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Decentralized Control for Multichannel Active Vibration Isolation
Sang-Myeong Kim, Stephen J. Elliott, and Michael J. Brennan

Abstract—This paper describes a theoretical and experimental using this idea has recently been reported with a two-mount ac-
investigation into an active four-mount vibration isolation system, tive isolation system [9].
in which electromagnetic actuators are installed in parallel with The work presented here describes a theoretical and ex-

each of the four passive mounts placed between a three-dimen- . . S . . . .
sional piece of equipment and a vibrating base structureDecen- perimental investigation into an active four-mount vibration

tralized velocity feedback contras applied, where each actuator is isolation system in which electromagnetic actuators are in-
operatedindependentlyby feeding back the corresponding equip- stalled in parallel with each of four passive mounts placed

ment vibration velocity at the same location. Although one end hetween a three-dimensional piece of equipment and a flexible
of the actuator acts at the sensor position on the equipment, the vibrating base structureDecentralized velocity feedback

system isnot collocated because of the reactive force at the other i lied 1101, 111 h h . d
end acting on the flexible base structure, whose dynamics may be CONtrol is applied [10], [11], where each actuator is operate

strongly coupled with the mounted equipment. The investigation independentlyoy simply feeding back a signal proportional to
of this actuator installation and its practical implementation are the corresponding equipment vibration velocity at the same

the motivation of this research. Isolation of low-frequency vibra- |ocation. Although one end of each actuator is collocated with
tion is considered where the equipment can be modeled as a rigid each sensor on the equipment, the systempiscollocated in

body and the mounts as lumped-parameter springs and dampers. o
A general theoretical formulation for analysing multiple-mount vi- the sense of [6], [7] because of the additional noncollocated

bration isolation systems using the impedance method is presentedreactive force at the other end acting on the flexible base
and is used to investigate the control mechanisms involved. Experi- structure which is also a part of the plant. When this is strongly

mental results show that up to 14 dB reduction in the kinetic energy - coupled with the mounted equipment, the passivity property
of the equipment can be achieved in practice. If very high gains are [6], [7] of collocated control is not strictly applicable. This
used in the experiments, however, instability occurs at low frequen- e | fi DU . dinth ith
cies due to phase shifts in the transducer conditioning electronics. Practical configuration is investigated in the current paper, wit
o . ) _ particular emphasis being paid to the control mechanisms and
Index Terms—Active isolation, decentralized control, velocity - giapijity. The impedance method [12] is used for the mechanical
feedback, vibration control. ’ . . . .. .
analysis of both passive and active vibration isolation systems.
Isolation of low-frequency vibration is considered where the
[. INTRODUCTION equipment can be modeled as a rigid body and the mounts as

NTIVIBRATION mounts (also called isolators) are often!umpe(_j parametgr springs and dampers. The simple decentral-
A used to protect delicate pieces of equipment from the \}‘z_ed direct velocity feedback control system presented here

bration of the structure that they are attached to. With convefU!d b€ applied to the active vibration isolation of delicate

tional passive mounts, however, there is a tradeoff between IggfiuiPment, such as the instrument boxes in aeroplanes and

and high-frequency isolation performance, which depends e;copes.in satellites, etc. hani ¢ velocity f K
the damping in the mounts [1]. Thus, it is useful to introduce The basic concepts and mechanisms of velocity feedbac

additional vibration sources that can actively reduce vibratié?r‘?mro_I using th_e struc_tural-borne a(_:tuat_or are d'S_CUSSEd in Sec-
transmission through the mounts at all frequencies [2], [3]. afion I |n|t|all_y W|th a single-mount vibration isolation system. _
though such active isolators may be constructed by feeding bdd}€ @nalysis is extended to a general four-mount system in
all the state variables, as commonly seen in active suspensi tion 11, and experiment results are reported in Section IV.
systems [4], [5], a simpler method may be to use direct outpﬁ?tential causes of instability in practical implementations are
feedback control using the velocity responses of the structt§P discussed, before the paper is concluded in Section V.

to be isolated. When force actuators are placed in parallel with
the isolators and they are collocated with the sensors then if the
base structure behaves as a rigid body, the multichannel decen-
tralized control system constructed by linking each collocated Consider a single mount isolation system where a piece of
pair is passive and hence asymptotically stable [6], [7]. In thigyuipment is connected to a flexible base structure via a single
case, the control gains used can be analogously transformeghtsunt. If the mount is assumed to be massless, the whole system
virtual mechanical skyhook dampers [8]. An experimental stu@an be represented in terms of mechanical impedances as shown
in Fig. 1(a) wherez., Z,,,, and Z, denote the impedances of

. . _ the equipment, mount, and base, respectively. The base struc-
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? Note that, because of tl{e, 1) term representing the influence

Equipment{ Ze of the reactive forcg acting on _the base, the imped{ance matrix
of the complete active system is nonsymmetric. This nonsym-

metric term means that the stability of the system can not be

I
7 assessed by simply using the definiteness property (positive or
Mount { E’ZI f‘c

negative) of the impedance matrix as in collocated control [6],
[7]. In addition, the mechanical analogy of a skyhook damper

= -?-'Vb [8] is no longer a correct interpretation, as far as the dynamics
Base Zh £ of the complete coupled system is concerned. Here, the active
P system is temporarily assumed to be stable to investigating the

control mechanisms involved, so that the resporsesw; } ¥

@ can be obtained simply by inverting the system impedance ma-

trix.
i. "_b> The transmissipility is often used as a measure of control per-
| Generalised formance, which is given by [8]
fe Plant Ve Ve _ T ' @
U e+ Ly + H
Equation (7) suggests that, as far as the relative vibration of the
equipment to the base /v, is concerned, rather than or v,
-H N alone, the feedback control system acts like a skyhook damper.
Note that the base impedance does not appear in (7). Transmis-
() sibility is a good performance measure for a mounted equip-

Fig. 1. (a) Impedence diagram and (b) block diagram of a single moupient that is weakly coupled to the base [12]. If strongly cou-
vibration isolation system. pled, however, the base velocity changes after the attachment
of the mounted equipment and also after the feedback controller
the mount. Itis convenient to interpret the mechanical systemiasmplemented.
a coupled one connecting the mounted equipment and the baséthe feedback gain used is very large so tHat> |Z.+ Z,,,|
structure, where the mounted equipment is the combinationinf(7), the transmissibility is greatly improved, i.&,~ 0. The
the equipment and the mount. The impedance diagram can aeatrol force in this case becomes
be represented as a block diagram as shown in Fig. 1(b) where
the generalized plant has three inputs and two outputs. Jeo B —Zmuy,. ®)
I th? total fqrce acting through the mount J5., then the For an infinite gain this is theerfect control forcdor a hypo-
dynamic equations of the mounted equipment can be written [y .
! thetical feedforward controller given perfect knowledgeZaf
the frequency domain as : :
andwy. If the control forcef., is applied, (6) becomes

ZeVe = fm (1) e =0, w=rY,fp 9)

frn :fc+Zrn(Ub _Ue) (2) i . . .
whereY;, = 1/7,. With perfect control of equipment vibration

and the dynamics of the base structure can be described by the base would behave as if no mounted equipment were
attached, showing that the control force pamcouplesthe

Zyvy = fp — fm- (3) mounted equipment from the base. In practice this can only be
achieved approximately.
The system can also be represented in a matrix form as We now examine stability of the single mount system shown

as a generalized block diagram in Fig. 1(b). By inverting the
Ze + Zm, —Zm } {ve } { e (4) passive impedance matrix in (4), the equipment velocity is
=14 .

_Zrn Zb + Z'rn Up - fC
Ve = G(Jw)fc + de (10)
When direct velocity feedback control is applied, the control
force is given by where the frequency response of the plé@fjw) is given by
. 1
fo=—Hu. 5) Gljw) = 5 (11)

o Zet Zm+ ZmYyZe

whereH is restricted here to be a positive control gain. Incorpemnd the disturbance & = YoZmfpo/(Ze + Zm + Zn Yo Ze)
rating (5) into (4) gives the active system written in a compaii whichY; = 1/Z,. If velocity feedback control is applied so

matrix form as that f. = — Hw,, then the equipment velocity is
Ze + Zrn + H _Zrn Ve 0 de
= . 6 - e
_(Zrn + H) Zb + Zrn:| { (% } { fp } ( ) Ve 1 —|— G(}w)H (12)
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which is the typical form for a disturbance rejection problem. Me

Similarly, the base velocity after feedback can be obtained as
e

e+ Zyn+H de
=— . 13
’ 1 + G(JUJ)H an ( ) mm

The control system ianconditionally stablevith respect to the v

control gainH if the plant responsé&(jw) does not cross the — )
negative real axis, i.e.,

) ) Fig. 2. One DOF equipment structure mounted on a flexible structure.
Re(G(jw)) 20 or 90° < Z/G(jw) <90°  (14)

[ll. ACTIVE VIBRATION |SOLATION OF A MULTIPLE-MOUNT

at all frequencies. HerBe(-) denotes the real part. Because of
SYSTEM

the passivity of the impedances of mechanical elements, i.e.,
Re(Z.) > 0 andRe(Z,,) > 0, the condition in (14) is de- Extending the single mount system to a four-mount system
termined by the third term of the denominafdy, Z.Y, in (11). with a three-dimensional (3-D) piece of rigid equipment results

Thus the required stability condition can be rewritten as in the system as shown in Fig. 3. The impedance approach de-
scribed in the previous section can also be applied to this general
Re(Z,,Z.Y,) > 0. (15) case but with some care because of the difference between the

numbers of mounts (four) and DOFs of the equipment structure
The equipment structure is now modeled as a free-free flgvhich is now assumed to move as a rigid body and so has only
ible beam of total mass:. and lengthL that is installed on three DOFs). The coordinate transformations between the phys-
an arbitrary flexible base structure via a mount modeled adcal coordinates at the mounting points and modal coordinates
single spring of impedancs,, = k,,/jw as shown in Fig. 2. are given by
If we ignore all the flexible modes higher than the first, the
equipment impedance is given %, = jwm.a(w), where ve =Qa, a=Rv, (17, 18)
alw) = (W2 —w?)/(W2 — (1 + ¢?)w?) is a nondimensional

e

a _ - A 3 T B . . .
variable [13]. Herev, is the first angular natural frequency ofVheréa = {w ¢ ¢} is the modal velocity vector consisting
the flexible beam ang? is the squared value of the first modeOf the derivatives of heave, pitch, and roll motions at the mass

" pal )
shape function at the mount poitt/2. For simplicity, damping CEN€ @nde = {ve1 Vez ve3 vea}” IS the velocity vector at
in the equipment and the mountis ignored. Itis important to no_tl'(l.‘e mounting points. Since (17) |§rove11detTerm|ned, the pseudo-
that at low frequencies whete< \/w2/(1 + ¢2), a(w)ispos- Nverse ofQ is give byR = (Q*Q)~"Q" [14], [15]. The

itive so that the equipment impedance is mass-like and beha9¥§amic, equations can be dgscriped in a similar way to those
as a rigid body. Equation (15) in this case becomes for the single moqnt system given in (1)—(3). By extending (4),
the system equations can be written as

Re(mekma(w)Y,) > 0. (16) Zo 4+ Zon —QTZ,, a g
o) -{afe)

_ZmQ Zb + Zm up P~ fc

Since the real part of the base mobillty is always nonnega-

tive, (16) is satisfied forw < /w2/1+ ¢2. If the equipment where the modal impedance matrix of the equipmerfiis=

is completely rigid, i.e.o(w) = 1 so thatZ. = jwm,, (16) jwJ,inwhichJ, isthe diagonal inertia matrix of the equipment
becomesn.ky, - Re(Y;) > 0 and is valid at all frequencies. whose diagonal terms are the mass of the equipménand

In this case, the Nyquist locus looks similar to the mobility ofhe moment of inertia quantities to pitch and roll motiafas

a single degree of freedom (DOF) vibration system, and is @nd1,,. The bar notation is introduced to signify a matrix in the
ways in the right half of the complex plane. If a small amourthodal rather than the physical coordinates of the equipment.
of damping is included in the mount, the original locus shiftg,  is a (4 x 4) diagonal matrix whose diagonal terms are the
in the clockwise direction, but still approaches the origin as th@pedances of each mout, is the control force vectof, =
frequency increases without crossing the negative real axis. AR, f.o fez fea}?,dp = Zi, Yipfp in which Z, and Yy,
important conclusion from this analysis is that the system is ugire the impedance and mobility matrices of the uncoupled base
conditionally stable with respect to the control gain regardlesgucture.

of whether the actuator installation is grounded or not, providedThe generalized control force vectorgs = QTf., and
the equipment is rigid and is supported upon a massless mo@)t, = QTZ,,,Q is the modal mount impedance matrix which
It should be emphasized that no assumption has made abouighfie transformed form of the physical matfy, to the equip-
base dynamics to draw this conclusion. Under these idealiz@@nt modal domain [14], [15]. When velocity feedback control
conditions, the active isolation system shown in Fig. 1d@®- with the control gain matri is applied, i.e.f. = —Hv,,
cation control-likebehavior (unconditionally stable and perfectising the propertieg, = QTf,, andv, = Qa gives the trans-
controllability) and its plant showdriving point mobility-like formed gain matrix as

behavior (no crossover of the negative real axis of the Nyquist

plot). H=QTHQ. (20)
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Fig. 3. A 3-D rigid equipment structure supported upon four mounts.

Again the controllers are restricted to be frequency independémpedances of each mount are the saffig, for a symmetric
constants. The complete dynamics of the active system can requipment structure, thefa,, becomes diagonal. If we further
be written as assume that the four gains of each controller are the s&me,
Ze+Zm+H -QTZ, a 0 the (3x 3) matri_x in the(1,1) term of (21) giving the equ_ip—
(Zo+H)IQ T + Zm} {ub} = {d } (21) ment dynamlcs_ in modal coordblnates also become; a diagonal
matrix whose diagonal terms afe M + 4(Z,,, + H), jwJs +
Equation (21) is a compact description of the four-mount activiéZ, + H)lz andjw.Jy + 4(Z,, + H)IZ. Herel, is the dis-
vibration isolation system in terms of impedances. Note thist@nce between the mass centre of the equipment and the mount
also a simple extension of the form given for the single mouiit pitch motion, and,; in roll motion can be similarly defined.
system in (6). If the perfect control force vectpy, = —Z,,vi, Note, as in the single mount case, the control ddirs simply
is applied, it uncouples the mounted equipment from the vadded to the mount impedan£g, in all three modal motions.
brating base structure so that the active system becomes dn@kthe statically balanced symmetric structure shown in Fig. 3,
ilar to (9). The solution of (21) can be obtained by inverting théecentralized control using the same gaieguidecentralized
impedance matrix, provided the system is stable. The kinetic @®ntrol) thus results in a modal controller, which equally damps
ergy for the 3-D equipment structure can be conveniently el modes équimodal contrgl Each of the four gains acts like

P

ployed as a performance measure, and is given by a skyhook damper, as far as the relative equipment vibrations
are concerned as discussed in Section Il. The analysis can now

E, = laHJea. (22) be extended to the general case of a nonsymmetric equipment

2 structure, but whose installation is again assumed to be statically

Consider a simplified control system where four separate singl#lanced as is preferred in practice [1], in which case equimodal
channel control systems are used by connecting each collocatedtrol can again be achieved by making the modal control gain
pair of the actuators and sensors, instead of a general fomatrix H diagonal, and similar t&,,,.

channel control system with a fully populated gain maix We now examine stability of the decentralized control system.
This is termeddecentralized contro]10], [11] where each of The following analysis for stability is very similar to that for the
the four actuators is controlléddependentipy feeding back single mount case. The multichannel plant denote@ggv) is

the corresponding equipment vibration velocity response at thew a (4x 4) matrix satisfyingv. = G(jw)f,,. This matrix is
same location. In this case the control gain makibecomes nonsymmetric in general due to the nonsymmetric installation
diagonal. We investigate the active system shown in (21) whehthe mounted equipment on the base, and can be obtained by
this simplified control strategy is applied. If the system showsolving (19) withd, = 0 and using the transformation relation
in Fig. 3 is assumed to be statically balanced, which means th€17). Stability of the multichannel system can be determined
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from the open-loop frequency response function matrix written When the system is over-determined as in the four-mount
asL(jw) = G(jw)H. The generalized Nyquist criterion statesystem in Fig. 3, there is a redundant passive mount and a re-
that the closed-loop system is stable if and only if none of tltkindant active force. It is thus no longer possible to apply the
eigenvalue loci of.(jw) should encircle thé—1,0) point in  convenient transforme, = Qb andb = Ry, for the base re-

the complex plane [10]. More specifically for equidecentralizesbonses. The analytical plant matrix expression may still be ob-
control, i.e.,H = HI, thenL(jw) = HG(jw), and none of tained from using (19), but becomes very complex in this case.
the eigenvalue loci o&x(jw) should encircle thé—1, 0) point  Its analytical proof is thus not given but instead some supporting
for stability, and none of the eigenvalue loci should cross tlsmulation and experimental results are reported in the next sec-
negative real axis for unconditional stability. Since one of th@on.
responses in is linearly dependent on the others and thus one
of the eigenvalues is zero, it is convenient to judge the criterion

) ’ IV. EXPERIMENTAL IMPLEMENTATION
in the transformed coordinates

A. Control Performances

cig(RG(jw)Q) (23) Decentralized direct velocity control was experimentally
) . implemented with a statically balanced symmetric four-mount
whereeig(-) denotes the eigenvalues.

. i . system similar to that shown in Fig. 3. The experimental setup
Now we examine a particular case when the coordinate trarg

i . A . .~ %18 shown in Fig. 4(a) where a symmetrical aluminum block
formations are fully determined, i.&) in (17) is square and in- 300 x 160 x 20mm) representing the equipment is installed
vertible, such as the two mount system with a two-dimension top of a free-free-clamped-clamped steel base plate of
equipment and the three mount system with a three-dimensio 0 x 500 x 2mm) via four identical mounts, each of stiffness
equipment. In this case, analysis of the stability condition givgn = _ 4.2 x 10* N/m and damping,, = 25.6 l\is/m To realize
in (23) is greatly simplified. The transform matrix in (18) is nov%’é clamped-clamped boundary g(;nditions two opposite sides

. A i t
can be w_ntten aR = Q7 ar_ld the same coordln_ate transof the base plate were bolted on stiff frames. The large shaker
form relations can also be applied to the base velocity vector

X §derneath the plate acted as the primary force actuator, and the
lvb t: tham?bt; Rvy, v;/r?erelb 'f’ thet t.ra.nsfc.)rmetc)i base V€four small electromagnetic actuators fixed on the thick equip-
ocity vector. In this case the plant matrix s given by ment plate were the control actuators at each mount position.

. - > 5 o 7 \— The equipment to be isolated was thus a combined structure
G(jw) = Q(Ze + Zm + Zm Y1 Ze)'QT 24 : :
(jw) = Q(Ze + + bZe)” Q (24) of the four actuators and the aluminum block, of thickness 20

whereY), = Z;', in which the transformed base impedanc@‘vaWhoSe inertial vaIue52weMS = 6.232 kg, I = 0.0685

is Zp = QTZ,Q. Note that this is also a simple extensiok9M lo = 0.0162 kgnr. Fig. 4(b) shows the structure

of the form for the single mount system in (11). Again a rigi(‘}’f de_centrahzed control fc_)r a sm_gle channel. Each actuator
equipment and massless mounts are assumed together wit/¥fe fixed on top of the thick equipment plate at each mount
statically balanced installation of a symmetric equipment. Nof@cation, and a stinger was connected between the actuator and
however, no assumption has made on the base dynamics. thggmount foot through the hole of the cylllndrlcal mount, wr_nch
similar way to the single mount case given in (14), a satisfactof§fS made from natural rubber. The equipment acceleration at

condition for unconditional stability using (23) can be written a§'€ mounting point,. was measured and passed through an
integrator to obtain the velocity responsg which was then

Re(eig((Ze + Zm + Zm YbZeo) 1)) > 0 (25) fed back to the actuator via a power amplifier with gain control.
The integrator was contained in a commercial charge amplifier

at all frequencies. Her&., and Z,,, are diagonal, and’,, (B&K type 2635) which also had high- and low-pass filter
is symmetric but nondiagonal. The condition can be detarodules. The highpass filter cutoff frequency was set to be 1
mined by examiningeig(Ze + Zm + ZmYpZe). Because Hz to avoid DC signal overflow, and the low-pass filter cutoff
of passivity, therRe(eig(Z,)) > 0 andRe(eig(Z,,)) > 0, frequency was set to be 1 kHz to filter out any measurement of
and the stability of the system is determined by the last terfexible modes within the equipment structure. Only isolation
eig(Zm YpZe), Where Re(eig(Yy)) > 0 again due to the of low-frequency vibration under 200 Hz was considered, so
passivity. If we assume that there is no damping in the mountisat the equipment structure could be modeled as a rigid body
then the diagonal matrixZ,,Z. has elements which areand each mount as a parallel connection of spring and
positive real and similar to that for the single mount systerdampere,,, as shown in Fig. 3.
Thus Re(eig(ZmYbZe)) > 0, and consequently the real To measure the plant response, the actuator input voltage
eigenvalues of the plant in (25) become nonnegative at &ll, in Fig. 4(b) was used as the input signal instead of the
frequencies so thadte(eig(RG(jw)Q)) > 0. As in the case input force because the input voltage at low frequencies is
of the single mount system, damping in the mounts does ragiproximately proportional to the force input [16]. The mea-
threaten the unconditional stability. However, if the equipmestired plant responses were used to construct the complete plant
structure is flexible within the frequency range of interest, thematrix G(jw) in (24). Stability was assessed by applying the
Re(eig(ZmZ.)) is no longer positive. Thus the decentralizedeneralized Nyquist criterion as discussed earlier. The resulting
control system is only unconditionally stable, provided theigenvalue loci are shown in Fig. 5(a), (b) for the theoretical
equipment behaves as a rigid body and the mounts actasmsl experimental models, respectively. The solid line denotes
springs and dampers. the locus of the heave mode, and dashed and dotted lines
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Fig. 4. (a) Experimental arrangement in which an aluminum block, to which : : : : : :
the secondary actuators are attached, is supported on a steel plate by four activ. =08~ Py Y 003 ™ T ot oor
mounts and the steel plate can be vibrated with a large shaker. (b) The structure Real
of a single active mount. ()

Fig. 5. (a) Predicted and (b) measured Eigenvalue loci of the plant on the
denote the loci of the pitch and roll modes, respectively. Thiexible base structure; heave (solid), pitch (dashed), and roll (dotted).

experimental loci in Fig. 5(b) are very similar to the theoretical
ones in Fig. 5(a), but it is difficult to judge whether or not theyines) correspond to gains of 110, 320, and 1000. Higher gains
really cross the negative real axis near the origin, especiallycatuld not be applied to the experimental plant because an in-
frequencies less than 5 Hz, where the data was of low coherestability occurred at about 1 Hz, which was due to the cutoff
due to the low sensitivity of the actuators and sensors uséequency of the high-pass filter used in conjunction with the
Zooming into the origin of the simulation plot showed thaintegrator. The reason for the instability was found to be phase
none of the eigenvalue loci cross the negative real axis, whichaidvances at very low frequencies in the commercial power am-
evidence that the redundancy of one actuator in the four-mouatifier and integrator, which is discussed in more detail in the
system does not threaten stability. Although not shown hergxt section. Close inspection of the frequency range below 5
the use of three actuators was also examined both theoreticéllyin Fig. 6(b) reveals that the velocity with active control ex-
and experimentally and showed a similar result [13]. ceeds the uncontrolled value. However, the experimental results
The four-channel decentralized control system whose singlbove 5 Hz agree well with the simulations shown in Fig. 6(a).
channel structure is shown in Fig. 4(b) was then tested. The c@ince the theoretical model implicitly assumes that the power
trol performance was measured with four equal gdins the amplifier and the integrator are ideal, it is unconditionally stable
power amplifiers and compared with simulations. The equige that the results of using the higher gains of 3350 and 10 000
ment velocity at the mounting points was measured and thare also shown in Fig. 6(a). It can be seen that, as the gain in-
transformed to modal responses using (18) to calculate the tasdases, the total energy is reduced over the whole frequency
kinetic energies in (22), which was used to quantify the comange in the simulations, without any amplification. The con-
trol performance. The total kinetic energy calculated from theol performance of both the simulations and the experiments
simulation model and measured in the experiment is showndre tabulated in Table | according to the gain values used. The
Fig. 6(a) and (b), respectively. In Fig. 6, the response befogainsH were transformed to skyhook damping ratios calculated
control is shown with solid lines and those after control afeased on the heave mode. The passive damping ratios of each
shown with dashed lines. The highest response (solid line)nmwde were about 5%. The total kinetic energy of the experi-
the total kinetic energy before control, and the others (dashe@ntal equipment was calculated from 5 Hz upwards to avoid
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TABLE |
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COMPARISON OF THECONTROL PERFORMANCES WHERE ¢,,, = 25.6 Ns/ms b

THE DAMPING VALUE OF THE PASSIVE MOUNTS

Gains Overall reduction(dB)
Absolute | Skyhook Skyhook
Value, H | Damping | Damping Ratio Theory Experiment
110 43 % ¢y 0.215 -73 -7.1
320 12.5 % ¢y 0.626 -109 -9.9
1000 39.1 x ¢ 1.955 -15.0 -14.0
3350 130.9 x ¢y 6.548 -18.2
10000 | 390.6x cn 19.546 -20.9
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Fig. 6. (a) Predicted and (b) measured total kinetic energies of the equipment
structure with various feedback gairf§; without control (solid) and with
control (dashed). (dB re£10—1° J)
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accounting for the amplification region. Both simulation and ex-
periment results show a kinetic energy reduction of more than
14 dB for a feedback gain 1000. /
In order to explore the control mechanisms discussed above, i *
base velocity was also calculated and measured during control
The simulation and experimental results are shown in Fig. 7(a)
and (b), respectively. As the gain increases, the original base |, . . . .
response (solid line) approaches the uncoupled base respons ° * “ * %
(dotted line), that is the base response without the mounted (b)
equipment attached. The dQShed lines correspond to the bas ir.e-. (a) Predicted and (b) measured base response at the bottom of mount
sponses for each control gain. These results clearly demonstigt@ various feedback gairg ; without control but coupled (solid), uncoupled
that the active isolation system tends to uncouple the mountéelted), and with control (dashed).
equipment from the base structure.

10

L L " s L
100 120 140 160 180
Frequency ( Hz )

200

9(° at very low frequencies can cause the eigenvalue loci to
cross the negative real axis, and thus make the system unstable
The cause of the instability in the experimental plant wase a high gain. Such phase advances, which were not accounted
found to be phase advances in the power amplifier and the inter in the simulations, were the cause of the instability in the
grator [13]. The commercial amplifier had a phase advance apperiment.
to about 90 at very low frequencies (under 5 Hz). Furthermore, The experimental plant can also be potentially unstable at
an additional phase advance occurred in the commercial chavgey high frequencies due to both electrical and mechanical
amplifier used for integration. A phase advance of greater theauses. Use of an electrical low-pass filter incorporated inside

B. Causes of Instability in the Practical System

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on July 1, 2009 at 09:16 from IEEE Xplore. Restrictions apply.



100

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 1, JANUARY 2001

the signal conditioner causes an effective time delay on the conAlthough the performance of the control system could be im-
trol loop, which can make the system unstable at very high frproved by implementing a fully coupled feedback system and by
guencies [13]. Furthermore, the phase shift in the electromagsing a frequency dependent controller, the decentralized con-
netic actuators can also be modeled as an additional time detl@y system with constant feedback gains is very simple to im-
[16]. In the experimental plant considered, the equivalent delggiement and performs well in this application. It also has the
were measured to be approximately 0.2 ms for the filter and 0.@dvantage that very few assumptions have to be made about the
ms for the actuator, but the magnitude of the plant response ligghamics of the system under control, and so the stability and
fallen off sufficiently at frequencies where these delays causpdrformance of the control system is very robust to the kind of

significant phase shift that the stability was not compromisedhanges which may occur in these dynamics under operating
The system can also be unstable due to mechanical causes, garditions.

ticularly when the flexible modes of the equipment becomes im-
portant and when the mass of the mounts becomes significant.
In the experimental plant, the first flexible mode of the equip-
ment plate was at about 1240 Hz, and the first longitudinal model!!
of the rubber mount was at about 500 Hz [13], which were both
well above the frequencies at which good active performance2]
would be expected in this application. 3]

V. CONCLUSION [4]

This paper has investigated both theoretically and experi-
mentally a four-mount active vibration isolation system where 5]
electromagnetic actuators are installed in parallel with each
of four mounts placed between a piece of equipment ande]
a vibrating base structure. Decentralized velocity feedbackm
control was used to actively achieve low-frequency vibration
isolation. [8]

A general formulation using the impedance approach was[g]
presented to analyze passive and active multiple isolation sys*
tems. This facilitated both an understanding the physics of vif10]
bration isolation and investigations into the control mechanisma 1
involved. It was demonstrated that the decentralized velocity
feedback controller tends to uncouple the mounted equipmennt?2]
from the base structure. It was shown that the system is uncon-
ditionally stable with respect to the control gain provided that[13]
the equipment is rigid and the mass effect of the mounts is neg-
ligible. Experimental results show that up to 14 dB reduction in
the kinetic energy of the equipment can be achieved in practicél.“]
When very high gains were used, however, instability was eng5]
countered in the experimental rig at about 1 Hz due to undesir-

. ) [16]
able phase advances of over thaf BiXhe electrical equipment
used.

REFERENCES

C. E. Crede and J. E. Ruzicka, “Theory of vibration isolation,Simock
and Vibration HandbookC. M. Harris, Ed. New York: McGraw-Hill,
1996, ch. 30.

L. Meirovitch, Dynamics and Control of Structures New York: Wiley,
1990.

C. R. Fuller, S. J. Elliott, and P. A. NelsoActive Control of Vibra-
tion. New York: Academic, 1996.

D. Hrovat and M. Hubbard, “Optimal vehicle suspensions minimizing
RMS rattlespace, sprung-mass acceleration and jerkPyn. Syst.,
Measurement, Contwol. 103, pp. 228-236, 1981.

A. Hac, “Stochastic optimal control of vehicles with elastic body and
active suspensionJ. Dyn. Syst., Measurement, Control. 108, pp.
106-110, 1986.

M. J. Balas, “Direct velocity feedback control of large space structures,”
J. Guidance Contrvol. 2, pp. 252-253, 1979.

S. M. Joshi, “Robustness properties of collocated controllers for flexible
spacecraft,’J. Guidance Contrvol. 9, pp. 85-91, 1986.

D. Karnopp, M. J. Croshy, and R. A. Harwood, “Vibration control using
the semiactive force generatord,”Eng. Ind, pp. 619-626, 1974.

M. Serrand, “Active Isolation of Base Vibration,” M.Sc. thesis, Univ.
Southampton, 1998.

S. Skogestad and |. Postlethwaitdultivariable Feedback Control;
Analysis and Desigrwiley, 1996.

M. Morari and E. ZafiriouRobust Process Control Englewood Cliffs,

NJ: Prentice-Hall, 1989.

S. M. Kim and M. J. Brennan, “A compact matrix formulation using the
impedance and mobility approach for the analysis of structural-acoustic
systems,’J. Sound Vibr.no. 223, pp. 97-113, 1999.

S. M. Kim, S. J. Elliott, and M. J. Brennan, “Active vibration isolation
of a 3-D structure using velocity feedback control,”, ISVR Tech. Memo.
845, 1999.

B. Noble and J. W. DanieApplied Linear Algebra Englewood Cliffs,

NJ: Prentice-Hall, 1988.

F. B. Hilderbrand,Methods of Applied Mathematics Englewood
Cliffs, NJ: Prentice-Hall, 1965.

M. Z. Ren, K. Seto, and F. Doi, “Feedback structural-borne sound con-
trol of a flexible plate with an electromagnetic actuator: The phase lag
problem,”J. Sound Vibr.vol. 205, pp. 57-80, 1997.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on July 1, 2009 at 09:16 from IEEE Xplore. Restrictions apply.



