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A Novel Approach on Parameter Identification for
Inverter Driven Induction Machines

Richard F. F. Koning, Chun Tung Chou, Michel H. G. Verhaegen, J. Ben Klaassens, and Jeroen R. Uittenbogaart

Abstract—AC machines are applied in actuator systems for
many applications. The development of fast processors open up
the possibilities to apply new techniques for identification and
control of electrical drives in real-time, so as to improve and
optimize their performances. The paper presents a systematic
approach to identify the physically relevant parameters of an ac
machine. Special attention is paid to the identification of these
parameters, without differentiating the measured voltages and
currents. This approach allows the use of high sampling rates
necessary to apply identification in real time. The approach is
applicable for electrical machines but can be extended to other
classes of electro-mechanical actuators. The simulation studies
performed in this paper highlight the improvements of the new
outlined approach over existing identification methods under
realistic operation conditions where the test signals are generated
by the power source (inverter) in an uncomplicated way.

Index Terms—AC machines, continuous-time parameter identi-
fication, inverters, linear regression, noise, nonlinear systems.

NOMENCLATURE

- and -phase of the stator voltage in the sta-
tionary reference frame.

- and -phase of the stator current in the sta-
tionary reference frame.

- and -phase of the rotor current in the stationary
reference frame.

- and -phase of the rotor flux in the stationary
reference frame.
Electrical rotor speed [rad/s].
Stator frequency [rad/s].
Stator resistance.
Rotor resistance in -scheme.
Leakage inductance in -scheme.
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Mutual inductance in -scheme.
Slip .

I. INTRODUCTION

T HE INDUCTION motor and power electronic converters
are now an important combination for high-performance

adjustable speed drives and servodrives. To achieve good perfor-
mance, the motor parameters have to be known accurately under
all regular and irregular conditions of operation. Parameter mis-
match is the most dominant remaining problem in field-oriented
control. There are several reasons for a mismatch like tempera-
ture and magnetic saturation.

Measurements of stator voltages and currents, sometimes to-
gether with rotor speed measurement, are used in a number of
identification approaches to determine stator and rotor imped-
ances in a linear state-space model with time varying parameters
representing the induction machine dynamics [5], [22], [26]. In
spite of the fact that a number of nonlinear parasitic effects like
magnetic saturation, hysteresis, and eddy currents are neglected,
the existing solutions are leading to inaccurate and/or very large
calculations. Real-time model-based controls are therefore not
realizable [26].

The no-load and locked rotor tests have been the methods in
practice to estimate the parameters of an induction motor, using
a steady-state equivalent-circuit model. It is a simple method
but two different test configurations are required to determine
all parameters. This off-line method needs special test signals.

This equivalent-circuit model is also used in more recently
developed methods to estimate the parameters of an induction
motor. The standstill frequency response method (SSFR) uses
frequency domain data to estimate the parameter values [9]. A
single test configuration is sufficient to determine the parame-
ters. It is, however, an off-line method using special test signals
in a special test configuration.

In other methods special test signals are injected into the
machine and the parameters are directly calculated from the
time-response data [3], [6], [10]. Such methods are also used
in self-commissioning schemes that have been developed [7],
[17]. In [24] the maximum-likelihood (ML) method is used to
estimate the equivalent-circuit model parameters from a stand-
still time-domain response.

All the methods using the equivalent-circuit model to estimate
the motor parameters have the disadvantage of being off-line
methods due to the special test signals and configurations.

1063–6536/00$10.00 © 2000 IEEE
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Parameter estimation methods that use the dynamical equa-
tions of an induction motor have been proposed. These methods
can be divided into analytical methods, statistical methods and
methods using an extended Kalman filter (EKF). In the analyt-
ical methods algebraic equations are derived from the nonlinear
differential equations by which the parameters can be calculated
out of voltage and current measurements [3], [11].

In statistical approaches least squared error models are
usually used for parameter fitting, using regression techniques.
These methods are however based on linear equation models.
To apply these methods, a number of different approaches
have been presented to derive linearly parameterized induction
motor models from the nonlinear model equations [12], [25],
[27]. In [18] the steepest gradient method is used to fit the
measured data directly to the nonlinear equation model. This
method can be used on-line because special test signals are not
required. However, the performance depends on the richness of
the excitation that cannot always be guaranteed under normal
conditions of operation.

There are a number of adaptive approaches that estimate the
rotor resistance or rotor time constant by injecting special exci-
tation signals into the motor [2], [4], [13], [29] but most adap-
tive approaches use a so-called model reference adaptive con-
trol (MRAC) structure. The different MRAC methods that have
been reported differ mostly in the used reference model. This in-
cludes for example reference models for the reactive power [1],
for the electromagnetic torque [8] and for the rotor flux [14],
[20].

Another recently developed method uses an EKF for on-line
estimation of the rotor resistance [19].

These methods enable on-line estimation of parameters di-
rectly used in field-oriented controllers. Most adaptive methods
only deal with varying rotor parameters. A major drawback of
the existing EKF and other nonlinear parameter optimization
procedures is the need of suitable initial estimates.

The contribution of this paper is the presentation of a new
technique to identify linear dynamic models by a method of
linear regression without differentiation. The method allows on-
line estimation of parameters of induction machines powered by
switching waveforms and provides initial estimates to EKF type
of procedures.

The model of the induction machine and a formulation of
the Parameter estimation problem is presented in Section II.
An outline of the solution is given in Section III where the
basic aspects of the approach developed in [28] are briefly

Fig. 1. Steady-state representation of the induction motor.

outlined. Results are given in Section IV. Section V presents
the conclusions.

II. M ODEL OF AN INDUCTION MOTOR AND ESTIMATING THE

MOTOR PARAMETERS

The induction motor is represented by its state-space model in
a fixed reference frame, which is also known as the-scheme
[21]

(1)

The rotor speed is the mechanical speed of the motorshaft
where is the slip and the stator frequency. If

we denote the differential-operator as “” then the motor equa-
tions can be rewritten by eliminating the rotorflux in equation
(1) as shown in (2) at the bottom of the page. The steady-state
representation of this model is given in Fig. 1.

and where is the coefficient
of coupling.

(2)
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The currents , and and their derivatives are not mea-
surable quantities. If we eliminate the unmeasurable quantities
from equation (2), two differential equations result

(3)

(4)

Because the coefficients of (3) and (4) are the same, we can
identify these coefficients using only one of these equations.

In the following (3) will be used. It is sufficient to measure
and , The coefficients of the differential equations

(3) and (4) are related to the physical parameters in (1) by the
following relations:

(5)

Define and , then
we can denote this set (5) as

(6)

Now we can define the following parameter estimation problem.
Consider an induction motor presented by its contin-

uous-time state-space model (1) with unknown parameters
. Available are the sampled data sequences of

the stator currents voltages and rotor speed
. The task is to determine the motor parameters

and .
This parameter estimation problem is formulated mathemat-

ically as

(7)

where is the solution to the differential equa-
tion (3) with coefficients and determined by

. From this general problem statement
two special cases are considered: constant rotor speed and
varying rotor speed.

1) Constant Rotor Speed:When is constant the coef-
ficients of equation (3) are constant and this equation can be
written as alinear time-invariant transfer function

(8)

where is the Laplace operator.

The coefficients of this transfer function are identified using
the method developed in [28] and is summarized in the next
section.

2) Varying Rotor Speed:If the rotor speed is a time-
varying function and the rotor speed can be measured, the
equations can be transformed so that the new coefficients
become constant again. To apply the identification techniques
presented in [28], a relationship between measurable quantities
in the Laplace domain is necessary. The Laplace transform of a
product of two time-varying functions results in a convolution
in the Laplace domain. For example

(9)

To avoid this, the following substitution using the chain rule is
made

(10)

While the rotor speed changes relatively slow and is a
smooth function of time, its derivative is accurately calculated
by making use of, e.g., the spline interpolation. This will
yield more accurate results compared to differentiating the
high-frequency currents and voltages, because in practice these
signals are not smooth or contain spikes. Based on the idea
outlined by (10), we can get a set of equations in terms of
signals that can be derived from the measured data

(11)

These coefficients are related to the parameters of the-scheme

(12)

The identification problem can now be formulated in the same
way as for the constant rotor speed case. Therefore, without loss
of generality, we restrict this paper to outlining the improve-
ments that may be obtained using the identification strategy
highlighted in the Section III for the case is constant.

III. OUTLINE OF THE SOLUTION STRATEGY FORCONSTANT

The identification problem (7) can be solved via nonlinear op-
timization techniques. To avoid the numerical difficulties (such
as local minima) related to the use of such techniques, in this
section a different strategy is outlined. This strategy separates
the identification problem into subproblems: a linear-in-the-pa-
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rameters optimization problem and finding the zeros of a simple
nonlinear function.

Mathematically, these steps are formulated as

step 1: (13)

where is defined in (6). Denote the solution of this step by

step 2: (14)

Here the parameter vectors and the vector function
are as given by (5) and (6). Based on physical insight the op-
timization problem in (14) can be constrained by including the
condition .

In the first step, the coefficients of the transfer function are
found from the measured input and output data.

In the second step the motor parameters are estimated from
the transfer function coefficients. There is some redundancy in
the number of equations in step 2: there are eight equations but
only four unknown parameters. Later this will be exploited by
solving this step using only the most accurate estimates that still
allow a unique solution of , , , and . Therefore, the
key problem is to find the coefficients of a differential equation.

The problem of modeling a continuous-time process from
discrete-time data can be solved in different ways.

One possible way is known as theindirect method. It es-
timates the continuous-time parameters by first fitting a dis-
crete-time model to the data and then converting this model to
a continuous-time model.

Another approach is to approximate the continuous-time
derivatives by finite differences [23] or, alternatively, integrals
by sums. This approach results in the possibility of estimating
the continuous-time system from the discrete-time data without
an intermediate step. This is called adirect method. The
calculation of derivatives however can lead to serious problems
if the data is corrupted with noise or has steep waveforms as
we will see in Section IV.

To avoid the calculation of derivatives, we will use an iden-
tification method using all-pass filters [28]. A summary of this
approach is outlined next.

A. Estimating the Parameter in a Differential Equation

The solution described in [28] performs a bilinear transfor-
mation on the differential operator in the continuous differen-
tial equation. As a consequence the measured inputs and output
are filtered through a bank of all-pass filters. It is shown that the
filtered inputs, filtered output and the impulse response of the
filters are related by a linear algebraic equation. Therefore, the
coefficients in this algebraic equation can be determined using
linear least-square type of techniques. It is shown in [28] that
there exists an analytic, linear transformation between the co-
efficients of the differential equation and those of the differ-
ence equation. The desired coefficients ofthe differential equa-
tion can readily be recovered once the coefficients of the alge-

braic equation are computed. This procedure is outlined for the
special case of identifying a first-order continuous time system.

Let the bilinear transformation of the Laplace operator, de-
noted by , be defined as

(15)

where .
The inverse relationship is

(16)

Given the followingfirst-order system:

(17)

where and are the Laplace transforms of the input
and output , respectively. If the system response due to

the unknown initial condition is given by then the equation
in terms of the -operator becomes

(18)

denoted more compactly as

(19)

Clearly there is a linear relation between the coefficients in (17)
and (19). In terms of time domain signals the equation (19) be-
comes

(20)

where

(21)

is the continuous time impulse function anddenotes the
inverse Laplace transformation of .

Now, define the matrices: , , and as

...
...

...
...

...
... (22)
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Then the coefficients , , and satisfy

(23)

This shows that up to a proportional constant they form the so-
lution of a so-called total least squares (TLS) problem [15].

An important step in the above procedure is the all-pass fil-
tering of the input–output data. Since we only have sampled data
sequences we have to use a digital approximation of the con-
tinuous time filter (15). Different higher-order approximation
schemes are discussed in [28]. For simplicity in this paper we
restrict to thefirst-order Padé approximation or Tustin trans-
formation. Let be the sampling period, then discretization of
(15) reads

where (24)

If this approximation scheme is selected then, under the condi-
tions that the excitation is persistently exciting and that the error
in the approximation of the continuous-time filter is negli-
gible, the coefficients , and can be computed by solving
the following TLS problem:

subject to (25)

where denotes the Euclidean length of the vector.
Finally, in order to force the differential equation to have a

specific relative degree, additional constraints can be imposed
on the TLS problem (25).

Since we are only interested in the coefficients, and not
in , we perform a QR-factorization on the matrix ,
which compresses the amount of data and avoids calculating.
Let this RQ factorization be denoted as

(26)

then gives the estimated values for the coefficientsand

. Define and and

then an estimate of denoted by satisfies the following rela-
tionship:

(27)

The solution to the equation above is not unique, because the
modulus of the vector is unknown. To obtain a unique solution
we have to impose at least one constraint on, for example that

. For the induction motor, we also know that some coef-
ficients are zero, because the degree of the numerator is lower
than the degree of the denominator. The identification method

allows the introduction of linear constraints on the coefficients
and . The constraints can be summarized in the matrix equa-

tion:

(28)

Now the following TLSproblemhas to be solved

such that and (29)

B. Estimating the Motor Parameters

The motor parameters are estimated from these coefficients
once the coefficients of the transfer function are found. This
problem can be stated as

(30)

where contains the estimated transfer function coefficients.
The vector and are given by

(31)

One can see that there is redundancy in these equations and that
all parameters must be positive. This can be exploited by solving
this equation using only the largest subset ofthat gives rise
to a unique and accurate estimation of, , , and .
This problem is solved using standard Matlab constrained op-
timization tools. In the solution, a sub-set of entries ofused
in equation (30) is selected that has smallest estimated variance
and allows for a unique solution of (30).

IV. SIMULATIONS AND RESULTS

A. Noise Free Case

To test the identification method and to compare its results
to methods using differentiation and the indirect method, sev-
eral simulations in Matlab are performed. The signals required
for the identification (input: , and output: ) are gen-
erated by the state space motor model (1). This model is imple-
mented in Simulink. The input signals of the induction motor
have to be persistently exciting to identify the complete model.
The transfer function (8) is difficult to identify because there is
almost pole-zero cancellation in the part of the transfer function
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Fig. 2. Example of the root locus for inputu , outputi for constant! (! = 1 . . . 45 Hz) (x ando are, respectively, poles and zeros at! = 45 Hz).

Fig. 3. Input and output signals for! = 2�7:5 (horizontal axis= sample number).

. Its pole-zero plot (root locus) for different values of
the constant is presented in Fig. 2.

The imaginary part of the zeros is at and the two com-
plex poles are located very close to the zeros. To identify all
poles and zeros, a signal with an high energy content around

is needed. One method is to apply a small sweep for the stator
frequency around for a constant rotor speed . A sample
frequency of 2500 Hz is used. An example of the resulting sig-
nals using sinewaves for low rotor speed is shown
in Fig. 3.
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Fig. 4. Bode ploti =u and identification errors—solid: correct Bode plot; dotted: error in indirect estimation; dashed: error in direct estimation.

First an attempt to identify the system applying a method of
differentiation [22] is made. In this way it is not possible to
identify the system.

The use of differentiation easily leads to badly conditioned
least-squares problems when use is made of periodic sinusoidal
signal. This is illustrated by the following.

Example 1: Let , then
and the condition number of the matrix

...
...

(32)

for a multiplicity of the period, equals .
Another difficulty of differentiation is related to the fact that

is a square wave generated by an inverter that makes differ-
entiation not possible. Also differentiation is very sensitive to
noise.

Second, an attempt is made to identify the system in thein-
directway using the Matlab Identification Toolbox [16]. A dis-
crete time system of order three is fitted to the discrete data. This
model is converted to a continuous-time model using the zero-
order hold assumption (ZOH). So we can identify the transfer
function and estimate the motor parameters. The error on the
estimated and true magnitude of the transfer function from
to shown in Fig. 4.

Third, we used theintroduced method of identificationout-
lined in Section III-A, extended to multiple input–single output
(MISO) systems. With this method the transfer function coeffi-
cients can be identified with a small relative error (order )

resulting in an estimated transfer function that has a small
error on the magnitude plot as shown in Fig. 4. The choice of
the filter parameter in (15) has a very limited influence on
the results of estimation of the coefficients. Once the transfer
function coefficients are estimated, the motor parameters:,

, , are identified solving the constrained least-squares
problem (30).

It is found that the best results are obtained when the co-
efficient which has the largest uncertainty in theparam-
eter vector is not used in the optimization procedure. The rela-
tive error in the approximation of the motor parameters is small
(order ). This shows that the proposed method is a good al-
ternative for the identification of continuous-time models from
sampled time data.

B. Noise Added to

To get some idea on the sensitivity to noise of the new identifi-
cation method, white noise is added to the output. For a more
general treatmentofnoise ondata,we refer to [28]. It is found that
the filter parameter now has a more significant influence on the
results of the identification if noise is present at the output. The
best results in terms of estimated parameter variance are obtained
if the pole of the filter is situated close to .Once the coef-
ficients are found, the motor parameters are approximated using
the constrained least squares optimization. The relative error in
the approximation of the motor parameters is shown in Fig. 5,
using different values for the filter coefficient. In this case
is rad/s. In the figure the lower curve gives the relative error
for the noise free case. The upper curve gives the relative error for
the noisy case with SNR dB.
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Fig. 5. Relative error inL , L ,R ,R using different values for the filter coefficient� along the ordinate—upper curve: noise free; lower curve: noisy.

Fig. 6. Relative error in motor parameters: noisy case SNR=37 dB.

To check whether the identification gives a robust approxi-
mation of the motor parameters a Monte Carlo experiment is
done for the noisy cases with SNR: 44 dB and 37 dB. The filter
parameter value is taken as . For the noise free case the
same coefficients and motor parameters are found for each ex-

periment. In the experiments with SNR dB the coefficients
and parameters are estimated very well with small variation be-
tween the experiments. For the case SNR dB the estimated
parameters are shown in Fig. 6. This figure shows small vari-
ance though biased estimates. The latter is a consequence of not
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Fig. 7. Bode plots—(solid): correct transfer function; (dotted): transfer function based on estimated coefficients; (dashed): transfer functionbased on estimated
physical parameters.

properly taken the noise into account. The goal of this paper
is the outline of the basics of the method and its application to
the identification of induction motors. We refer the interested
reader to [28] for more details in realistic noise circumstances
in the identification of continuous time systems.

Comparison of the Bode plots of the correct transfer func-
tion and the Bode plots of the estimated transfer function (i.e.,
after step 1) in the noisy case SNR dB shows that the poles
and zeros of the estimate are wrong. However when the motor
parameters are estimated from the transfer function estimates
using the redundancy in the coefficients given in (30), the poles
and zeros are estimated in the correct way. This is summarized
in Fig. 7. Thus, the redundancy in the equation (30) gives us a
tool to get better results for the estimated motor parameters.

V. CONCLUSION

In this paper the problem of identifying the parameters of an
induction motor from sampled data is studied. A new identifi-
cation method using linear filtering instead of differentiation is
introduced. The applicability of the new method over two ex-
isting approaches is explained.

The existing approach using differentiation, has two major
drawbacks. First it gives rise to an ill-conditioned parameter es-
timation problem. Second it cannot deal with square waveforms
generated by an inverter.

However, the approach presented in this paper can overcome
both drawbacks. It is also shown that the new method gives
better results than the indirect method. The new method gives a
robust approximation of the motor parameters in noisy environ-
ments.
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