner as for a MIMO control system
where the system output is used as feedback.

The block diagram for the MIMO control system utilized in this derivation is
shown in Figure 5.3. The heavy solid lines represent the multi-channel nature of
the system. For a two-input-two-output diagonal controller the block diagram in Fig-
ure 5.3 can be expanded as in Figure 5.4. In Figure 5.4 Gy1(s)D1(s) and Gu2(s)Da(s)
represent the point accelerations of the plate at the feedback sensor locations due to
the turbulent flow excitation. Y)(s) and Ya(s) are the point accelerations of the plate
which are used as feedback by the diagonal controller composed of G.i(s) and G(s).
The point force inputs to the plate are U;(s) and Usy(s). The plant dynamics from
the point forces inputs to the acceleration feedback signals are given by the Gy, (s)
transfer functions.

In this work a sequential loop design methodology is utilized [73]. With this
method, stability bounds are developed for each of the ¢ loops in the controller. The

transfer function relating the disturbance to the system output is given by

{Ty(9)} = 1] + [Gu(s)[Ge(s)] ™ {Gw(s)} (5.10)

where, [Gy(s)], [Ge(s)] € S99 and [Gw(s)] € S9*!. With the assumption that
det[Gy(s)] # 0, the plant inverse [G'(s)] is used to write Equation 5.10 as

([Ge(s) + 1G5 (5)]] {Tv ()} = (G5 (s){Gw (9)}- (5.11)

By expressing the matrix multiplication as a summation and assuming a diagonal

controller, the transfer function from the disturbance to the 7th output is written as

q

Z 5 (8)t5(5) + g, (5)ti(s) = €4 (5.12)

where g, is the ith diagonal controller of [G¢(s)] and

P;(s) = [G7' (s)]ys (5.13)
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{8(s)} =[G (s){Gw(s)}- (5.14)

The transfer function associated with the first loop is given by

0, —-59 . P .t
t = ( 1= 2= Py ]) 1 . . (5.15)
P 1+ _J_G° 20

Uil

From Equation 5.15 the stability of the first loop is guaranteed if the denominator
has no poles in the right half plane. Therefore, for stability

Ly
Gy, P

(5.16)

must satisfy the Nyquist criteria.
All previous loops are incorporated in the subsequent loops using Gauss elimina-

tion. Using this process, the transfer function associated with the second output is

given by
t2 _ ([@2]2 — gn.=3[P2m]2tm) 1 (5 17)
o 2 Le .
[P22] 1+ W
where
P21-Pf.m
Pp)? = Py — 5= 5.18
[Pam] o B o (5.18)
e, P
6, =@, - ——=- 5.19
[ 2] 2 P+ on ( )
Thus, for stability
L3
P’ (5.20)
Usga [P22]2

must satisfy the Nyquist stability criteria.
The Gauss elimination process can be written as a recursive relationship [74].

After closing k loops, the output transfer functions are given by
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O+ = 1o P41

£ T i>k+1 (5.21)

o

Le
[Pu]E+D) |1 + ——ﬁ—cgii[l,ﬁ] P

where

Pi)*[Plf
[P]**D = [P, - %ﬁ]‘:,z,] >k+1 (5.22)
[@A](Hl) — [@.](k) — ___[f*_]_k_ [© ]k i>k+1 (5.23)
1 ? [Pkk]k + Je, ki ¢ Z J.
Thus, for the £ + 1 loop
= (5.24)

must satisfy the Nyquist stability criteria. The Nyquist stability point can be shifted
by the magnitude and phase of G§_[P;]**1) to determine a new stability point for the
open ;loop transfer function L?. Bounds are developed by placing an M circle bound
at these stability points. By using these M circle bounds, additional robustness to

unmeasured system uncertainty is obtained.

5.2.3 Control Effort Bound Generation

Finally, control effort bounds are developed to ensure that the controller does not
saturate the actuator. The bounds are frequency domain restrictions on the closed
loop control effort transfer function magnitude. Franchek [75] has shown that for a
step input disturbance a time domain control effort comstraint (|u(t)] < k) can be
directly guaranteed by a frequency domain bound (|U(s)/D(s)| < §) where A is a
constant used in the time to frequency domain conversion. Thus, by restricting the
control effort transfer function magnitude, time domain restrictions are achieved.

The control effort bounds are developed similarly to the stability bounds. The

frequency domain bounds for control effort are developed from the closed loop transfer
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function by relating the disturbance D(s) to the consrol effort U(s). Using the general
MIMO control system shown in Figure 5.3, the transfer function from the disturbance

to the control effort is given by

{Tuy(s)} = =[] + [Ge(sNGu(s)] 7" [Go(s){Gw(s)}- (5.25)

Using the controller inverse [Gz!(s)] each loop is isolated and the transfer function is

written as

(G5 (5)] + [Gu()]] {Tw ()} = {Gw(s)}. (5.26)

The transfer function from the disturbance to the ith controller output is written as

Kl 1
Gy, (8)ty;(s) + —=tu,(5) = Gw;. 5.27)
; (s)ty; ) ( (
Using this equation the transfer function to the firs; controller output is given by
GW1 - Zgn=2 GU1 tu Ltl)'Pl
ty, = = 5.28
! ( Guy, 1+ L§P, (5.28)
where
“L‘I7 = oUngCI (5‘29)
G
Pr= =t (5.30)
Un

As before, Gauss elimination is used to isolate the control effort for subsequent loops.

The transfer function for the second loop is given b/

) o (e L$P,
ty, = ml_—m 31
: ( [G'Uzz]2 1+ L3P2 (5 )

where

GU21 GUlm

Gusn)? = Guy, —
[ U2m] Uz GU11+gal

(5.32)
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Gw,Gu
Z))* = Gw, — =—+—2- 5.33
[ 2] Ws GUn + gc_11 ( )
2
Py = [Gizz] (5.34)
Uz2

After the first k& loops have been designed, the recursive relationship for the Gauss

elimination process is used to write the output transfer functions as

t,, = A [é?éfc]?’fi[f(j{m}(k-u)tum [1 fﬁm] P> k41 (5.35)
where ) ’
[G,]**Y =[Gy, | - W, i,j>k+1 (5.36)
2]+ = [Z)®) — [%—} Zd®,i> k+1 (5.37)
P, = %U,% (5.38)

From the control effort transfer function equations (Equation 5.28, 5.31, and 5.35),

the control effort constraint

{U(s)} < {x}. (5.39)

can be satisfied. However, the subsequent control loops have not been closed so each
t.,. is unknown. Therefore, the triangle inequality is used with Equations 5.28, 5.31,

and 5.35 to find the control effort bounds for loop 1, 2, and ¢ as

”GUu](k-H)’{ll

P, LS

5.40
‘1+7’1L‘1’ = |Gw, D(8)| + Thh=2 |Gvr ] (540)
‘ P2L§ HGUzz]zK?I (5.41)
1+ PoLg| ~ [[Z2]2D(s)| + Th=s [[Guan)26ml
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[ P;L? (G, J* Vx|

> k41 5.42
1+ PiL?] = IZ]**DD(s)| + o) [Guim | $ | ‘= (542)

respectively. The inequality expressions of Equations 5.40, 5.41, and 5.42 give an M
circle bound on the open loop transfer function Lj(a, jw) for each w. As with the
performance bounds, P is used to shift the bound in magnitude and phase so that it
becomes an amplitude bound on the nominal open loop transfer function, L} (a,, jw).
In this way a nominal open loop transfer function is loop shaped to satisfy shifted
bounds associated with the various uncertainty, rather than loop shaping multiple

transfer functions associated with the various uncertainty to satisfy a single bound.

5.2.4 Composite Bounds

The inverted M circle bounds associated with sound pressure level reductions
(Equation 5.7), the Nyquist stability M circle bcunds (Equations 5.16 5.20, and
5.24), and the M circle bounds associated with control effort limitations (Equations
5.40, 5.41, and 5.42) are combined to form the design region used in the loop shaping
process. A typical design region for a single frequency is shown in Figure 5.5. The
dashed line is the performance bound associated with the reduction of the sound
pressure level. At the frequency associated with -his bound, the open loop must
have a greater magnitude than the bound. The solid lines are the control effort and
stability bounds. At the frequency associated with these bounds, the open loop must
lie outside the bounds. Therefore, to satisfy sound pressure level reductions, stability,
and control effort limitations, the open loop must lie in the shaded design region at
the frequency for which these bounds were developed. The bounds are developed over
a wide range of frequencies. By satisfying the most restrictive bounds, the bounds

associated with the intermediate frequencies will alio be satisfied.



5.3 Optimization of Actuator Position

In many control problems, the type and location of actuators and sensors uti-
lized by the active controller are constrained. However, in some structural excitation
pfoblems, such as the flow induced structural radiation of sound problem, there is
flexibility in these parameters. Using the model developed for active control of flow
induced structural sound radiation, the effect of locating the actuator and sensors
at various positions on the structure can be evaluated. As a result, it is possible to
optimize the actuator and sensor locations to achieve the best possible control with
the least amount of control effort.

In this investigation the actuator and sensor locations were optimized using the
analytical model developed in Chapter 3. The optimization is performed without
designing the specific controllers (G¢, ). The optimization procedure was used to
find the locations where the natural plant dynamics have high gain in the frequency
regiohs where low sensitivity is required. In this way, the plant will provide the
dynamics useful for achieving the performance goals. Since the frequency domain
controller design approach can utilize the beneficial plant dynamics, the controller
gain and order can be reduced and the desired performance achieved.

From Equation 5.4 the closed loop sound pressure R(s) is small at the frequencies

where the open loop transfer functions L,, given by

Lm = Gu(a,jw)FmGCm (jw)Hm (5.43)

are large. Since each F,, is a function of the control actuator location and each H,,
is a function of the sensor location, the actuator and sensor locations can be used
to increase L,,(a,jw). By increasing L,,(a,jw) in this way, sound pressure level
reductions can be achieved with less controller gain. Thus, it is assumed that the
controller will add additional dynamics such that robust stability, performance, and
control effort restrictions are met. Using this assumption the optimization is used to

minimize the function
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O(jw) = Gr(jw)Gu(a, jw)Gp(jw)D(jw) (5.44)

Tt |G (0o, )]

where

G?jmm (Ctos Jw) = Gu(tto, ju) FrnHom. (5.45)

This function is minimized over the frequency range of interest. By minimizing Equa-
tion 5.44, the performance bounds given by Equation 5.7 will require less controller
gain to achieve.

In this investigation Equation 5.44 was evaluated over the frequency range from
0 to 1000 Hz. A two-input-two-output controller configuration was considered. The
parameters associated with the experimental setup were used in the system model.
The flow speed was assumed to be 26.8 m/s (60 MPH) and the sensors were con-
strained to be co-located with the actuators. The plate was partitioned into an eleven
by eléven grid. Equation 5.44 was evaluated for the various combination of actuator
locations. Due to the symmetries in the problem, it was not necessary to evaluate all
of the combinations.

The ten best actuator/sensor locations are show:1 in Table 5.1. Each of the combi-
nations includes a location near the center of the pliate. Furthermore, four of the best
five combinations include the location in the center of the plate (0.229m,0.165m).
Locating an actuator/sensor pair near the center of the plate gives beneficial plant
characteristics for controlling the strongly radiating first mode. The best three actu-

ator/sensor pair locations are shown on the plate in Figure 5.6.

5.4 Experimental Investigation

The frequency domain controller method outlned in the previous section was

used to design controllers for an experimental investigation of flow induced structural
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radiation of sound. The experimental setup described in Chapter 3 was used for the

investigation. Both SISO and MIMO controllers were designed and implemented.

5.4.1 SISO Experimental Investigation

A single-input-single-output controller consisting of a point force control actuator
and an accelerometer feedback sensor was designed. The accelerometer and control
actuator were located at the center of the plate. At this location the sensor and
actuator couple with the odd-odd modes of the plate. As indicated in the results
of Chapter 3, significant sound is radiated at the odd-odd modes of the plate. Mi-
crophones were mounted inside the box to evaluate the controller performance. A
spherical coordinate system with the origin at the center of the plate was used to
position the microphones (Figure 3.4). Performance specifications were placed on a

single microphone located at R=54.6 cm, ¢ = —40°, and § = 33°.

5.4.1.1 SISO Controller Development

The uncertainty in the system was measured experimentally. The system uncer-
tainty was measured for various operating conditions. Broadband noise was input to
the control shaker and used to measure the plant transfer function {H }Gy(a, s){F}.
The uncertainty associated with different flow speeds was found. Speeds of 0, 26.8,
35.8, 40.2 m/s (0, 60, 80, and 90 MPH) were used. The transfer functions were
measured on two separate days to include variation due to changes in environmental
conditions. The Bode plot of the measured responses are shown in Figure 5.7. Vari-
ations in the plant transfer function increase with frequency. The magnitude of the
plant transfer function varied as much as 8 dB and the phase varied by as much as
88 degrees in the 100-2000 Hz region. Furthermore, the magnitude varied by 0.7 dB,
2.0 dB, and 3.7 dB and the phase varied by 13°, 27°, and 30° at the first, fourth, and
eighth resonance, respectively. The variation between the transfer functions measured

on the two days was greater than the variations due to the flow speed.
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Performance bounds were developed using Equation 5.7. For this case a nominal
transfer function was not used in the loop shaping process. As a result, the bounds
were not shifted by P. Each of the measured transfer functions is plotted indepen-
dently on the Nichols chart. This is possible because the stability bound does not
shift for a SISO controller. Furthermore the effect of the plant variations is easier to
see when each loop is plotted on the Nichols chart.

For this application, the largest sound pressure levels occur at the resonances of
the plate. Thus, the sound pressure level at the control location was specified to be
less than 32 dB, 10 dB, and 8 dB at the first, fourth. and eight modal resonance (981,
3542, 5655 rad/s), respectively. Using Equation 5.7, the three performance bounds
were calculated and are shown in Figure 5.8 as solid lines.

Stability bounds are developed on the Nichols chart from Equation 5.24 and used
to insure stability for the measured system uncertainty. For a SISO controller design,
Equation 5.24 reduces to the open loop transfer function L(a, jw). Therefore, the
stability point is -1. By using an M circle constraint about this point, the closed
loop transfer function magnitude is limited and add tional robustness to unmeasured
uncertainty is obtained. The M circle constraint is the complementary sensitivity

bound

L(a, jw)
1+ L(a, jw) s4 (5.46)

For this controller design the stability constraint (A) was 5 dB for all frequencies.
This guarantees a gain margin of 3.89 dB and a phase margin of 33 degrees. The
bounds are shown as dashed lines in Figure 5.8.

Finally, control effort bounds are developed to er.sure that the controller does not
saturate the actuator. The control effort bounds we e generated from Equation 5.40.
For a SISO controller, the transfer functions in Figure 5.3 are related to those in the
block diagram associated with the flow induced structural radiation of sound problem

(Figure 5.2) by
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Gw, = {H}GuvGp (5.47)

and
GU11 = {H}Gu{F} (548)
Therefore, for the SISO case, the control effort bound is written as

L(a, jw)
1+ Lo, jw)

K:HlGU(av jw)Fl
H\Gy(e, jw)Gp(jw)D(jw)|

For this application the control effort U(s) was restricted to be less than 40 mV'. The

(5.49)

control effort bounds were less restrictive than the stability bounds at all frequencies.
For this reason, the control effort bounds are not shown in Figure 5.8.

The performance bounds in Figure 5.8 require a large open loop gain (low gain
on the sensitivity transfer function) at the natural frequencies of the plate. The fre-
quency domain bounds for stability and control effort imposed a low gain condition
on the complementary sensitivity transfer function at the off-resonance frequencies.
Furthermore, the stability requirements based on the Nyquist stability criterion, re-
quire the gain of the open loop transfer function to be below unity for phases at and
near multiples of —180°. These Nyquist stability points are shown in Figure 5.8 as
dots.

The Nichols chart of the plant transfer function is shown in Figure 5.9. The reso-
nances associated with the modes cause the loops in the plot. The phase associated
with these loops is approximately 360 degrees. This large phase spread would violate
the stability bounds. Traditional solutions use the controller to add phase lead to
compensate for excessive lag due to the plant dynamics or to cancel the plant dynam-
ics with controller dynamics. However, canceling the lightly damped plant dynamics
is difficult for systems with uncertainty. Furthermore, this approach increases the con-
troller order since additional controller dynamics are required to cancel potentially

beneficial plant dynamics.
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In this work an alternative method was devised and utilized. The controller was
used to add additional phase lag such that the performance requirements are satisfied
while also meeting the stability bounds. By adding phase lag, the frequencies regions
of high gain due to the resonances of the plate can be placed between the Nyquist
stability points. In this way the performance bounds which require a large open loop
gain (low gain on the sensitivity transfer function) at the natural frequencies of the
plate are achieved primarily with the plant dynamics. Furthermore, the frequency
domain bounds for stability and control effort, which impose a low gain condition on
the complementary sensitivity transfer function at the off-resonance frequencies, can
also be achieved primarily with the plant dynamics. Thus, the natural dynamics of
the plate produce the amplitude characteristics required by the bounds. Through the
addition of phase lag, it was possible to take advantage of these natural dynamics of
the system to minimize controller order and actuator requirements.

In this controller design the phase lag is achieved using a combination of poles and
non-minimum phase zeros. The amplitude roll-up associated with the non-minimum
phase zeros is attenuated by the amplitude roll-off of the complex poles. Therefore,
the desired phase characteristic is achieved without decreasing the natural gain of
the plant at the resonance. For single crossover systems, non-minimum phase zeros
restrict the controller bandwidth thereby reducing the system performance. However
for multiple crossover systems, this problem can be avoided. The penalty is that the
sensitivity will be greater than one in the frequency regions were the phase is an odd
multiple of 180 degrees. Because the system input is broadband, the regions of high
sensitivity have worse closed loop performance than open loop performance. However,
the bounds developed for this problem show that this is an acceptable sacrifice which
enables control of sound at the higher frequencies.

Using this loop shaping process, a pair of complex poles at w = 1500 rad/sec,( =
0.15 and a pair of non-minimum phase complex zeros at w = 2200 rad/sec,{ = 0.2 are
used to add phase lag so that the first natural frequency (w = 981) is centered between

the stability points at 180° and —180° degrees. The amplitude roli-up associated with
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the non-minimum phase zeros is attenuated by the amplitude roll-off of the complex
poles. Therefore, the desired phase characteristic is achieved without decreasing the
natural gain of the plant at the resonance. Additional gain is achieved at the first nat-
ural frequency using a complex lead compensator composed of a pair of complex zeros
at w = 780 rad/sec,{ = 0.6 and a pair of complex poles at w = 860 rad/sec,{ = 0.2
to meet the lower bound at w = 981. Similarly, the lower bound at the fourth natural
frequency (w = 3542) is achieved by adding gain using a complex lead compensator
composed of a pair of complex zeros at w = 2500 rad/sec,{ = 0.2 and a pair of
complex poles at w = 3800 rad/sec,{ = 0.4. A non-minimum phase complex con-
jugate pair of zeros at w = 5000 rad/sec, ( = 0.1 and a pair of complex poles at
w = 4000 rad/sec,{ = 0.38 are then used to add phase lag to place the resonance
peak corresponding to the eighth mode (w = 5655 rad/sec) between the stability
points of —540° and —900°. In this way, the lower bound at the eighth natural fre-
quency (w = 5655) is met. To roll-off the gain of the controller at high frequencies,
an additional pair of complex poles are added at w = 4000 rad/sec with (=0.38. The

resulting controller

G(s) = 1.2[s2/7802+2(0.6)s/780+1][s% /22002 —2(0.2)s/2200+1]
= Ts%/860%+2(0.2)s/860+1][s2/15002+2(0.15)s/1500+1] (5.50)
[s2/25002+2(0.2)s/2500+1][s2 /50002 —2(0.1)s/5000-+1 ’
[s2/38002+2(0.4)s/3800+1][s2 /40002 +2(0.38)s/4000+1

»j

is tenth order with a DC gain of 1.2 dB. The plant transfer functions for each operating
condition were augmented with the controller dynamics such that the bounds were
achieved. The open loop and a few key frequency domain bounds are shown on an
extended Nichols chart in Figure 5.10 as heavy solid lines. The frequencies associated
with each bound and the corresponding frequency on the open loop transfer functions
are labeled. Each of the bounds shown in Figure 5.10 has been satisfied. For this
reason, the controller is expected to meet performance, stability, and control effort

design criteria.
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.4.1.2 SISO Controller Results

The controller was implemented on a 166 MHz Pentium computer running Matlab
Real Time Workshop. Keithley Metrabyte analog to digital and digital to analog cards
were used. The sample rate of the controller was 20 kHz. A Wavetex 852 low-pass
filter set at 5 kHz was used to prevent aliasing of the feedback signal.

The uncontrolled and controlled sound pressure level responses for the location
to be controlled are shown in Figure 5.11 for a flow velocity of 35.8 m/s (80 MPH).
The desired sound pressure levels of 32 dB, 10 dB, and 8 dB at the first, fourth, and
eighth resonance were achieved. This corresponds to sound pressure level reductions
of approximately 15 and 8 dB at the first and fourth resonance, respectively. The
overall reduction across the 100-1000 Hz band is 3.7 dB. The control effort restriction
of 40 mV was also achieved.

The acceleration at the feedback sensor location was decreased. The uncontrolled
and controlled acceleration is shown in Figure 5.12 for a flow velocity of 35.8 m/s (80
MPH). The acceleration levels were decreased by approximately 20, 10, and 5 dB at
the first, fourth, and eighth resonance respectively.

The sound pressure levels were measured at various locations inside the enclo-
sure. The sound pressure level reductions over the 100-1000 Hz band are shown in
Table 5.2. Control was achieved at each microphone. The sound pressure level at
the control point (54.6, —40°,33°) for different flow velocities is shown in Table 5.3.
The controller was robust to changes in velocity. The sound pressure level reductions
were consistently between 3 and 4 dB over the 100-1000 Hz band and around 15 dB
and 8 dB at the first and fourth resonance, respectively.

The open and closed loop plant transfer function magnitudes are shown in Fig-
ure 5.13. The closed loop transfer function magnitude is significantly different than
the open loop transfer function. Over the 100-1(00 Hz region the open loop and
closed loop transfer function magnitudes differ by as much as 20 dB. In the frequency

band near the first resonance, the magnitude of the closed loop transfer function is
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approximately one. The difference in the open loop and closed loop transfer function
magnitudes shows that the active controller significantly alters the dynamics of the
plate.

The sensitivity magnitude is shown in Figure 5.14. At frequencies where the
sensitivity value is less than one, there will be disturbance rejection. Where the
sensitivity is greater than one there will be disturbance amplification. In Figure 5.14,
the sensitivity is small in the frequency regions associated with the sound radiating
resonances of the plate. Therefore, the acceleration in these frequency regions will
be attenuated. In the frequency regions away form the resonances of the plate the
sensitivity is greater than one and the feedback controller increases the acceleration.

It is interesting to compare the changes in the closed loop transfer function to
those which would be achieved by additional passive damping. This analytical model
developed in Chapter 3 was used to calculate the transfer functions and the sound
pressure levels associated with different damping coefficients. The system parameters
were those associated with the experimental investigation. A flow speed of 35.8 m/s
(80 MPH) was considered. The magnitude of the plant transfer functions for ¢ = 0.01,
¢ = 0.05, and ¢ = 0.1 are shown in Figure 5.15. The vibration levels at the resonances
of the plate are significantly reduced with the addition of damping. The increase of
¢ from 0.01 to 0.1 results in a reduction of the acceleration by approximately 20 dB
at the first, fourth, and eight modal resonance. However, the vibration levels at the
off resonance frequencies were increased significantly.

The effect of passive damping on the sound pressure level was also evaluated
using the analytical model. The results are shown in Figure 5.16. The sound pressure
levels associated with turbulent flow for { = 0.01, { = 0.05, and { = 0.1 are shown.
The additional passive damping significantly reduces the sound pressure levels at the
microphone location. The increase of ¢ from 0.01 to 0.1 results in a reduction of the
sound pressure level by approximately 20, 15, 20, and 15 dB at the first through fifth

modal resonance frequencies. Slight sound pressure level increases were predicted at
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off resonant frequencies. This is a good, but fundarientally different control approach

than that accomplished using active control.

5.4.2 MIMO Experimental Results

A multiple-input-multiple-output controller consisting of two point force control
actuators and two accelerometer feedback sensors was designed and implemented. As
with the SISO investigation, microphones were mounted inside the box to evaluate
the controller performance. However in this case, the sound pressure level at two mi-
crophone locations is to be controlled to illustrate that the performance specifications
for multiple microphone locations can be achieved. Control of more than one micro-
phone is achieved by meeting multiple, multiple-input-single-output sound pressure
level reduction bounds. The first microphone was located at R=50.7 cm, ¢ = 90°,
and ¢ = 17.6°. The second microphone location to be controlled was the same as that
used in the SISO investigation (R=54.6 cm, ¢ = —40°, and 6 = 33°).

Each of the accelerometers was co-located with a control actuator. The locations
of the sensors and actuators were selected using the optimization of Equation 5.44
as described previously. The uncontrolled sound pressure level associated with the
second microphone location was utilized in the optimization. The radius of the shak-
ers prevented the best two sets of actuator/shaker location combinations from being
utilized. Thus, the third set of locations in Table 5.1 were utilized. The first actua-
tor/sensor pair was located in the center of the plate. The second pair was located at
(a/3, b/2) where a and b are the longitudinal and .ateral length of the panel respec-
tively. This location allows control of some of the even-odd modes of the structure.

For example, the (2,1) mode can be controlled with this sensor/actuator location.

5.4.2.1 MIMO Controller Development

A MIMO controller was developed for the wind noise problem using the con-

troller design methodology previously described. As with the SISO investigation, the
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experimental facility was utilized to measure the system uncertainty for various oper-
ating conditions. A broadband noise input was used to measure the transfer function
Gy(a, s). The uncertainty associated with different flow speeds was found. Speeds of
0, 35.8, 40.2, 44.8, 51.5 m/s (0, 80, 90, 100, and 115 MPH) were used.

The Bode plot of the plant transfer function of the first loop Gy, (@, s) is shown in
Figure 5.17. As with the SISO investigation, variations in the plant transfer function
increase with frequency. The magnitude of the plant transfer function varied as much
as 11 dB and the phase varied by as much as 81 degrees in the 100-2000 Hz range.
The magnitude varied by 2 dB, 3 dB, and 6 dB and the phases varied by 15°, 34°,
and 27° for the first, fourth, and eighth plate resonance, respectively.

The Bode plot of the plant transfer function of the second loop Gy, (¢, s) is shown
in Figure 5.18. Over the 100-2000 Hz region the magnitude varied by as much as 12
dB and the phase as much as 84 degrees. The magnitude varied by 1 dB, 1 dB, and
4 dB and the phases varied by 17.5°, 39°, and 32° for the first, second, and eighth
plate resonance, respectively.

The Bode plot of the plant transfer function Gy,,(c,s) is shown in Figure 5.19.
This is transfer function from the second shaker to the first accelerometer. Over
the 100-2000 Hz region the magnitude varied by as much as 19 dB and the phase
as much as 154 degrees. The calculation of the transfer function in the region of
the fourth mode (564 Hz) is poor since the second shaker position is on a node line.
Therefore, there is little input power to the plate at this frequency which results in a
poor transfer function estimate.

The Bode plot of the plant transfer function Gy,, (¢, s) is shown in Figure 5.20.
This is transfer function from the first shaker to the second accelerometer. Over the
100-2000 Hz region the magnitude varied by as much as 27 dB and the phase as much
as 161 degrees. The calculation of the transfer function in the region of the second
mode (312 Hz) is poor. This is because the first shaker position is on a node line of

the second (2,1) mode. As before, this causes small input power at this frequency
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and a poor transfer function estimate. The uncontrolled sound pressure levels and
acceleration levels were also measured for use in the controller development.

For this application, the sound pressure level was specified for a flow speed of
35.8 m/s (80 MPH). The sound pressure levels at both microphone locations are
specified to be 38, 21, 18, and 15 dB at the first, second, fourth, and eighth resonance
(958, 1964, 3542, 5655 rad/s), respectively. Equation 5.7 was used to calculate the
performance bounds.

The performance bounds for the first loop associated with the microphones are
shown in Figure 5.21. The bounds are the composite performance bounds associated
with each of the two locations where the controlled sound pressure level is specified.
The bounds associated with the first microphone are solid and those associated with
the second microphone are dashed. At the first resonance (958 rad/s) the bounds
for the two microphones are nearly identical. However, the second microphone has
a significantly more restrictive bounds at the second resonance (1964 rad/s). This
is understandable since the even longitudinal modes of the plate do not contribute
significant sound at the location of the first microphone. This is a result of the
fact that the first microphone location is located on the lateral midline of the plate.
However, the sound pressure at the second microphone location has contributions
from all modes. Therefore, there is larger uncontroiled sound pressure levels at these
frequencies necessitating greater sensitivity reductions. The bounds associated with
the first microphone at the fourth resonance (3542 rad/s) are more restrictive than
those of the second microphone. However, at the eighth resonance (5655 rad/s) the
bounds associated with the second microphone are more restrictive than those of the
first microphone. By achieving the sensitivity reductions required by these bounds,
the desired sound pressure level at both microphores will be achieved.

The Nyquist sté,bility points were bounded by ¢ dB M circles. The control effort
U(s) was restricted to be less than 1 V for each shak:r. A few key composite frequency
bounds associated with the first loop are shown on an extended Nichols chart in

Figure 5.22. The frequencies associated with each bound are labeled. The dashed
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bounds are sensitivity bounds requiring the open loop transfer function gain to exceed
that of the bound. These bounds are most restrictive at the natural frequencies of
the plate. This is a direct result of the fact that most of the sound is radiated at
these frequencies. The solid bounds are complementary sensitivity bounds requiring
the open loop transfer function to be outside and below the bounds.

From Figure 5.22 it can be determined that the bounds associated with 1964 rad/s
cannot be satisfied. The lower bound exceeds the upper bound leaving no acceptable
design region. The sound pressure level associated with 1964 rad/s is primarily a
result of sound radiation due to the second mode of the panel. The sensor actuator
pair of the first loop is located in the center of the plate and lies on a node line of the
second mode of the panel. For this reason, large control effort is required to achieve
the desired sound pressure level reductions at this frequency. The required control
effort exceeds the control effort specifications. Therefore, an additional control loop
is required to achieve sound pressure level reductions at this frequency.

The first loop was used to achieve as many performance bounds as possible without
violating stability or control effort restrictions. A second loop was used to achieve the
remaining performance bounds. The Nichols chart of the first loop with no controller
dynamics is shown in Figure 5.23. As in the SISO controller design, the natural
dynamics of the plate produce the amplitude characteristics required by the bounds.
Furthermore, the resonances associated with the plant transfer function cause loops in
the Nichols plot which cover a phase range of approximately 360 degrees. Therefore, as
in the SISO controller design, the controller was used to add additional phase lag such
that the regions of high gain associated with the resonances of the plate are placed
between the Nyquist stability points. In this way the performance requirements are
satisfied while also meeting both the stability and control effort bounds. As before,
the phase lag was added using a combination of poles and non-minimum phase zeros.

Two pairs of non-minimum phase complex conjugate zeros at w = 4500 rad/sec,
¢ = 0.4, a pair of complex poles at w = 4500 rad/sec,( = 0.4, and a pair of complex

poles at w = 4500 rad/sec,{ = 0.5 are used to add phase lag to the first open loop
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transfer function. In this way the first and fourth resonance are separated in phase by
approximately 360°. A complex lead compensator consisting of a pair of complex poles
at w = 700 rad/sec, { = 0.3 and a pair of complex zeros at w = 420 rad/sec, { = 0.8
are used to add phase lead so that the first natural frequency (w = 958 rad/sec) is cen-
tered between the bounds associated with the w = 750 rad/sec and w = 1500 rad/sec
frequencies. The lightly damped poles also add gain so that the sensitivity bound at
w = 958 rad/sec is achieved. A pair of complex poles is added at w = 2400 rad/sec
with ¢ = 0.7. These poles are used to add phase lag to appropriately space the 4th
mode (w = 3542 rad/sec) between the stability points at —180° and —540°. These
poles also roll off the open loop gain so that the stability bounds at the higher order
modes can be satisfied and sensor noise is attenuated. A complex lead compensator is
used to add gain near the 4th resonance (w = 3542 rad/sec). The complex poles are
at w = 2200 rad/sec, { = 0.5 and the complex zeros are at w = 2000 rad/sec,{ = 0.7.
Using these dynamics, the sensitivity bound at w = 3542 rad/sec is satisfied. The
resulting controller

Goy(s) = 1.2[s2/4202+2(0.8)s/420+1][s2/ 20002 +2(0.7)s /2000+1]
C1\5) = T3277002+2(0.3)s/700+1][s2 /20024 2(0.5)s/ 2200+1]

[52/4500% —2(0.4)s/4500+1]2 ( 5 51)
[8%/2400% +2(0.7)s/2400+1][s% /450024 2(0.4)s /4500+1] ’

1
[s2/45002+2(0.5)2/4500+1]
is a tenth order controller with a DC gain of 1.2 dB. The open loop transfer function

for the first loop is plotted in Figure 5.24 as a heavy solid line. The open loop transfer
function satisfies all of the bounds except the sensiti 7ity bound at 1964 rad/s. A Bode
plot of the controller G¢(s) is shown in Figure 5.25. The controller transfer function
is smooth since it does not include lightly damped dynamics.

The bounds associated with the second loop are shown in Figure 5.26. As before,
the dashed bounds are sensitivity bounds and the solid bounds are complementary
sensitivity bounds. After designing the first loop, the only significant performance
bound left to be achieved is associé,ted with sound radiation form the second mode.

Therefore, the only sensitivity bound is at 1964 rad/s.



129

The same approach taken for the first loop is also used in the second loop. How-
ever, in this case phase lag is added between the second (1964 rad/s) and the eighth
(5655 rad/s) resonances. This leaves the first and second resonances between the
stability points of 180° and —180° and the higher resonances between the —180° and
—540° stability points. Most of the phase lag is achieved using a lightly damped
complex pole pair with w = 3300 rad/sec,{ = 0.15. Additional phase lag is achieved
using a non-minimum phase zero at w = 6000 rad/sec. A complex lead compensator
consisting of a pair of complex poles at w = 5000 rad/sec,{ = 0.45 and a pair of
complex zeros at w = 4000 rad/sec,( = 0.3 is used to add additional gain to the
open loop near the eighth natural frequency of the plate. A pole at w = 7000 rad/sec

is used to aid in rolling off the gain. The resulting controller for the second loop is

G (S)“' 3[—s/6000+1]
C2\°) = [s/7000+1][s2/33002+2(0.15)3/3300+1] (5.52)
[s2 /40002 +2(0.3)s /40001 )
[s2/45002+2(0.5)s/4500+1]{sZ /50002 +2(0.45)s/5000+1] -

The controller is seventh order with a DC gain of 3 dB. The open loop is shown in
Figure 5.26 as a heavy solid line. As all of the bounds have been satisfied, there is
no requirement for additional control loops. A Bode plot of the controller Gga(s) is
shown in Figure 5.27. As with G¢:(s), the controller transfer function is smooth and

does not include lightly damped dynamics.

5.4.2.2 MIM ontroller Result

As with the SISO controller, a 166 MHz Pentium computer running Matlab Real Time
Workshop was used for implementation. The sample rate of the controller was 15 kHz.
This was the maximum sample rate that could be achieved for the given controller
order. A Wavetex 852 low-pass filter set at 5 kHz was used to prevent aliasing of
the feedback signal. QSC type 1080 amplifiers were used to amplify the signal from
the controller. B&K type 4810 shakers were utilized as the control actuators and two
Kistler 5130 accelerometers and amplifier systems were used for feedback. B&K 4130

microphones with B&K 2810 amplifiers were used to measure the sound pressure
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level performance. Data was acquired using a Tektronix 2630 FFT analyzer. The
schematic of the configuration is shown in Figure 5.28.

Closed loop stability was achieved over the full range of operation of the wind
tunnel. The uncontrolled and controlled sound pressure level responses for the first
microphone location to be controlled are shown in Figure 5.29 for a flow velocity of
35.8 m/s (80 MPH). The uncontrolled sound pressure level is broadband in nature.
However, there are large sound pressure levels at the frequencies of the first and fourth
modes of the plate. The largest sound pressure level response is approximately 50
dB at 151 Hz and is associated with sound radiation of the first mode of the plate.
The sound pressure level associated with the fourth mode (570 Hz) is approximately
28 dB. The sound pressure levels radiated as a result of the second, third and fifth
modes are substantially smaller than those of the first and fourth modes. The sharp
peaks near 250 Hz are noise created by the operation of the wind tunnel and cannot
be controlled.

The desired sound pressure levels of 38 dB, 21 dB, 18 dB, and 15 dB at the
first, second, fourth, and eighth resonance were achieved. The sound pressure level
reductions are approximately 14 dB, 3 dB, 8 dB, and 1 dB at the first, second, fourth,
and eighth resonance, respectively. Due to the location of the shaker/accelerometer
pairs, control of the third or the fifth modes was not achievable. However, it was
known a prior: that the sound radiation associated with these modes was small at
the location to be controlled. The overall sound pressure level reduction across the
100-1000 Hz band is 6 dB.

The uncontrolled and controlled sound pressure level responses for the second
microphone location to be controlled are shown in Figure 5.30 for a flow velocity of
35.8 m/s (80 MPH). The uncontrolled sound pressure level is similar to that of the first
microphone except that there are significant sound pressure levels near the frequency
of the second mode. The second mode (310 Hz) is associated with approximately 32
dB of sound pressure level. The sound pressure levels radiated as a result of the third

and fifth modes are substantially smaller than those of the first, second, and fourth
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modes. The third mode of the plate is the (1,2) mode and has a natural frequency of
approximately 450 Hz while the fifth mode of the plate is the (2,2) mode and has a
natural frequency of approximately 610 Hz.

The desired sound pressure levels of 38 dB, 21 dB, 18 dB, and 15 dB at the first,
second, fourth, and eighth modal resonance were achieved. The sound pressure level
reductions are approximately 14 dB, 13 dB, 8 dB, and 3 dB at the first, second,
fourth, and eighth resonance, respectively.

A substantial decrease in the plate acceleration was also achieved. The controlled
and uncontrolled acceleration for the first loop is shown in Figure 5.31. The accel-
eration is reduced by approximately 16 and 10 dB at the first and fourth resonance.
The total acceleration reduction at this location is 7.2 dB across the 100-1000 Hz
region. The controlled and uncontrolled acceleration for the second loop is shown
in Figure 5.32. The acceleration is reduced by approximately 16 and 14 dB at the
first and second resonance, respectively. In addition, the acceleration is reduced by
approximately 5 dB across the 880-950 Hz region. The total acceleration reduction
across the 100-1000 Hz region is 6.9 dB.

Time histories of the control effort were also measured for each of the control
channels. The control effort for the first loop is shown in Figure 5.33. The maximum
control effort used was approximately 0.6 volts. The control effort for the second loop
is shown in Figure 5.34. The maximum control effort used was approximately 0.5
volts..

The sound pressure level reductions using the same controller were measured for
various flow velocities. The sound pressure levels of the second microphone are shown
in Table 5.4. The controller achieved substantial sound pressure level reductions at
all flow velocities. Larger sound pressure level reductions were achieved at the higher
flow speeds. For the highest flow speed 51.4 m/s (115 MPH), sound pressure level
reductions of 15 dB, 15 dB, and 9 dB at the first, second, and fourth modal resonance

were achieved.
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The uncontrolled and controlled sound pressure levels at other microphone loca-
tions were also measured. An array of microphones in a plane parallel to the plate
were used. The microphone locations were symmetrical and are shown in Figure 5.35.
All microphone locations achieved sound pressure level reductions over the 100-1000
Hz band. The sound pressure level reductions at each of the microphones for flow
velocities from 35.8 m/s (80 MPH) to 51.4 m/s (115 MPH) are shown in Table 5.5.
The smallest sound pressure level reduction achieved was 4.6 dB while the largest was
6.0 dB across the 100-1000 Hz band. As shown previously in Figure 5.30, the largest
sound pressure level reductions were achieved at the frequencies associated with the

first, second, fourth, and eighth modes of the plate.

5.4.3 Controller Robustness Investigation

For application to the wind noise problem it is expected that the degree of un-
certainty exhibited by the plant will exceed that measured in this investigation. The
frequency domain controller design method allows for additional uncertainty by uti-
lizing an M circle constraint about the stability point. It is desirable to determine
the degree of excess uncertainty that the controller design can withstand. The MIMO
controller design presented previously was used in 1his investigation.

To investigate additional uncertainty, distributed masses were added to the panel.
Four different sets of mass were added to the panel. The plant transfer functions
were measured for each set of additional mass. Additionally, the controlled and
uncontrolled sound pressure levels for the MIMO controller were measured for each
mass configuration.

The different mass configurations are shown in Figure 5.36. The masses repre-
sented as circles correspond to approximately 7 g each. The masses represented as
squares were approximately 62 g each. Each mass set includes the masses from the

previous set. For example, set three includes all the masses from sets one, two, and
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three. The total mass added was 84, 168, 413, and 731 g for tests 1, 2, 3, and 4
respectively. Mass set 4 represents an increase of 40 percent in the mass of the plate.

The plant transfer functions were measured for each mass set for flow speeds of
0, 35.8, 40.2, 44.8, 51.5 m/s (0, 80, 90, 100, and 115 MPH). Although these plant
transfer functions were measured, only the original plant transfer functions with no
additional mass were used in the design of the controller. The transfer functions
associated with Gy,,, Guy,, Guy,, and Gy,, are shown in Figures 5.37, 5.38, 5.39,
and 5.40, respectively. The additional mass lowers the plate resonances frequencies.
The first, second, and fourth resonances were shifted by 20, 14, and 14 percent,
respectively. The phase of Gy,, and Gy,, for mass set 4 was significantly different
than for the other mass sets over the frequency range 500-1000 Hz.

The closed loop was found to be stable under the full range of flow speeds for
all four sets of additional mass. The uncontrolled and controlled sound pressure
level at the second microphone (R=54.6 cm, ¢ = —40°, and 6 = 33°) are shown for
mass sets 1, 2, 3, and 4 in Figures 5.41, 5.42, 5.43, and 5.44, respectively. The
additional mass for sets 1, 2, and 3 did not reduce the performance significantly.
Sound pressure level reductions of approximately 14 and 13 dB were achieved at the
first and second resonance respectively. These reductions are similar to those achieved
for the case with no additional mass. The reduction associated with the fourth mode,
however, were less than those achieved with no additional mass. Furthermore, the
sound pressure level was increased by approximately 5 dB in the frequency region
just below the fourth resonance. The additional mass of set 4 significantly impacted
the closed loop performance. The sound pressure level reductions were approximately
8 dB at the first and second resonance. These reductions are significantly less than
those achieved previously. Furthermore, the sound pressure level associated with the
fourth mode was increased by 4 dB.

The Nichols plot of the open loop transfer functions for loop one with no additional
mass, mass set 2, and mass set 4 is shown in Figure 5.45. The open loop transfer

functions for loop two with no additional mass, mass set 2, and mass set 4 is shown in
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Figure 5.46. Although the added mass significantly shifts the frequencies where the
resonances occur, the open loop phase at the resonance does not change significantly.
Since the system resonances are utilized in the controller design to achieve a majority
of the required open loop gain, the gain remains high in the frequency regions of
these resonance. Therefore, sensitivity is low at the frequencies requiring disturbance
rejection and the the performance bounds continue to be achieved. However, the
controller dynamics are adding the phase lag at frequencies appropriate for a system
with higher natural frequencies. Thus the open oop phase is larger than desired
and the transfer functions are shifted to the right on the Nichols chart. However, the
controller does not use lightly damped poles and zeros to add the necessary phase lag.
Thus, the fact that the controller gradually adds phase lag results in open loop phase
shifts which are small compared to the large changes in the resonance frequencies.

Although the phase shifts on the Nichols plot are less than the phase shifts in
the resonance frequencies, they do impact controller performance. For example, the
phase shift is responsible for the increase in the sound pressure level near the fourth
resonance for mass set 4. The open loop plot for mass set 4, shown in Figure 5.45,
is significantly closer to the stability point at —180° than the open loop plot for the
original system. Therefore, the frequencies near the fourth resonance have sensitivities
greater than one which cause the sound pressure level of the controlled case to be
larger than those of the uncontrolled case.

If the controller were attempting to eliminate the plant dynamics or to add signifi-
cant gain, feedback could occur which would destab:lized the controller. The observed
robustness is a result of the fact that the plant dynamics are utilized in the controller.
The controller design methodology will have robust stability characteristics against
parameter variations that uniformly alter the plant dynamics.

A significant plant variation associated with the turbulent flow induced sound
radiation in aircraft is a result of pressure loading. "The difference in pressure between

the pressurized cabin and the atmospheric pressure varies significantly with altitude.
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As altitude changes are made, the prestress of the panel changes which results in
different system transfer functions.

The effect of in-plane forces on the response of a panel is evaluated using the
modal approach presented in Chapter 3. The structural response of a plate with

in-plane forces is given by Leissa [76] as

Ju d*u ou? ou? Ou?
4 — — — — — ——
D,V*u+c t+mat2—f(a:,y,t)+Nx82+2N,,yaa +Ny32

(5.53)
where N, and N,, are the in-plane forces in the x and y directions respectively and
Ny is the in-plane shearing force. If the shearing force is negligible and the boundary
conditions are simply supported, the modal analysis method can be used to calculate

the natural frequencies. The natural frequency of the rth mode is

- [[E T B ) e

For a pressure difference, the plate will be under tension. Thus, the in-plane forces

will always be positive and the natural frequencies will be higher than those with no
prestress.

Using the model developed in Chapter 3, the system transfer function was cal-
culated for a plate with in-plane forces. N, and N, were taken to be 5000 N/m. A
Bode plot of the original system transfer function and the system transfer function
for the plate with prestress are shown in Figure 5.47. The first resonance is increased
by approximately 32% and the fourth resonance is increased by approximately 10%.
The change in the plant transfer function is similar to what was measured when addi-
tional mass was added. Therefore, the controller design methodology utilized in this
work be able to accommodate parameter variations associated with changing pressure

differentials.
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5.5 onclusions

In this chapter, active feedback control of the flow induced structural radiation of
sound has been experimentally demonstrated. A frequency domain controller design
method was utilized which simultaneously ensures stability, provides sound pressure
level reductions, and avoids actuator saturation. The controller design involved a loop
shaping procedure where the plant transfer functions are augmented with controller
dynamics such that frequency domain bounds are achieved. By meeting these bound,
robust closed loop performance is guaranteed.

By representing the performance, stability, and control effort criteria as bounds on
the Nichols chart, their impact on the controller design process is apparent. The rela-
tionship between the number of required control loops and controller performance is
also illustrated using this design method. When it is impossible to design a controller
for a given application, the information on the Nichols chart can be used to determine
which bound causes limitations and display the corresponding compromises that must
be made.

The controller design method was experimentally verified. The performance ob-
jectives were achieved at multiple microphone locations over a wide range of flow
speeds. Sound pressure level reductions of approximately 14, 13, 8, and 3 dB were
achieved at the first, second, fourth, and eighth resonances, respectively. Approxi-
mately 5.5 dB of sound pressure level reductions were achieved across the 100-1000
Hz frequency range at multiple microphone locations for flow speeds from 35.8 to
51.5 m/s. There have been no other experimental active control investigations of this
problem to which these results can be compared.

The use of sound pressure feedback was showr to introduce system delay which
severely limits broadband feedback control. To ovarcome this difficulty, acceleration

feedback was utilized. However, a method wherel:y sound pressure level reductions



137

are achieved at various microphone locations was devised. In this method the un-
controlled sound pressure levels were utilized in the controller design process to ap-
propriately weight the acceleration feedback such that specified sound pressure level
reductions were achieved.

In the controller design methodology the plant dynamics were utilized to achieve
the desired control. This was accomplished by using controller lag to appropriately
phase the resonances of the plate. To avoid decreasing the natural gain of the plant
transfer function, the lag was achieved using combinations of non-minimum phase
zeros and poles. With this technique multiple crossover frequencies were used to
increase the bandwidth where control was achieved. The small controller DC gain
and low controller order was a direct consequence of the ability of the design method
to utilize beneficial plant characteristics.

Since the natural dynamics of the system were utilized in the controller design, it
was possible to optimize the locations of the control actuators and sensors. This was
accomplished by finding the locations which resulted in high plant transfer function
gain in the frequency regions where sound pressure level reductions are required. It
was found that one sensor/actuator location should be located near the center of the
plate. In this way, control over the strongly radiating first mode is best achieved.

Finally, the controller design methodology was shown to be robust to large system
uncertainty for cases where there is a uniform shift in the system resonances. The
plant dynamics were modified by the addition of discretized mass. The closed loop
was found to be stable with respect to perturbations in the natural frequencies of
20 percent. The system uncertainty associated with pressure differentials across the
plate was shown to produce similar changes in the system transfer function. Thus,
it is expected that this controller design methodology would effectively handle plant
variations associated with a change in the altitude of an aircraft. The robustness was a
direct consequence of the use of the plant dynamics in the controller design. Because

the plant dynamics were utilized to provide the system gain, the open loop phase
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shifts at the resonances are small compared to tte large changes in the resonance

frequencies.



Table 5.1 Optimized Actuator/Sensor Locations

Pair # | mean(O(jw)) | 1st Actuator/sensor | 2nd Actuator/sensor
(x,y) m (x,y) m
1 1.5366-06 (0.229,0.165) (0.267,0.165)
2 1.555¢-06 (0.229,0.138) (0.267,0.165)
3 1.564¢-06 (0.229,0.165) (0.152,0.165)
4 1.574¢-06 (0.229,0.165) (0.191,0.193)
5 1.593¢-06 (0.229,0.165) (0.152,0.138)
6 1.599¢-06 (0.152,0.165) (0.229,0.193)
7 1.599¢-06 (0.229,0.138) (0.191,0.193)
8 1.599¢-06 (0.191,0.138) (0.229,0.138)
9 1.603e-06 (0.191,0.165) (0.191,0.193)
10 1.603e-06 (0.191,0.138) (0.267,0.165)

Table 5.2 SISO Controller SPL at Error Mics (100-1000 Hz, 35.8 m/s)

Mic | Location (R(cm),,8) | Reduction, dB(re 20e-6 Pa)
1| (54.6,—40° 33°) 3.7
2 | (50.0,—32°,15°) 3.9
3 | (18.8,142°,46.2°) 4.1
4 (34.5,63.4°,26.9°) 0.2
5 | (66.8,60.8°,33.1°) 5.8
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Table 5.3 SISO Controller SPL at Mic (54.6, —40°,33°) for Various Flow Speeds,

dB(re 20e-6 Pa)

Flow Velocity Reduction | Reduction
(100-1000Hz)| at 1st Mode
26.8 m/s (60 MPH) 3.2 13.0
35.8 m/s (80 MPH) 3.7 14.8
40.2 m/s (90 MPH) 3.8 16.3

Table 5.4 MIMO Controller SPL at Mic (54.6, —40°,33°) for Various Air Speeds,

dB(re 20e-6 Pa)

Flow Velocity Reduction | Reductiorn | Reduction | Reduction
(100-1000Hz)| at 1st Mode | at 2nd Mode | at 4th Mode
35.8 m/s (80 MPH) 4.3 13.2 12.6 8.1
40.2 m/s (90 MPH) 4.5 14.4 13.4 8.8
44.7 m/s (100 MPH) 4.5 14.1 13.7 9.1
49.1 m/s (110 MPH) 4.5 14.2 13.6 9.2
51.4 m/s (115 MPH) 4.6 14.8 14.8 9.4




Table 5.5 MIMO Controller SPL Reductions at Error Mics, dB(re 20e-6 Pa)
(100-1000 Hz)

Mic Number | 35.8 m/s [40.2 m/s|44.8 m/s|51.5 m/s
1 5.7 5.5 5.4 5.4
2 5.1 4.9 4.8 4.6
3 6.0 5.8 5.8 5.7
4 5.0 5.0 4.9 4.8
5 5.8 5.8 5.6 5.2
6 5.2 5.3 5.2 4.9
7 5.7 5.7 5.5 5.6
8 6.0 5.9 5.6 5.4
9 5.9 5.8 5.4 5.4
10 5.6 5.6 5.1 5.1
11 6.0 5.9 5.6 5.6
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

This research was done to address the need for active control of flow induced
structural radiation of sound. A successful control methodology for this problem
is of primary interest to aircraft, automobile, and sonar design engineers. In this
chapter the conclusions drawn from this project and the recommendations regarding

the future direction of this work are presented.

6.1 Conclusions

Based upon the current state of the art in active control, it can be concluded that
active control of flow induced structural radiation of sound has not been effectively
addressed. Prior to this investigation, no experimental results involving active struc-
tural acoustic control for a turbulent flow excitation had been obtained. Furthermore,
analytical investigations of this problem had considered only full state feedback con-
trol approaches. In this investigation an analytical model was developed and used to
characterize the problem and evaluate various control methodologies. The controller
design approach developed using this model was successfully applied in an experi-
mental investigation. These results represent the f rst experimental implementation
of an active structural acoustic controller for a turbulent flow excitation.

In this work, the limitations of existing control methodologies for the problem of
flow induced structural sound radiation are identifiad. The lack of a viable reference
transducer precludes the use of feedforward control. Optimal control is not practical
for implementation as it is difficult or impossible :0 measure the state information

required by the controller and the effects of delays, nonlinearities, unmodeled modes,



173

and other uncertainties associated with this problem cannot be included in the de-
sign technique. g synthesis was shown to achieve robust performance only in the
case of small parametric uncertainty and reduced sound pressure level reduction re-
quirements. This was a direct consequence of the uncertainty required to account for
errors in the system model and the parametric nature used to describe the system
uncertainty. For adaptive feedback control, the closed loop stability was shown to
rely on accurate plant models. Furthermore, in experimental investigations adaptive
feedback control resulted in system instability for various flow conditions.

To overcome the limitations of existing control methodologies, a frequency domain
feedback controller design method was developed for active structural acoustic control
of lightly damped systems. The methodology was evaluated for the active control
of the flow induced structural radiation of sound. This control methodology ensures
stability, provides sound pressure level reductions, and avoids saturation of the control
transducer. The controller design is based directly on measured system information
such that additional uncertainty required by modeling errors is not necessary. The
problem of the delay associated with sound pressure feedback was overcome with the
use of acceleration feedback. By utilizing the uncontrolled sound pressure levels in the
controller design process to appropriately weight the acceleration feedback, specified
sound pressure level reductions were achieved at multiple microphone locations.

A unique characteristic of the controller is the use of the plant dynamics to achieve
the desired control. This was accomplished by using controller lag, through non-
minimum phase zeros, to appropriately phase the system resonances. It was shown
that for the turbulent flow induced structural sound radiation problem this technique
allows higher frequencies to be controlled with a low DC gain and controller order.
Furthermore, the use of the natural dynamics of the system was shown to yield
superior robustness to large changes in the plant transfer functions.

An experimental apparatus was designed and built to verify the control method-
ology for the problem of turbulent flow induced structural sound radiation. Using .

the robust frequency domain feedback controller approach, a MIMO controller was
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designed and implemented. The desired sound pres: ure level reductions were achieved
at multiple microphone locations over a wide range of low speeds. The sound pressure
level reductions were approximately 5.0 dB across the 100-1000 Hz band.

The successful development of a robust feedback control method for active struc-
tural acoustic control achieved the major goal of this research project. This con-
trol method represents a viable alternative to adaptive feedforward control for many
problems. For the problem of fiow induced structural sound radiation, this technique

represents the approach which offers the most promise in solving practical problems.

6.2 ations

For future work in this area it is recommended that the controller technique pre-
sented in this work be applied to an actual system. An investigation of the system
uncertainty associated with the fuselage of an aircraft, for example, would determine
the degree of robustness required in the controller. The influence of functions such
as airspeed, pressure loading, and temperature should be evaluated. Additionally,
the use of more easily integrated sensors and actuators, such as piezoelectric patches,
should be evaluated.

The control method itself can be extended in a number of ways. Additional com-
putational capabilities would allow the use of off-diagonal controllers. Off-diagonal
control could reduce the control actuator requiren:ents and improve system perfor-
mance. Additionally, gain scheduled controllers should be evaluated. Gain schedul-
ing allows the system uncertainty to be Split between separate controllers such that
greater control performance can be achieved while maintaining robust stability. Fi-
nally, the interaction of control between adjacent panels should be investigated. The
controller design must account for this interaction in order to implement a full scale

controller for this problem.
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