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Friction Generated Limit Cycles

Henrik Olsson and Karl Johan Astrém

Abstract—This paper treats limit cycles caused by friction. Il. FRICTION GENERATED OSCILLATIONS

The goal has been to explain phenomena that have been observed . . _— A
experimentally in mechatronic systems. Experiments have shown N this section we will give some examples of oscillations that

that oscillations of qualitatively different types can be obtained are generated by friction. Stick-slip motion is a common phe-
simply by changing controller specifications. Stiction is important nomena that occurs in slow motion. It can easily be generated in
e e Conlore o the laboratory by connecing a mass 103 spring which s pullec
cve ) . . . - . .
fgr local s?ability of the limit cycles are also pregented. The results W'th constant velocity. Stick S"p ISa Jerky motlon cqmposed of
give insight into phenomena observed experimentally. periods where the surfaces stick and slide. A similar phenom-
enon can be observed when controlling the position of a sliding

mass with a Pl controller.

To get some insight into how oscillations are generated we
|. INTRODUCTION will consider the case when there is only one interface where

RICTION is present in all control systems involving me_there is friction. Such a system can be modeled as an intercon-

. ' . nelction of a linear system and a nonlinear system describing
chanical motion and it may cause large steady-state contfol . ; L ;
riction. The linear system has the friction force as the input

errors and oscillations. Intuitively oscillations are generated % . .
L . . . d velocity and possibly the external force as outputs and the
a combination of friction which counteracts motion and so

instability mechanism. In stick-slip motion the mechanismni}s%dion model has the velocity and possibly the extemal force
Y ' P ascinputs and the friction force as the output. See Fig. 1. The

caused by the desired motion which increases the energy Stqrr? ion interface has an associated relative velocityelative

in the friction interface. The controller or the process ma alsoC
' P y positionz, friction force I, and external force. The equation

Index Terms—Friction, limit cycle, relay oscillation, stability.

be unstable. of motion is given by
This paper was written in order to explain some phenomena
that was observed experimentally in [1]. Friction generated d’z dv
limit cycles can be divided into two categories, namely limit Moy =mo =u—1r @)

cycles with and without sticking. Friction is a very complicateqyq 1 qtion at the friction interface has thus only one degree of
phenomena. Many models of widely different complexity havﬁeedom The friction model we use is

been developed to describe friction phenomena. A review of a

number of models that are appropriate for analysis of control Fesgn(v) ifv#0

systems are described in [2]. To make the analysis tractable F=qu if v =0and|u| < Fs 2
we will consider the situation when there is only one interface Fgssgn(u) otherwise.

where friction occurs. The system can then be described\gScoys friction can be included in the process model and is
an interconnection of a linear system and a nonlinear systgfefore omitted. The model suffices to analyze most limit cy-
representing the friction. A particularly simple case is Coulomeg qualitatively. In the case of Coulomb friction the friction
friction where the friction model is a static nonlinearity Of, e is a function only of the velocity as is indicated in Fig. 1(a).
relay type. This can well describe limit cycles without stickingy, 5 system with stiction the friction force also depends on the
where the velocity is zero only at isolated time instants. I arnal forcey as shown in Fig. 1(b).
this case limit cycles can be explained with the theory of pegeribing function analysis [6] is a simple approximate
relay oscillations [3]-[5]. For oscillations where sticking i$pethod that can be applied to systems of the type shown in
?mportan_t it is necessary to generalize this ana_ly;is. This PaREy. 1(a). [3] has made an exact analysis which is a natural
is organized as follows. Friction generated limit cycles argension of describing function analysis. The only difference
discussed and illustrated by an example in Section II. Theory;to 4t the describing function is replaced by another curve
compute and analyze them are given in Section Ill. The theokyjieq the Tsypkin locus. In this way it is possible to obtain
is applied to the example in Section IV. Finally, conclusions afg,cessary conditions for a limit cycle for the case when friction
given in Section V. only depends on velocity.
Neither describing functions analysis nor Tsypkin's exten-
sion is appropriate when there is sticking because the velocity is
Manuscript received March 6, 1998; revised January 14, 2000. Manuscipdrg for intervals of finite lengths. In this case there may be limit
received in final form February 5, 2001. Recommended by Associate Editor K. . . . .
Kozlowski. This work was supported in part by the Swedish Research Coung)(CIeS of a different nature. Two S|mple cases are illustrated in
for Engineering Sciences (TFR) Contract 95-759. Fig. 2. The upper curve represents an oscillation around a de-
H. Olsson is with the TAC AB, Malmd, Sweden. _ sired equilibrium and the velocity changes sign. This type of
K. J. Astrém is with the Department of Automatic Control, Lund Institute o[imit cycle which typically occurs in position control with in-

Technology, Lund, Sweden (e-mail: kja@control.lth.se). ’ : UK
Publisher Item Identifier S 1063-6536(01)04929-6. tegral action is called an odd oscillation. The lower curve rep-

1063-6536/01$10.00 ©2001 IEEE



630 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 4, JULY 2001

F v w1 _ w9y
— Friction #1—p2
U
_________ _Nonlinear 4
— Linear \
Cz Y
ms

Fig. 3. A schematic picture of the flexible servo.
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Flg 1. Describing function analysis where onIy friction is considered in thﬂg 4. Simulation of the flexible servo fm: 10. No limit Cyc|e occurs for
nonlinear block. this design.
v A. An Example
f\ Before proceeding with the analysis we will consider a partic-
“h R U t ular example in more detail. This example is a simulated model
1 2 = which was developed in order to reproduce experiments in [1].
The simulation model described faithfully reproduces the exper-
v imental findings. A servo consisting of a motor, a flexible shaft
and a load is shown in Fig. 3. The angular velocity of the motor
/\ /\ is denotedv; and the velocity of the load-.
t We will use numerical values for a system used in the control

T . . 3
laboratory, see [12]. The moments of inertia dre= 2.2-107°

Fig.2. The characteristics of the velocity for friction limit cycles with stickingand.J = 6.0 - 10—, the viscous damping coefficients ate=
The upper curve show_s an odd (bidirectional) limit cycle and the lower curve an 19> andd, = 3 - 1075’ andk = 4 - 10~ % is the stiffness of
even (unidirectianal) limit cycle. the shaft. The friction is given by (2) withs = F- = 5- 10~
and wherey corresponds te, x to ¢, andm to J;. We assume

resents another type of oscillation where the motion is unidhat there is friction only on the motor side. The objective is to
rectional. This type of limit cycle is called an even oscillationcontrol the velocity on the load side, i.e:;. The only avail-
Stick-slip motion is a typical example. able measurement is the velocity of the magor= &, w;. The

More complicated oscillations where there are several periosisstem can be controlled with state feedback and integral ac-
of sticking and slipping with different durations have also beeion using an observer. The controller gains are chosen to get
observed, see [7]. The analysis in this paper is limited to tiiee desired closed-loop poles which are placed in a Butterworth
types shown in Fig. 2. patterns. The design is specified by the varighlehich deter-

There is also a possibility to distinguish between limit cyclesines the radius of the Butterworth patterns. The characteristic
that requireF's > F and those that exist also féfs = F=. polynomial is given by(s* + ps + p?)-(s% + 2pcos(r/9)s +
Stick-slip motion requires thats > F while the limit cycle p?)(s® + 2(2p)s? + 2(2p)%s + (20)3).
in the example below exists also whép = Fc. The behavior of the system changes drastically with the de-

There are dynamic friction models that are more complicateiyn parametes. Simulations of the responses of the system for
than the simple models with Coulomb friction and stiction, sep, = 10,11,12, and15 are shown in Figs. 4—7. The diagrams
e.g., [2]. The simple friction model can, however, explain thehowy, = k w2, 41 = kw1, F and the signal which is de-
limit cycles observed experimentally as discussed in [1] afided byw = —k(p; — ¢2) — diw; + u., Wherew,. is the torque
[8]-[11]. generated by the controller. The reference velocity,.is= 1
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Fig. 5. Simulation of the flexible servo fgr= 11. A limit cycle with periods
of sticking occurs.
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Fig. 8. Close-ups of the oscillatory behavior of the flexible servo for different
values of the design parameterForp = 10 there is no limit cycle. Ifp = 11

we get a limit cycle that includes periods of sticking. fpoe= 12 and 5 the
velocity is zero only for single time instants.

zero att = 4. Various limit cycles are then initiated. The mea-
suremenyy; of the velocity for9 < ¢ < 10 are shown in Fig. 8.
The behavior obtained in the different cases can be summarized
as follows:

For p = 10, the motion of the motor stops soon aftet 4.
The velocity of the load is then a decaying oscillation. There are
no limit cycles.

With p = 11, a limit cycle with small amplitude is slowly

Fig. 6. Simulation of the flexible servo fosg = 12. The limit cycle is a pyilt up aftert = 4. Fig. 8 reveals that motion stops completely

pure relay oscillation with no sticking, i.e., the friction force switches instant!

between the levels-F-.
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Fig. 7. Simulation of the flexible servo fgr = 15. The limit cycle is a pure

Xiuring parts of the limit cycle period.

If p = 12, the limit cycle becomes an oscillation where the
friction force switches instantly between the levelg-. The
external force at the times when the velocity becomes zero is
sufficiently large to overcome the stiction. The acceleration is,
however, quite small immediately after the zero crossings.

Whenp = 15, the shape of the velocity;, = k,w; is almost
sinusoidal. In this case, the external force is much larger than
the friction at the times when the velocity is zero.

The behavior of the flexible servo is thus very different for
the different values of the design parameieThe mechanism
which sustains the oscillation is the controller which is unstable
for p = 11,2, and5 but not forp = 10, in which case no limit
cycle was observed.

Il. ANALYSIS

In this section we develop an analysis method that permits
exact calculation of the shape and the stability of limit cycles

relay oscillation, i.e., the friction force switches instantly between the leveWith sticking as described in the previous sections. The problem

+Fc. The velocityy, = k.w; is almost sinusoidal.

is similar to analysis of limit cycles in systems with relay feed-
back. The tools developed for that problem in [5] are now gener-

betweert = 0.5 and¢ = 4 and zero otherwise. The controlleralized to give necessary conditions for oscillations with sticking.
works properly in all cases until the reference is brought back e conditions will then be applied to the example. The idea is
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to assume that there is an oscillation and investigate the condi-

tions that must hold for limit cycles with sticking. /\

The technique applies to general linear systems where fric- ._N_.\\J :
tion occurs at a single interface where the motion at the friction hy hp
interface is given by (1) The complete system can be written in T

the following form:

u
% =A{ + B(u — F) + By, E K/\ A/
v =Cu€ _E \/\/ t

U = — Lug (3) s

where L, is the feedback from measured and estimated statég 9. Velocity and control signal for an odd limit cycle.
and the state vector partitioned as

In the time intervalh; < ¢t < hy; + ho the motion is con-

v
= |z (4) strained by the static friction force, which cancels the signal
7 see (2), such that the velocity is retained at zero and the position
where at some constant value. The equation governing this motion is
o hence

x position;
v velocity at the friction interface; d¢
7 includes all other states of the system, i.e., both con- @ AL+ Bryr Q)

troller and process states.

The corresponding partitions of the system matrices are ~ With the boundary condition

0 0 0 1 —L,&(hy + hy) = —Fs.
A= 1 0 0 B=1]0
| A Ape Apy B, The condition|L,£(t)| < Fs must also hold for; < ¢ <
) h1+ho; otherwise motion would be initiated befare= Ay +ho.
B =| o0 C,=[1 0 0---0]. (5) For an odd limit cycle we also require theth; + h2) = —£(0)
B because of the symmetry. Necessary conditions for a limit cycle
L=y

) ) can now be given. The next theorem states conditions in terms of
Since the complete state vectancludes both process and cony,  andp, that are necessary for the existence of limit cycles of
troller states, the signal contains both control (or actuaton)ihe type shown in the upper curve of Fig. 2. Candidate values of
forces and forces from the process itself. The referencs 5, andp, can be found by solving a nonlinear equation system.
assumed to be constant and the friction model is given by (2)fyo further constraints on the system soluti¢() must also

A. Odd Limit Cycles hold. A procedure for applying the theory is given later. We first,

however, need to define the following variables:
We start by investigating odd limit cycles. Fig. 9 shows the

principal behavior of the velocity and the external forcer an A.=A—-BL, & =¢*M & =¢tn
odd limit cycle. The velocity is zero at the beginning of the pe- h1 A h1 A

riodic solution. The signal temporarily overcomes the friction L. :/ e”*?dsB  T'ep = / e™**dsB,
force att = 0 and motion begins. It continues until time= h oh2 0

when the velocity becomes zero. At this point motion stops and r, :/ e dsB,.

the velocity then remains zero until the signakxceeds the 0

static friction force again. This time motion starts in the oppQqote thatd . T.. T... are functions of; and thatb andT", are
site direction. A complete period consists of four phases, tWgnctions ofhs.

periods of sliding and two of sticking. By symmetry it is Suf- Theorem 1: Consider the system (3) and friction force (2).

ficient to study half a period. Between= 0 andt = h; the  aggume that there exists an odd periodic solution with period
velocity is positive and the motion is given by T = 2(hy + hy) and that the matri{ + ®®, is nonsingular.

dé Assume further that the motion is unconstrained in the interval
dt =(A = BLu)§ — Blc + Bry, 0 < t < hy, but that the friction force keeps the velocity at zero
v =C,¢. (6) intheintervalk; < t < h; + ho as in Fig. 9. The following

The following boundary conditions hold: nonlinear equations then hold:

Co£(0) = Cut(hy) = 0. Fi(hasho) =01 + @.8) !

Furthermore it must be required that&(¢) > 0foro < t < (el - Filjc + Leryr) =0 ®)
k.. If this condition is not fulfilled, the velocity becomes zero ~ f2(h1,h2) = = Lu(I + @®.)
beforet = h;. (=L Fe + Oy + yr) = —Fs. (9)
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The solution{(¢) must satisfy Remark 3: Note that if/ + ®®. is nonsingular thed 4 ¢ . ¢
is also nonsingular. The assumption on regularity is necessary
u(t) =Cué(t) >0 for0 <t < (10)  when solving (14) and (15). The condition is trivially fulfilled

|u(t)| =|L.E(t)| < Fs forhy <t <hy+hy. (11) ifboth A andA. are stable matrices as in [13]. However, when,

as in our example, integrators are involved, there may be more

than one solution if the condition is not satisfied. For the desired
t t solution, the velocity is zero at botht = i, andt = hy + ho,

&(t) = e'a — / et =*)dsBFc +/ e*)dsB,y,  and the position: att = h; + ho equals that at = &;.

The state vectof(t) is for0 < ¢t < hy given by

0 0
and forh; <t < hy + hy by B. Reduction of Velocity and Position Equations
t—hy In order to overcome the problem indicated in Remark 3 of
£t) = CA“(t”Ll)bJr/ 2 dsB,y, Theorem 1, it is necessary to include the constra{t) =
M v(h1) = 0in the solution procedure. For problems where also
where the position is part of the state we must in the same manner
. include z(h;) = —x(0). Insertingv(0) = wv(hy) = 0 and
a=—(I+0P) (=PLFc + leryr +Lryr) x(hy) = —2(0) in the (14) and (15) and using the knowledge
b=(1+ @.2) " (—=@L\yr — TeFo + Do) of the structure of4, B, andB,, as seen in (5), we get

The periodic solution is obtained with the initial condition 0 Py Pove Peu 0
_-/L'(O) = (Pcac'v (Pcacac (Pcam -/L'(O)

¢0) = a=—(I+90.) " (~OLFe+ 0Ly + L) (12)

n(hl) (I)cn'v (I)cnac (I)cnn 77(0)
and further the state at tindg is given b Pew | | Fo+1Tem
g y - Fcac Fcrac Yr (16)
Eh)=b=(I+3.0) Y =0Ty —T.Fe+T9,). (13) Lo Cern
Proof: Integrating the system (6) during the slipping 0 B 1 0 0 0 0
phase with the initial conditio§(0) = a gives —2(0) | =1 k2 10 —x(0) |+ 0 | v
_77(0) (1)77'1; (I)nac (1)1777 77(’7’1) Frn
§(h1) = @ea =Tl + Loy (14) a7
Attime h, the velocity should be zero, i.e(h;) = C,£(hy) = The matrices have been partitioned according to the system

0. The constrained motion with zero velocity then continuegiructure. There are thus two sets of equations with the single
until time ¢ = h; + h> when the external force overcomes th€onstraint
friction force. Integrating (7) we get 0

E(hy 4+ ha) = PE(h1) + Ty = —€(0) = —a (15) —2(0) | = —Fs

—(0)
since the periodic solution is odd. Solving the equations yields . . . :
the initial condition (12). The conditions i) = 0 andu(hs + Which corresponds to (9) in Theorem 1. The velocity constraint

_ ; : . w(hy) = C,&(hy) =0, 1.e., (8), has been included in the equa-
?ﬁgt_( t;is Oa][greoqtiv?lin;to é\?d?n(ci)ﬁgl Ilt;s fgjrrt}t]e!iqilreii'ons. The first two equations of (17) are trivially fulfilled and

v . . L u o L= the first two equations of (16) can be seen as new constraints on
hy + hs, which gives (10) and (11).

Remark 1: Conditions (8) and (10) imply that the derivative:ir:;\sligorc%)agg dth(ehp)o Sét;?;].el\lv?htehrassfgtﬂgt}gr?cl;]ztc?t)r: ((afg)a i
of the velocity att = h{ is negative, i.e, K )y y q

and (17). Notice that if € R" thenn € R*—2. The unknowns,
dv, _ 1(0) andn(h,) are functions of the three variablgs, /., and

%(hl ) = C,,-(Acb — BIc + Bryr) =C,z<0 x(O), ie.,
an? qond:tions (i) anc}il(_l_l) imply_that_the derivative ofthe con-  5(hy) =®..,,2(0) + D), 7(0) — Lery Fo + Loy
trol signal att = hy + h3 is negative, i.e, —1(0) = — ®,,2(0) + ©p(h1) + Lyt (18)
%(hl +hy) = —L,(—Aa+ B.y,) = —L,w < 0. The new constraints on velocity, position, and control signal are
given by

This is also clear from Fig. 9. If these conditions are not satis-
fied, then (10) and (11) cannot be fulfilled. Pevat(0) + Pevn(0) = Lev L + Lervyr =0
Remark 2: The analysis has to be modified slightly to deal ~ Pee2®(0) + Peayn(0) — LeaFc + Lerar = — 2(0)
with even periodic solutions, see Fig. 2. For this case we have 0
L, =—Fs. (19)

§(hy + ha) = £(0) andu(hy + ha) = —Lyu&(hy + h2) = Fs :iggg

which causes some sign changes in the conditions for a periodar the reduced problem we have the following result, where
solution in Theorem 1. This case is discussed in detail in [8].is used to denote-z(0).
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Theorem 2: Assume an odd periodic solution exists with pe-
riodT" = 2(h1 + ho) and thatl + ®,,,,®..,,,, is nonsingular. The

following equations then hold:

fl(h17 h27 6) :(I)cvace + (I)C'vnaFC'vFC + Fcr’u@/r =0

f2(h17 h27 6) :(I)cacace + (I)cacnarcacFC + Fc1‘wy1’ +e=0

0 a+da
fa(hi,ho,e) =L, | e | = —F5s (20)
& a
where
a :(I + (Pn'q@cn'q)_l u=—L§=FS u=—L§=—FS
X ((‘I)m; - ‘I)rmq)cnac)@ Fig. 10. The Poincaré map describes how the solution changes between the
_ _ time instants when it leaves a hyperplane givem by C, £ = 0. The two lines
+ Coplene = oyl F”"y”)' (21) are determined by = —L.§ = Fs andu = —L .6 = —F5. The figure
The initial condition is given by shows the solution when the initial state of the limit cycle is perturbed.
0 0 how the solution changes between the time instants when it
E0)=a=|z(0)| =|e (22) leaves the hyperplane given by= C,£ = 0. This occurs when
7(0) « —-L, ¢ = Fsor—L,£ = —Fs. The map is shown in Fig. 10.
The symmetry implies that it suffices to study one half of the
and the state at = h; by limit cycle for an odd limit cycle. The Jacobid#” of this map
0 0 thus covers only half a period. For a full period the Jacobian is
ghy)=b=|-z(0) | = | —e (23) given by W2, The following theorem gives the expression for
h 3 w.
() : Theorem 3: Assume that an odd periodic solution as de-
where scribed in Theorem 1 exists. The Jacobi®i of the Poincaré
. map, shown in Fig. 10, is then given by
B=(I + Peyy®yp)
— p— L'u, ~ U
X ( ((I)cnac (I)cmyq)m:)c W = <I— w ) ) <I— zC ) d.. (25)
—DUenFe — @enlinye + Lorgyr).- (24) Lyw Cyz

Furthermore, it is necessary that
v(t) = CE(t) >0 for0<t<m
and
[w(t)] = |L,E()| < Fs forhy <t < hy+ho

whereé(t) is given in Theorem 1.

Proof:. Equation (20) follows directly from (19). Equation

(21) and (24) can be obtained by solving (18).

wherez = A.b — BF¢ + By, andw = —Aa + B,y,. The
limit cycle is locally stable if and only if the matriid’ has all
its eigenvalues inside the unit circle.

Proof: Consider the trajectory resulting from the per-
turbed initial conditionz(0) = a + 6a, see Fig. 10. The
perturbation is chosen such that it satisfies the conditions

Cyla+6a)=0

and

Remark 1: It is necessary to have numerical procedures to

find the values ofh;, hy ande that satisfy (20). The partial
derivatives of these functions with respect to the three variab

are useful in this respect. These are given in [8].

Remark 2: If the positionz is not part of the state vector then

the following two conditions suffice:
Ji(ha, h2) =Pevpa — LeoFo + Lepoyr =0
folhi, ha) =L, m = Fs

with « given by (21) withe = 0.

C. Stability of the Limit Cycle

Local stability of the limit cycle can be determined by calcu-
lating the Jacobian of a Poincaré map [14]. This map describes

—Lu(a + 6@) = Fs.

LFﬁerefore, it lies on the line-L,£ = Fs in the hyperplane
C,¢ = 0. Assume that the corresponding perturbatior pfs
6hy SO that

Cug(hl + (5h1) =0.
Further
E(hy + hy) =eteMmHsh) (g 1 6q)

hi1+6hy i
_ / GAC(h1+Oh175)dSBFC
0

hi+6h
+ / CA"(hl +6h1_s)d3Bryr.
0
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Making a series expansion iz andéhy, we get

E(hy + 6hy) =B (I 4 Abhy)(a+ ba)
— ([ + Acbh)UeFe + (I + Acdhi) ey,
— BF.6hy + B,y.6hy + O(6?)
=b.a—T.F.+ Ty +P.0a
+ A(®ea —T . F. + Ty, )6hy — BF.6hy
+ By,hy + O(6%)
=b+ ®.8a + (Ab — BF, + B,y,)5hy

+ O(8%). (26)

SinceC,b = C,&(hy + 6h1) = 0, we get
Cy®.6a = —Cpz6hy + O(6?).

It follows from Remark 1 of Theorem 1 thét,z < 0, hence

C,®.

w7z

Shy = — Sa + O(8?).

Inserting this in (26) gives

E(hi +6h1)=0b+ <I— ZC"

vz

) d.6a + O(8%).

The perturbation at time= h; + 6h is thus given by

§b = <I - ;O> ®,8a + O(8?).

v z

In the same way we can study how the perturbatibrof &

Remark: The matrixW has two eigenvalues at the origin.
One comes from({ — 2C,/C,2) ®. with right eigenvector
®-1~. This removes any perturbation in the velocity at time
hy + 6hy caused by, i.e., it makes sure that &&= hy + 6hy
we are on the hyperplane indicated in Fig. 10. The second
zero eigenvalue originates frofd — wL, /L, w)® with left
eigenvectorL,. It annihilates any remaining perturbation in
n(h1), i.e., in the subsystem that is free to move during sticking
and implies that at = hy + 6h1 + ho + 6hs We are on the line
on the hyperplane as indicated in Fig. 10.

D. Analysis of a Given System

Tools for analyzing a given system have been given. The pro-
cedure to determine if a system may have an odd stable periodic
solution, as seen in Fig. 2, which is caused by friction of the type
(2) is simply:

Step 1) Findhy, he and e such thatfi(hy, ho,e) = 0,

f2(h1,h2,e) = 0and f3(hi, ha,e) = —Fs.

Step 2) Compute, b, z, w, andW and check thaf’, > < 0,

—L,w < 0and|A(W)| < 1.

Step 3) Check the condition&,&(t) > 0for0 < t < Iy

and|L,&(t)| < Fsforhy <t < hy + ho.

Complete procedures have now been given for the exact anal-
ysis of friction generated limit cycles of the type shown in the
upper curve of Fig. 2. In the next section they are applied to the
example in Section II-A.

IV. APPLICATION TO SERVO SYSTEM

The results from the previous section will now be applied
to the servo example in Section I. The tools have been imple-
mented in Matlab, where the zeros of the functions are found

affects the solution at the end of the half period, i.e., at tirr’rés‘ing a Newton-Raphson method.

hi + 6h1 + ho + 6ho. We get

E(hy + 6hy + hy + hy) =cAh2F0h2) (4 4 6D)

ho+d6ho i
+ / eA(h2+Oh275)dSBTyT'
0

A series expansion gives

£(h1 +6h1 + ho + (5h2) =—a+ oo
+ (—Aa + Byy,)6hs + O(6%).

Further, itholdsthak,,a = —L,£(h1+6h1+hot+She) = —Fs
and from Remark 1 of Theorem 1 we know thal,w < O,
which gives

L,®

bhy = —"—6b+ O(8%).

W

Finally,

wl,

E(h1 + 6h1 + ho + 6ho) = —a + <I—
Lyw

) b+ O(6?).

The flexible servo in Section | showed different limit cycles
depending on the design parameger

For p = 10, the simulations showed no limit cycle. Accord-
ingly, a numerical solution foky, h2, ande failed which con-
firms the simulations.

An odd limit cycle with sticking occured when simulating
the flexible servo fop = 11. A numerical solution giveg; =
0.1357, ho = 0.0465, ande = —0.002 81. The magnitude of the
largest eigenvalue of the Jacobidhis 0.618. The limit cycle is
thus stable and with moderate convergence rate. The derivatives
of the velocity and the control signal has the correct sign attimes
t = hy andt = hy + ho, respectively. Fig. 11 shows a simulated
period using initial conditions corresponding to the limit cycle.

The oscillation forp = 12 is of relay type and can, therefore,
be analyzed with the tools in [5]. A numerical solution gives
h = 0.157, which is half the period. The largest eigenvalue of
the JacobiamV” has magnitude 0.573, which assures stability. A
simulation of one period with initial conditions corresponding
to the limit cycle is shown in Fig. 12.

If pisincreased to five, the oscillation in the velocity becomes
more sinusoidal. Half the period is given by= 0.127 and the
largest eigenvalue of the Jacobian has magnitude 0.5054. The
convergence to the limit cycle is thus faster with larger values

The Jacobian of the Poincaré map in Fig. 10 is hence given tiyp. Fig. 13 shows the velocity and the control signal for one

(25) which proves the theorem. |

period.



636 IEEE TR,

Y1
0.05
-0.05
T T T
0 0.1 0.2 03
Time
110w, F
0 \J\ /_l/
"1‘10_3 T T T
0 0.1 0.2 0.3
Time
Fig. 11. Simulation of the periodic solution for the flexible servo whes:

11. The initial conditions are determined numerically using the implement
tools.
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Fig. 12. Simulation of the periodic solution for the flexible servo whes:
12. The initial conditions are determined numerically using the implement
tools.
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Fig. 13. Simulation of the periodic solution for the flexible servo whes:

15. The initial conditions are determined numerically according to the procedure

for relay oscillations.
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The procedure developed has thus demonstrated its ability to
analyze friction generated limit cycles. The example has shown
that in particular for limit cycles with large periods of sticking
they give a much more accurate prediction than decribing func-
tion analysis would do.

V. CONCLUSION

We have in this paper discussed limit cycles generated by fric-
tion. An example has demonstrated oscillations that may occur
and also different natures of the limit cycles. The oscillations
have been characterized. It is necessary to distinguish between
Jimit cycles with and without periods of sticking. If sticking
does not occur, the limit cycles are equivalent to pure relay os-
cillations and can be analyzed as such. The tools available for
relay oscillations have then been extended to limit cycles with
sticking. The tools are suitable for numerical determination of
possible limit cycles. The example has been analyzed using the
derived numerical methods.
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