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Noise Effect on Adaptive Command Shaping Methods for Flexible Manipulator 
Contr~ . 

Sungsoo Rhim and Wayne J. Book / 

Abstract-Since its introduction, the command shaping method to design command shapers as robust as possible based on the 
has been applied to the control of many types of flexible manipu- available infonnation on a given system (e.g., expected varia­
lators and sthe effectiveness in the vibration suppression has been tion range of the natural frequency) [11]. Unfortunately, the ro­
verified. However, designing an effective command shaper requires 
a priori knowledge about the system parameters. Recently, some bustness of the shaper comes at the expense of the command 
efforts have been made to make the command shaper adapt to the shaper length, which means more delay in the response. More­
changes in the system parameters. In this paper, the indirect and _. over, this approach still requires a fair amount of a priori knowl­
the direct adaptive command shaping methods in the time domain edge about the system parameters for proper design. The second 
are compared, especially in terms of the noise effect on the per- approach is to make the command shaper adapt to uncertain 
formance. Analysis shows that the direct approach is less sensitive . 
to the noise and this analytic result is verified by the proper simu- or varying system parameters. The indirect adaptive command 
lation. Finally, experimental results using the direct approach are shaping method has focused on the system identification either 
included. in the frequency domain [3], [14] or in the time domain [2], [8]. 

Index Terms-Adaptive command shaping, flexible manipu­
lator, noise, vibration. 

I. INTRODUCTION 

F LEXIBILITY in a manipulator will degrade trajectory 
tracking control and manipulator tip positioning. In 

practice, however, constraints imposed by various operating 
requirements will render the presence of such flexibility 
unavoidable. The task that a manipulator must perfonn often 
leaves unspecified the exact path that the arm must follow. 
The general shape of the motion profile; the final position 
at the end of a path and the time necessary to bring the arm 
to rest at that position are far more important in these tasks. 
This fact makes it possible to place command shapers in the 
computer control which improve the flexible arm perfonnance 
by suitably modifying the commands so that arm vibrations 
are minimized. Since [13] revived the concept of a dead-beat 
command design and extended it to a more sophisticated com­
mand shaping approach, the command shaping method using 
time-delay. filters has been applied in many applications and 
its effectiveness in suppressing the residual vibration has been 
verified. The design of an effective command shaper, however, 
requires a priori knowledge of flexible system parameters such 
as the natural frequency and the damping ratio of the undesired 
elasti,c mode. 

When the command shaping method is used to control flex­
ible manipulators with uncertainty of system parameters, there 
are two approaches that can be taken [1]. The first approach is 
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In these approaches, new filter coefficients are calculated using 
the system estimation results. Thus the effectiveness of the up­
dated command shaper relies on the quality of the system esti­
mation results. Direct adaptation algorithms can also be used, 
where system parameters are never explicitly utilized. Among 
time-delay filter parameters that can be adapted in the direct 
adaptation are 1) the number of tenns in the filter; 2) the time 
delay of the filter; 3) the coefficients of the tenns. The number 
of tenns has not been adapted on-line in previous works. The 
authors will fix the number of tenns at three for a single mode 
throughout the following discussion. It is known that the adap­
tation of time delay of an finite impulse response (FIR) filter is 
a very complicated nonlinear problem. However, this difficult 
nonlinear approach can be avoided by utilizing the characteris­
tics of a three-impulse command shaper called optimal arbitrary 
time-delay filter (OATF). The OATF provides the freedom in 
choosing the time delay regardless of the system para!lleters [6]. 
Recently, based on this unique characteristic of the OATF, the 
authors proposed a direct adaptive command shaping method 
which can adapt only the filter coefficients leaving fixed the 
number of impulses and the time delay to minimize the residual 
vibration [9]. 

In this paper, we compare two time-domain adaptive com­
mand shaping approaches (the indirect and the direct), particu­
larly in terms of the noise effect on the perfonnance. The noise 
effect on both approaches is analyzed and the analytic result is 
supported by a set of appropriate simulations. Also, an experi­
ment using the direct approach is performed and its results are 
included at the end. 

II. DYNAMICS OF FLEXIBLE MANIPULATOR 

The system of interest to this work is the gantry-type robot 
with a prismatic joint and single flexible link shown schemat­
ically in Fig. 1. v.(t) denotes the control force as a function of 
time, t. The length of the flexible link is L. The 1:-711 coordi­
nate frame is attached to the prismatic joint and moves with the 
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Fig. 1. Schematic diagram of a gantry robot with a flexible link. 

flexible linle Yo (t) represents the horizontal displacement of the 
joint. Then, the horizontal displacement of the flexible link at a 
given value of x can be expressed as 

yet, x) = Yo(t) -P wet, x). (1) 

The flexible link system consists of an infinite number of modes. 
For practical purposes, however, we assume that we are able 
to characterize the system's behavior well enough with only N 
modes. Using the method of assumed modes, we thus have 

where iP(x)T = [¢dx) ¢2(X) ... ¢N(X)]. Next, we proceed 
to derive the transfer functions between the control force, u(t), 
and the outputs y( t). Assuming the use of a set of mode shapes 
such that ¢i(O) = 0 for i =f. 1, we get Br = 1 and Be = O. 
With these mode shapes, the rigid motion (or the joint motion) 
is represented solely by the first mode and the first generalized 
coordinate. Without losing generality, these particular values of 
B matrix elements are used for the simplicity in the following 
derivation. 

First, we observe that 

Qr(S) _ 1 - (s2Me + SD 22 + K22)-1(sD12K12)B2 
U(s) - s2Mr+sDll 

(5) 

and 
Qe(s) (2M -1 
U(s) = S e + SD22 + K 22 ) B2 (6) 

where s is the Laplace variable and, e.g., Qr(s) is the Laplace 
transform of qr ( t). Also 

Du = aMr, D12 = -(3MreM;;-1Ke 

D22 = aMe + (3Ke, K12 = -MreM;;-1Ke 

K22 = K e , and B2 = -M;ejMr' 

N 

yet, x) = L qi(t)¢i(X) 

Then, using (4)" we obtain the transfer functions Gjqint (s) _ 
(2) Yjoint(S)jU(s) and Gtip(S) == Ytip(S)jU(s): 

i=l 

where qi ( t) are generalized coordinates' and ¢i ( x) are basis 
functions or assumed mode shapes. Then, e.g., by using La­
grange's equations, wefmd that the system's equations of mo­
tion are given by 

Mq(t) + Dq(t) + Kq(t) = Bu(t) (3) 

where 

, M = [Mr Mre] K = [0 
- M;e Me' - 0 

D = aM + (3K, B = [~:] 
a and (3 are constants, and q(t) = [qr(t) qe(t)]T, where qr(t) 

[
GjOint(s)], = [(f>T(O)] [Q:,.(s)jU(s)] 
Gtip(S) (f>T(L) Qe(s)jU(s)' (7) 

III. COMMAND SHAPING 

The command shaper reshapes the desired input to a flexible 
system such that the resonances of the elastic system modes are 
not excited. It takes the form of an FIR filter, with filter parame­
ters determined by the resonant frequencies and the damping ra­
tios of the undesired elastic modes of the flexible system. In this 
research we have used a particular three-tenn command shaper 
called the OATF)[6]. For a single elastic mode cancellation, an 
OATF is given by the following equation: 

1 
c(t) == M{8(t) - 2COS(wdTd)e-C::WnTd8(t - Td) 

is the rigid generalized-coordinate (representing the joint mo~ __ _ + e-2C::wnTd8(t - 2Td)} (8) 
tion or rigid mode) and qe(t} are the flexible generalized co­
ordinates (representing the elastic motion or mode). The sub­
scripts r and e in the aoove equations denote rigid body mo-
tion and elastic motion, respectively; M re represents coupling 
between the rigid mode and the elastic modes. Only one rigid 
mode appears in the above equation corresponding to the hori­
zontal translation. Generally, the mass matrix M and the stiff-
ness matrix K may vary with the system configuration q(t). 
However, for our gantry-type manipulator, these matrices are 
constant. The manipulator joint displacement, Yjoint (t), and the 
tip displacement, Ytip( t), are expressed in terms of the general­
ized coordinates by 

, yet) == [YjOint(t)] = [iPT(O)] q(t) 
Ytip(t) iPT(L) 

(4) 

where' 
Td 
8(t) 

time delay; 
unit impulse function centered at t = 0; 

Wn natural frequency of the undesired elastic mode; 
corresponding damping ratio; 

Wd correspon'ding damped natural frequency, and M = 
1 - 2 cOS(wdTd)e-C::wnTd + e-2c::wnTd. 

In order to have the saine total steady-state response both be­
fore and after the command shaping of the input, the command 
shaper is normalized to have unit dc gain. It has been shown 
that if the command shaper coefficients are properly chosen, the 
OATF is capable of canceling the given resonance poles with its 
zeros using any Td; note that this is not true for earlier command 
shaping methods [6]. 

f 

I , 
; 
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When we realize command shaping in the discrete-time 
domain, the time delay Td is not permitted to be an arbitrary 
number. Instead, it must be chosen as an integer multiple of the 
plant sampling time, Ts. The freedom of the OATF in choosing 
the time-delay makes it easy to implement in a digital control 
system. The z-domain representation of the OATF is given by 

1 
C(z) == M(l- 2COS(wdTd)e-(wnTdz-~ 

+ e -2(wnTd z-2~) (9) 

where 6. = integer = Td/Ts. 

IV. NOISE EFFECT ON ADAPTIVE COMMAND SHAPING 

If system parameters change, the corresponding change in de­
sired command shaper parameters can be readily calculated. The 
indirect adaptation process can then be conceived that identi­
fies system parameters (natural frequency and damping ratio), 
calculates improved command shaper parameters and changes 
them. 

The selection of the identification method between the param­
eterized (time domain) method and the nonparameterized (fre­
quency domain) method should depend on, first of all, what kind 
of prior knowledge (expected frequency range, system order, 
system structure) is available. Since the eventual goal of the 
system identification in the adaptive command shaping is to 
get an effective commandshaper whose structure canbe fixed, 
we can utilize this information of the filter structure to adapt 
only the filter coefficients directly in the time domain. For the 
frequency-domain approach, even though there are several effi­
cient algorithms developed, it is still a computational burden to 
do an FFT analysis during the control calculation. Even after the 
spectrum is obtained, further processing is required to identify 
the peaks in its magnitude and estimate the damping ratio. 

Considering these advantages, the authors focus on the 
comparison of two time-domain adaptive command, shaping 
approaches (indirect and direct) that use the least squares 
algorithm. Particularly, the comparison is made in terms of the 
noise effect on the performance of adaptive command shapers. 

A. Noise Effect on Time Domain System Identification Method 

A linear time-invariant system with additive disturbance can 
be specified in the discrete-time domain by two transfer func­
tions G(z), H(z) and,a noise e(n) as (10) 

where 
u(n) 
y(n) 
G(z) 
H(z) 

y(n) = G(z)u(n) + H(z)e(n) 

input to the system; 
output of the system; 

(10) 

system model defined as G(z) = L:~=l g(k)z-k; 
noise model defined as H (z) 1 + 
L:~=l h(k)z-k, and n = given discrete time. 

(Throughout this paper, for practicality we switch freely be­
tween the discrete filter form and its z-transform by using z ,both 
for the delay operator on the discrete-time signal and for the 
z-transform Variable.) We assume that the noise e( n) is random 

signal with zero mean value and the noise model H (z) and its 
inverse are both stable. 

The system identification (or estimation) is to determine a 
set of system parameters (such as coefficients g(k) and h(k) 
of G(z) and H(z)) in the given system representation based on 
a certain criterion. For the following discussion, let us represent 
this set of system parameters with O. At a given discrete-time n, 
the one-step-ahead prediction of the system (10) can be calcu­
lated as below [5] 

y(n) = fI-1(z, O)G(z, O)u(n) + [1- fI-1(z, O)]y(n) 

(11) 

wherefI(z, 0) and G(z, 0) represent the estimation of H(z) and 
G (z) based on a certain choice of the system parameter set 0 re­
spectively. The optimal estimation of 0 can be obtained by mini­
mizing a given cost function, which evaluates the difference be­
tween the estimated system and the observed data. In this paper, 
as the cost function we consider the quadratic norm of the pre­
diction error shown below 

(12) 

where the prediction error c(n) is defined as c(n) = yen) -
yen). By substituting (11), the prediction error can be rewritten 
as 

c(n) = fI-1(z, O)[y(n) - G(z, O)u(n)]. (13) 

Following [5], with a large N this quadratic cost function can 
be transformed to the frequency domain and can be expressed 
approximately as 

1 N-l 2 

J(N) ~ N L IGN (wt) - G(eiW , 0)1 
k=O 

x IUN (W~r) 12IfI-l(eiW, oW (14) 

where wt == ei27rk / N and GN(WM is an empirical transfer 
function estimate of the system, which is defined as 

(15) 

For distinction, we have used argument wt for the DFT and 
ejw for the transfer function evaluated at the point z = ejw

, 

for -11' ~ W ~ 11'. Consequently, the optimal 0 is obtained by 
fitting the estimated transfer function G( eiw , 0) to the empirical 
transfer function G N (WM with a weighted norm. Notice that 
the inverse of the noise model spectrum, IH-1(e jw , oW, and the 
input spectrum, IU N(W~ )1 2, are weighting the cost function. 

B. Indirect Adaptive Command Shaping 

In the indirect adaptive command shaping approach, the flex­
ible manipulator system is estimated first, then new coefficients 
of the command shaper are calculated based on system parame­
ters (wn' () extracted from the system estimation result. There­
fore, the effectiveness of the updated command shaper entirelY 
relies on the quality of the system estimation result. The block 
diagram of this approach is given in Fig. 2. 
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Fig. 2. Block diagram of indirect adaptive command shaping. 

For the system estimation, first of all, we need to choose a 
model for the system. While the analysis in the previous sec­
tion can be applied to other types of time-domain estimation 
models, here we consider linear regressor models where the pre­
diction can be expressed in a linear regression form. This kind 
of model (ARX, ARARX, ... ) is the most favored in many ap­
plications, because the linearity of the prediction allows the use 
of powerful and simple linear techniques. From among those, 
the ARX model is used for the discussion following. Using the 
ARX model, the flexible manipulator system including the noise 
can 'be expressed as 

A(z)y(n) = B(z)u(n) + e(n) (16) 

where A(z) == 1 + alz- l + ... + anaz-na , B(z) == blz- l + 
... + bnbz-nb , and e(n) = zero mean random noise. Let us 
define the system parameter vector B and the regressor vector 
'!fiThen, by comparing (16) with (10) in the previous section, the 
estimated system description is 

G(z B) = ~(z, B) 
, A(z,B)' 

. 1 
H(z,B) = -.-. 

A(z, B) 
(17) 

and the predictor can be expressed as 

yen) = B(z, B)u(n) + [1 - A(z, B)]y(n) (18) 

or in a linear regressor form 

where 

BT(n) = [-al(n) 

bl(n), 
'!fiT(n) = [y,(n -1) 

u(n - 1} 

-anAn) 
bnb (n)] 

yen - na) 
u(n - nb)]. 

Substituting (17) into)(14), we can get the frequency domain 
representation of the quadratic cost function for ARX model as 

1 N-l 2 

J(N) ~ N L IGN (W;,) - G(eiW,B)1 
k=O . 

x IU (W~) 121A( eiw , BW· (20) 

Notice. that the square of the difference between the estimated 
transfer function and the empirically obtained system transfer 
function, IGN(WM - G(eiw,BW, is weighted by IU(WMI2 

and IA(eiw ,B)12. Inclusion of IA(eiw,BW is the result of 

Frequency Response of A(.jw): 2 Elastic Modes 
101Or----,-----.-----r----,,----,---_-, 

10' 

10 15 20 25 30 
Frequency [Hz] 

Frequency Response of A(.}w); 3 Elastic Modes 
101Or----...,----.------,-----,,----,--===-, 

10' 

10 15 20 25 30 
Frequency [Hz] 

Fig. 3. Frequency response magnitude of denominator polynomial .4.( z). 

choosing an ARX model for the estimation. However, for 
any other type of linear regressor model with the obtainable 
regressor '!fi (n), this term will be included in the cost function, 
too. 

The magnitude of A( eiw ) increases with frequency. The 
higher the order of A(z), the more rapidly the magnitude 
of A(eiw ) increases with frequency. As an example, Fig. 3 
shows frequency responses of A(z) for two lightly damped 
links with two elastic modes (natural frequencies at 5 Hz and 
9 Hz) and three elastic modes (natural frequencies at 5 Hz, 9 
Hz, and 14 Hz), respectively. Thus, this estimation algorithm 
gives a very heavy weighting to the highest frequencies where 
the the empirical estimation is dominated by noise. Generally 

. speaking, minimization of the cost function will clearly result 
in a estimated transfer function G( eiw , B) with too large a 
high-frequency gain at the expense of accuracy in the region of 
critical interest (poles of G N(W~ )). 

A solution to this weighting problem is to use the filtered pre­
diction error ep(n) shown below instead of e(n) for the perfor­
mance index [10]. 

\ . ep(n) == L(z)e(n) = L~z){y(n) - yen)} • 
. = L(z){y(n) - B(z, B)u(n) - [1 - A(z, B)]y(n)} 

-- .. = -B(z, B)L(z)u(n) + A(z, B)L(z)y(n). 

The effect of prefiltering e (n) with a filter L( z) is identical to 
changing the noisemodelfromH(z, B) to L -l(z)H(z, B). Con­
sequently, the cost function is altered to be 

N-l 

J(N)~'~ L IaN (w;,)- G(eiW ,B)1
2 

k=O· .' 

x iU(W~)12IL(eiW)A(eiW,B)12. (21) 

However, this solution introduces other problems such as 
how to design a proper filter L(z} to cancel the effect of 
IA( eiw , B}1 2 without knowing the system parameters and extra 
signal processing time. Besides that, the cost function still has 
the weighting by the input spectrum IU(W~ W. In some cases, 
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C(z,n) I r(/) 

Ca(z) 

Fig. 4. Prefiltering configuration. Fig. 5. Postfiltering configuration. 

this could result in a bad estimation in the frequency range of t = impulse 

interest. 

C. Direct Adaptive Command Shaping 0 

In the direct adaptive command shaping approach, we di­
rectly estimate the coefficients of the desired command shaper 
Gd(Z) without seeking any information about the system 
parameters. As mentioned before, even without knowing the 
system parameters, we can fix the time-delay Td or A of 
command shaper to cancel a given elastic mode. Although 
the number of impulses and the time delay could vary during 
the direct adaptive approach, in this paper we have fixed the 
number of impulses (three for a single elastic mode) and the 
time delay during the adaptation. With fixed time delay and 
the unity gain constraint, only two coefficients are left to be 
adapted for a single mode vibration cancellation. The adaptive 
command shaper C (i, n) has the structure of the OATF shown 
in (9) with variable coefficients to be adapted. 

where 2::";0 Ci = 1 (unity gain constraint). 
Now, let us think about the proper configuration for the adap­

tive filtering algorithm. 
The configuration shown in Fig. 4 is perhaps the most 

straightforward configuration. However, with this configu­
ration we cannot use recursive least squares (RLS) or other 
high-speed adaptive processes based on the linear regressor 
model which allows the use of powerful linear techniques. To 
be able to use such linear techniques in the adaptive filtering, 
we need to have an prediction error defined by the difference 
between the output of desired filter and the output of the actual 
filter instead of the outputs of the plant. Alternatively, the plant 
and the feedforward shaper are commuted (interchanged in 
order in the block diagram) with the assumption of linearity 
so that the error c( n) is directly available from the adaptive 
shaper output as shown in Fig. 5. If the command shaper 
and the flexible system are linear, the shaper generated by 
the postfiltering configuration will also be optimal for the· 
prefiltering configuration. In the post filtering configuration 
of Fig. 5, the adapted command shaper C(z,n) is copied to 
G(z, n) which actually reshapes the command that goes into 
the flexible manipulator system G c/ (z). In the postfiltering 
configuration, the ARX model of the desired command shaper 
output, Ydf (n) is represented as 

Yfd(n) = Gd(z)y(n) + e(n). . (23) 

Single impulse response 

- 1 st impulse response 
- - 2nd impulse response 
•••• 3rd impulse response 
_ Resultant response 

Three-term command shaped 
single impulse response 

Fig. 6. Elastic response with a three-tenn command shaper for an impulse 
input. 

Fig. 7. Simplified flexible gantry robot model used in simulation. 

and its predictor can be expressed as 

Yfd(n) = Yf(n) = C(z, e)y(n) = eT(n)'ljJ(n) (24) 

whereeT(n) = [co(n) cl(n) c2(n)] and'ljJT(n) = [y(n) y(n­
A) y(n -c::. 2A)JT which is measurable. Comparing this system 
with (10), we get 

G(z, e) = C(z, e), H(z, e) = 1. (25) 

Then the cost function using the quadratic norm of the error c( n) 
is expressed as 

N-l 

J(N) -;:::, ~ L IGd(eiw ) - C(eiw , e)1 2 1Y (wt) 12. (26) 
k=O 

Notice that the cost function does not have the adverse 
weighting caused by the denominator dynamics of the system. 
The reason is that in the direct adaptive command shaping 
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Fig. 8. Reference input trajectory for joint. Fig. 10. Indirect adaptation simulation results with noise level II. 

Measured Tip Acceleration (SNR=125dB) Measured Tip Acceleration (SNR=125dB) 
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Fig. 9. Indirect adaptation simulation results with noise level I. Fig. II. Direct adaptation simulation results with noise level I. 

approach, we estimate the coefficients of the desired FIR filter of a lightly damped second-order system with/without the com­
that d~es not have den0n?na~or dynami~~. Therefore, ~e ~irect mand shaping in fig. 6. When the impulse input filtered by the 
adaptive cornn:~d shapm~ IS less senSItiV~ to the nOIse m t~e __ jde!ll command shaper Cd(Z) is applied to a lightly damped 
system. In addItIOn to that, m the cost functIOn, the plant output second-order system there is a nonzero transient response be­
spectrum IY.(W~) 12 effectively. weights .the frequency range tween time 0 and 2i (command shaper length) that cannot be 
whe~e the :IbratIOn of the fl~xIble manIpulator output y(n) decided without knowing the elastic system and the command 
pefSl~ts. This favor~ble result IS cause~ by the ~se of the post- shapero However, after 2.6. the resultant vibration in the residual 
fi~tenng. con~guratIOn wh~re the flexIble ~ampula~or output period where the desired acceleration is zero should be zero. 
(tip motion) IS used .as the mput .to the adaptIve algonthm: . Based on this partial information about the desired response, we 

Now, let us consIder the desrred response Y!d(n) which IS utilize only the residual period for the adaptation. The residual 
. expressed as period can be identified beforehand from the readily available 

(27) reference input r ( n) and prefixed .6.. 
Among many types of adaptive algorithms based on the least 

squares cost function, we have chosen to use the RLS method, 
for its ease of analysis, effective performance, relatively fast 
convergence rate and convergence independent of input charac­
teristics. The RLS algorithm produces an asymptotically unbi­
ased estimate of optimal solution to the minimization of (12) [4 J. 

where Gcl(Z) is the transfer function of the flexible manip­
ulator system. Obviously, it is not possible to decide Y!d( n) 
without knowing Cd (z) and G cl (z ). However, there is a unique 
characteristic of Cd(Z) that allows us to decide Y!d(n) in the 
residual period. This is illustrated using the impulse response 



90 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO.1, JANUARY 2001 

Measured'Tip Acceleration (SNR=24dB I 
50 

] 
c 

0 0 

'e 
] 

-50 
a 0.5 1.5 2.5 

Time [sec] 

ACS,Coefficients (SNR=24dB) 

1-

0,5 

Or-

-0.5 
a 0.5 1.5 2.5 

Time [sec] 

Fig. 12. Direct adaptation simulation results with noise level II. 

Fig. 13. Test bed: schematic view and picture of actual system. 

In the direct adaptive command shaping approach, however, the 
standard RLS algorithm should be modified to satisfy the unit 
de gain constraint (28). 

(28) 

Finally, linearly constrained recursive least squares (LCRLS) 
to find an updated adaptive command shaper (ACS) coefficient 
vector B ('11) at each discrete time n are listed in (29)-(31). 

k(n = P(n - 1hb(n) 
) 1 + '1j;T(n)P(n - 1h')(n) 

P(n) = [P(n - 1) - k(nh,)T(n)P(n - 1)] 
P(n)h 

B(n) = hTP(n)h 

(29) 

(30) 

(31) 

where P-l(n) = L~l 'Ij)(i)'Ij)T(i) and the initial condition for 
P ('11) can be decided in the same way as in the standard RLS 
method [4]. 

Desired Displacement 
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Fig. 14. Reference trajectory used in experiment. 
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Fig. 15. Measured tip acceleration and change of ACS coefficients from 
experiment (Td = 29 ms). 

V. SIMULATION 

To verify the analytic result shown in the previous section, 
simulation has been performed and the results are compared in 
this section. For the simulation, as shown in Fig. 7, we used a 
simplified model of the gantry type robot with a flexible link 
where only one elastic mode with 20 Hz natural frequency is 
included. In this modeling, we assume that the joint perfectly 
follows the given desired displacement YjOillt (t) to get rid of 
the controller effects in the following comparisons. The transfer 
function of the model in s-domain is shown in (32) 

( ) 
_ Ytip(S) 2(wn s + w; 

Gsim S = 1T.. (.) =? ( 2 
Jomt S S- + 2 Wn S + Wn 

(32) 

where YjoiJ';t(t) and Ytip(t) represent the displacement of the 
joint and the tip of the link, respectively. A repetitive reference 
input trajectory shown in Fig. 8 is used in the simulation. To 
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FFI' of Converged ACS (Td=29ms) 
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Fig. 16. Frequency response magnitude of converged ACS from experiment (Td = 29 ms). 

match with the practical environment where the direct measure­
ment of the accelerations are readily and unobtrusively avail­
able, in the simulation, the accelerations Yjoint(t), Ytip(t) are 
used instead of the displacements for the adaptive algorithms. 
The tip acceleration represents the tip vibration just as well as 
the displacement does (except for the magnitude difference). 
To observe the response of the two adaptive approaches to the 
noise, two different levels of random zero mean measurement 
noise were used in the simulation (Noise level I: 0- 2 = 10-5 

and Noise level IT: 0-
2 = 1.0, where 0-

2 represents the power 
of noise). The sampling frequency is set to 1 kHz. In/both ap­
proaches, the coefficients of adaptive command shapers are up­
dated only at the residual period to avoid the convolution prob­
lems related to the varying command shaper coefficients [7]. 

A. Indirect Adaptive Approach 

The ARX model of the plant for the system estimation is 
chosen as 

(33) 

and the predictor can be express as 

B. Direct Adaptive Approach 

The model of a command shaper with fixed time delay of 
20 ms is shown below 

where l:7=o Ci = 1 (unity gain constraint). The predictor model 
can be expressed as 

(36) 

where, BT(n) = [co(n) Cl(n) c2(n)] and 'ljJT(n) = 
[Ytip(n) iitip(n -1) iitip(n - 2)]. The sampled acceleration of 
the tip is used for the regressor. Adaptation follows the' method 
described in the previous section. Simulation results using the 
direct approach are shown in Figs. 11 and 12. 1;ach of those 
figures has plots of the measured tip acceleration and B ( n ) . 
Agreeing with the analytical result, the simulation results show 
that the direct approach is less sensitive to the noise. 

, VI. EXPERIMENT 

Experiments using the direct adaptive command shaper have 
been performed. The flexible manipulator system we have used 
in our experiments is the gantry -type robot shown in Fig. 13. The 

yen) = B(z, n)u(n) + [1- A(z, n)]y(n) post adaptive filtering configuration has been implemented on 
= (F (n)'ljJ(n) (34) this test bed. The manipulator system has three prismatic joints . 

.. The.X1 and X2 joints constrain the motion of the horizontal 
where BT (n) = [-al(n) -a2(n)bl (n) b2(~)] and beam to be along the tracks of two linear motors in the x-direc­
'!jJT (n) = [Ytip(n - 1) Ytip (n - 2) Yjoi~t(n - 1) Yjoint(n --: 2)]. tion. The Y joint constrains the motion of the base of the vertical 
As mentioned above, the sampled accelerations are used for flexible probe to be along the linear motor that is fixed on the 
the regressor 'ljJ(n) instead of the displacement. The recursive horizontal beam, in the y-direction. A 2-kg payload is attached 
least squares method is used to update B(n), which produces at the tip of the vertical flexible probe. The displacements of the 
an asymptotically unbiased estimate of optimal solution to joints are measured with encoders. Accelerometers attached at 
the minimization of the cost function. From the updated B(n), the tip of the vertical flexible link to measure the tip vibration 
the new estimation of the natural frequency and the damping in the x and y direction. The measured tip acceleration is used 
ratio of the system is extracted. Then, these values are used to to adapt the command shaper in the experiments. 
calculate the three coefficients of the command shaper with . In this paper, we only show the experimental results related to 
,fixed time delay at 20 ms. Initially, the command shaper has the x-directional motion. The tip vibration in the-x-direction is 
a coefficient vector of [1 0 0] which'means no command to be suppressed by the adaptive command shapero The manipu­
shaping. The simulation results are listed in Figs. 9 and 10. lator has a single dominant elastic mode inthe x~direction, with 
Each of those figures has plots of the measured tip acceleration a natural frequency of 15 Hz. The two sides of the horizontal 
and B(n). beam (Xl and X2) are driven by two separate independent PD 
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)D Plot of Frequency Magnitude of ACS (M=2, Td=29ms) initiated. Fig. 16 is the magnitude plot of the frequency trans~ 
form of the converged ACS at the end .of adaptation. Fig. 17 
shows the three~dimensional plot of the frequency transform of 
B(n) and its contour map. The contour map shows the changes 
of the magnitude of the frequency transform of the ACS during 
the adaptation. Figs. 16 and 17 show the local minimum around 
the natural frequency of the elastic mode at 15 Hz. 

VII. CONCLUSION 

In this paper, we have analyze the noise effect on the per-

Frequency (Hz) 

Contour of Frequency Magnitude 

35 __ _ 

. _____ formance of two time-domain adaptive command shaping ap­
proaches (indirect, direct). The analysis shows that the direct 
approach is less sensitive to the noise. This result is supported 
by the proper simulation using four different levels of noise. Fi­
nally, experimental results verify the effectiveness of the direct 
command shaping approach. 

0.5 1.5 2 2.5 3.5 
Time(s) 

Fig. 17. Three-dimensional plot of frequency response magnitude of ACS 
from experiment and its contour (Td = 29 ms). 

controllers using a 1 kHz sample rate. While running the ex~ 
periment for the x~directional motion, the base of the vertical 
flexible probe is kept at the middle of the horizontal beam. The 
same periodic trapezoidal velocity trajectory shown in Fig. 14 is 
used as the reference input for the Xl and X2 joints. The same 
command shaper is also used for the two joints and the same 
adaptive command shaper is used for both joints. Assuming that 
we do not have knowledge about the flexible system parame~ 
ters, we have tested several time-delay values for the ACS. All 
of them showed very similar results, and only a single set of ex­
perimental results where the time-delay is set to be 29 ms are 
listed in this paper. In all these experiments, the ACS algorithm 
is turned on at the beginning of the first residual period. The 
initial value ofP(O) has been chosen to be a diagonal matrix, 
diag(po,po,po), where Po = 107 and the initial value of B(O) 
is [1/3 1/3 1/3]T. The transmission of the adapted command 
shaper coefficients of C(z, n) to C(z, n) which actually filters 
the command has been initiated after one cycle of the trajectory 
which is 3 s. After 3 s, every new ACS coefficient calculated is 
transmitted to C (z, n) at every sample time during the residual 
period. Before the transmission begins, C(z, n) is kept at unity, 
which means no command shaping. 

Fig. 15 shows the measured tip acceleration (top plot) and 
the adaptation of e(n) (bottom plot). We observe the significant 
reduction of the residual vibration down to the environmental 
noise level aft~r the transmission of the ACS coefficients are 
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