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The Charisma

project records

individual read and

write requests in live,

multiprogramming,

parallel workloads.

This information
can be used to

design more efficient

multiprocessor

systems.

any scientific applications have intense computational

an_i UO requirements. Although multiprocessors have
permitted astounding increases in computational per-

formance, the formidable UO needs of these applica-
tions cannot be met by current multiprocessors and

their I/O subsystems. To prevent UO subsystems from forever bottle-

necking multiprocessors and limiting the range of feasible applications,

new I/O subsystems must be designed.

The successful design of computer systems (both hardware and software)

depends on a thorough understanding of their intended use. A system's

designer optimizes the policies and mechanisms for the cases expected to be

most common in the user's workload. In the case of multiprocessor file

systems, however, designers have been forced to build file systems based

only on speculation about how they would be used, extrapolating from

file-system characterizations of general-purpose workloads on uniproces-

sot and distributed systems or scientific workloads on vector supercom-

puters (see sidebar on related work). To help these system designers, in

June 1993 we began the Charisma project, so named because the project

sought to characterize I/0 in scientific multiprocessor applications from a vari-
ety of production parallel computing platforms and sites.

The Charisma project is unique in recording individual read and write

requests4n live, multiprogrammmg, parallel workloads (rather than from

selected or nonparallel applications). In this article, we present the first

results from the project: a characterization of the file-system workload on

an iPSC/860 multiprocessor running production, parallel scientific appli-
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The iPSC/860 and CFS

The iPSC/860 is a distributed-memory,

message-passing, MIMD machine.

The compute nodes are based on the

Intel i860 processor and are connected

by a hypercube network. I/O is handled

by dedicated I/O nodes, which are each

connected to a single compute node

rather than directly to the hypercube
interconnect. The I./O nodes are based

on the Intel i386 processor and each is

connected to a single SCSI disk drive.

There may also be one or more service

nodes that handle such things as Ether-
net connections or interactive shells.

The iPSC/860 at NASA Aanes has

128 compute nodes, each with 8

Mbytes of memory, and I0 I/'O nodes,

each with 4 Mb}rtes of memory and a

single 760 Mbyte disk drive. There is

also a single service node that handles

a 10-Mbit-per-second Ethernet con-

nection to the host computer. The

total I/O capacity is 7.6 Gbytes and the

total bandwidth is less than 10 Mbvtes

per second.

Intel's CFS stripes each file across all

disks in 4-Kbyte blocks. Compute

nodes send requests directly to the

appropriate I/O node for service. Only

the I/O nodes have a buffer c-ache. CFS

provides four L/O modes to help the pro-

grammer coordinate parallel access.

Mode 0 gives each process its own file

pointer; mode 1 shares a single file

pointer among all processes; mode 2 is

like mode 1, but entbrces a round-

robin ordering of accesses across all

nodes; and mode 3 is like mode 2, but

restricts the access sizes to be identical.

More details about CFS and its perfor-

mance can be found in work by Pierce, t

Nitzberg, 2 and French et al)
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cations at NASA's Ames Research Center. We use the

resulting information to address the following questions:

• What did the job mix look like -- that is, how many

jobs ran concurrently? How many processors did

each use? How many files?

• How many files were read and written? Which were

temporary files? What were their sizes?

• What were typical read and write request sizes, and

how were they spaced in the file? Were the accesses

sequential? In what way?

• What forms of locality were there? How might

caching be useful?

• What are the implications for file-system design?

Methods

To be useful to a system designer, a workload charac-
terization must be based on a realistic workload similar

to what is expected of it in the future. This meant that we

had to trace a multiprocessor file system that was in use
for pr0ducti0n scientific computing. The Intel iPSC/860
at NASA Ames' Numerical Aerodynamics Simulation
(NAS) facility met this criterion (see sidebar). (The facil-

ity's three newer multiprocessors, an Intel Paragon, a
Thinking Machines CaVI-5, and an IBM SP-2, do not yet
have a mature production workload.)

Ideally, a workload characterization is an architec-

ture-independent representation of the work generated

by a group of users in a particular type of computing
environment. However, since the architectures of dif-

ferent parallel I/O subsystems are so diverse, any

observed workload will be tied to a particular machine.

While we have tried to factor out these effects as much

as possible, some care should be taken in generalizing
our results.

DATA COLLECTION

For our study, one trace file was collected for the entire

file system. We traced only the UO that involved the

Concurrent File System (CFS); we did not record any

I/O that was done through standard input and otttput

or to the host file system (all limited to sequential,

Ethernet speeds). We collected data for about 156 hours

over a period of three weeks. While we did not trace

continuously for the whole three weeks, we tried t,) get

a realistic picture of the whole workload by tracing at

different times of the day and of the week, including

nights and weekends. The period covered by a single

trace file ranges from 30 minutes to 22 hours. The

longest continuously traced period was about 62.5

hours. Tracing was usually initiated when the machine

was idle. For those few cases in which a job was rurtmng

when we began tracing, the job was not traced. Tracing

was stopped in one of two ways: manually or by a system

crash. The machine was usually idle when a trace was

manually stopped.

The trace files begin with a header record containing

enough information to make the file self-descriptive, and

continue with a series of event records (one per event).

These events include individual read and write requests,

as well as operations like file extensions and deletions.
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Related work

There has never been an extensive study

of a production scientific workload on a

multiprocessor file system. Related file-

system workload studies can be classi-

fied as characterizing general-purpose

workstations (or workstation networks),

scientific vector applications, or scien-

dfic parallel applications.

General-purpose workstations. Uni-

processor file access patterns have been

measured many times. Ousterhout et

al. measured isolated Unix worksta-

tions, 1 and Baker et al. measured a dis-

tributed Unix (Sprite) system." All of

these studies cover general-purpose

(engineering and office) workloads

with uniprocessor applications.

Scientific vector applications. Some

studies specifically examined scientific

workloads. Del Rosario and Choud-

hary provide an informal characteriza-

tion of grand-challenge applications)

Miller and Katz traced specific I/O-

intensive (;ray applications to deter-

mine the per-file access patterns, focus-

ing primarily on access rates. 4 Pasquale

and Polyzos studied I/O-intensive Cray

applications, focusing on patterns in

the I/O rate. 5 All of these studies are

limited to uniprocess applications on

vector supercomputers.

Scientific parallel applications. Reddy

et al. chose five sequential scientific

applications from the Perfect bench-

marks and parallelized them for an

eight-processor Alliant, finding only

sequential file-access patterns. 6 This

study is interesting, but far from what

we need: the sample size is small; the

programs are parallelized sequential

programs, not parallel programs perse;

and the I/O itself was not parallelized.

Cypher et al. studied individual paral-

lel scientific applications, measuring

temporal patterns in I/O rates. 7
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Since one of the Charisma project's goals is to organize

and facilitate a multiplafform file-system tracing effort,

we have defined a large set of event records suitable for

both single- and multiple-instruction multiple-data sys-

tems (SIMD and MIMD systems).

On the iPSC/860, high-level CFS calls are imple-

mented in a library, that is linked with the user's pro-

gram. We instrumented the library calls to generate an

event record each time they were called. The event

records were buffered at each compute node and peri-

odically sent to a data collector running on the service

node. The collector then wrote the data to the central

trace file (itself on CFS). The collector's use of CFS was

not recorded in the trace.

Since our instrumentation was almost entirely within

a user-level library, there were some jobs whose file

accesses were not traced. These included most system

programs (such as Is, cp, and ftp) as well as user programs

that were not relinked during the period we were trac-

ing. We did, however, record all job starts and ends

through a separate mechanism. While we were tracing,

3016 jobs were nm on the compute nodes, of which 223 7

were only run on a single node. We actually traced at

least 429 of the 779 multinode jobs and at least 41 of the

single-node jobs. As a tremendous number of the single-
node jobs were system programs, it is not surprising nor
necessarily undesirable that so many were untraced. In

particular, there was one single-node job that was run
periodically and that accounted for over 800 of the sin-

gle-node jobs, simply to check the status of the machine.

There was no way to distinguish between a job that was

untraced from a job that simply did no CFS I/O, so the

numbers of traced jobs are a lower bound.

One of our primary concerns was to minimize the

degree that our measurement perturbed the workload.

We identified three ways that it might do so. Our first

concern was network contention. We expected users'

jobs to generate a great many event records. Had we

sent a message to the data collector for each event

record, we would have created unreasonable congestion

near the collector, or perhaps in the overall machine.

Since large messages on the iPSC are broken into 4-

Kbyte blocks, we created a buffer of that size on each

node to hold local event records. This buffer let us

reduce the number of messages sent by more than 90%

without stealing much memory from user jobs.

The second concern was local CFS overhead. Since we

were tracing every I/O operation in a production envi-
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Table 1, Summarystatisticsof the traceswe
collected,and of files opened.2Only those jobs
whosefile accesseswere caught by our library

are included here.

Jobs 470

Mbytes Read 38,812
Written 44,725

Files Opened 63,779 100%
Read 14,540 22.8%

Written 44,500 69.8%
Both 2259 3.5%
Neither 2480 3.9%
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Figure 1. Amount of time the machine spent with the
given number of jobs running. Thisdata includesall
jobs,even if their file accesscould not be traced.

ronment, it was imperative that the per-call overhead be

kept to a minimum to avoid inconveniencing the users. By
buffering records on the compute nodes, we were able to

avoid the cost of message passing on every call to CFS.
Our final concern was that we might increase con-

tention for the I/O subsystem. We tried to minimize this
by creating a large buffer for the data collector and writ-

ing the data to CFS in large sequential blocks. Although
we collected about 700 Mbytes of data, our trace files
accounted for less than 1% of the total traffic.

Simple benchmarking of the instrumented library
revealed that the overhead our instrumentation added

was virtually undetectable in many cases. The worst case
we found was a 7% increase in execution time on one

run of the NAS NHT-1 Application-//O Benchmark. l

After the instrumented library was put into production
use, anecdotal evidence suggests that there was no
noticeable performance loss.

ANALYSIS

The raw trace files required some simple postprocess-
ing before they could be easily analyzed. This postpro-
cessing included data realignment, clock synchroniza-
tion, and chronological sorting.

Since each node buffered 4 Kbytes of data before
sending it to the central data collector, the raw trace file

contained only a partially ordered list of event records.

Ordering the records was complicated by the lad,: of
synchronized clocks on the iPSC/860. Each node main-

tains its own clock; the clocks are synchronized at sys-
tem startup but each drifts significandy and differer_dy
after that. We partially compensated for the asynchrony
by timestamping each block of records when it left _e
node and again when it was received at the data collec-
tor. From the difference between the two we coald

approximately adjust the event order to compensate for
each node's clock drift relative to the collector's clock.

This technique allowed us to get a closer approximation
of the event order. Nonetheless, it is still an approxi-

marion, so much of our analysis is based on spat al,
rather than temporal, information.

Results

We characterize the workload from the top down, begin-
ning with the number of jobs in the machine and the
number and use of files by all jobs. We then examine in:li-

vidual I/O requests by looking for sequentiality, regnlar-
ity, and sharing in the access pattern. Finally, we evaiu-
ate the effect on caching through trace-driven simulation.

JOBS

Table 1 provides an overview of this workload's char-

acteristics. Figure 1 gives an initial look into the details
behind Table 1 by showing the amount of time the

machine spent running a given number of jobs. For
more than a quarter of the traced period, the machine
was idle (that is, running zero jobs). For about 35% of

the time, it was running more than one job, sometimes

as many as eight. Although not all jobs use the file s3_s-
tem, a file system dearly must provide high-performance
access by many concurrent, presumably unrelated, jobs.
While uniprocessor file systems are tuned for this situ-

ation, most research into multiprocessor file systems has
ignored this issue, focusing on optimizing single-job
performance.

Of course, some of the jobs in Figure I were small,
single-node jobs, and some were large parallel jobs. Fig-
ure 2 shows the distribution of compute nodes used by
each job. Single-node jobs dominated the job popula-

tion, although large parallel jobs dominated node usage.
This dichotomy would be larger in new "self-hosting"
parallel systems. The lesson here is that a successful file

system must allow both small, sequential jobs and large,
highly parallel jobs access to the same files under a vari-
ety of conditions and system loads.
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FILES

In Table 1, files are classified by how they were actually

used rather than by the mode in which they were

opened. Note that many more files were written than
were read (more than three times as many). It appears

that programmers of traced applications often found it

easier to open a separate output file for each compute

node, rather than coordinating writes to a common out-

put file -- as evidenced bv the substantially smaller aver-

age number of bytes written per file (1.2 Mbytes) than

average bytes read per file (3.3 Mbytes). Also, there were
extremely few files that were read and written in the

same open. This is common in Unix file systems 3 and

may be accentuated here by the difficulty in coordinat-

ing concurrent reads and writes to the same file (the CFS
file-access modes are of little help for read-write access).

We suspect that most of the files that were not accessed

at all were opened by applications that terminated pre-

maturely.
Table 2 shows that most jobs opened only a few files

over the course of their execution, although a few

opened many (one job opened 2217 files). Some of the

jobs that opened a large number of files were opening

one file per node. Although not all files were open con-

currently, file-system designers must optimize access to

several files within the same job.

We found that only 0.61% of all opens were to "tem-

porary" files (a file deleted bv the same job that created

it), and nearly all of those may have been from one appli-

cation. The rarity of temporary files and of files that
were both read and written in the same open indicates

that few applications chose to use files as an extension of

memory, for an "out of core" solution. Many of the

NASA Ames applications are computational fluid

dynamics codes, for which out-of-core methods are in

general too slow.

Figure 3 shows that most of the files accessed were

large (10 Kbytes to 1 Mbyte). (Because there were many

small files and many distinct peaks across the range of

sizes, there was no constant granularity, that captured

the detail we felt was important in a histogram. We

chose to plot the file sizes on a logarithmic scale with

pseudo-logarithmic bucket sizes: The bucket size
between 10 and 100 bytes is 10 bytes; between i00 and

1000 it is 100 bytes, and so on.)

It is important to note that each of the largest jumps

in the figure is primarily due to one or two applications;

undue emphasis should not be placed on the specific

numbers as opposed to the general tendency toward

larger files. Although these files were larger than those

100
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*, 40
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1 2 4 8 16 32 64 128

Number of computenodes

Figure 2. Distribution of the number of compute
nodes used by jobs in our workload (even those whose
file access could not be traced). The iPSC limits the
choice to powers of 2.

Table 2. Among traced jobs, the number of files
opened by jobs was often small (1-4).

No.OFn_s No.OFJOBS

1 71
2 15
3 24
4 120
5+ 240

0.8

"5 0.6

0

0.4
ii

0.2

10 1 o7
Filesize (bytes)

Figure 3. Cumulative distribution function (CDF) of the
number of files of each size at close. For a file size x,
CDF(x) represents the fraction of all files that had x or
fewer bytes.

in a general-purpose file system, 4 theywere smaller than

we would expect to see in a scientific supercomputing

environment. 5 We suspect that users limited their file

sizes due to the small disk capacity (7.2 Gbytes) and lim-

ited disk bandwidth (10 Mbytes per second peak).

I/O REQUF_T SIZES

Figures 4 and 5 show that the vast majority of reads are

small, but that most bytes are transferred through large
reads. Indeed, 96.1% of all reads were for fewer than

4000 bytes, but those reads transferred only 2.0% of all

data read. Similarly, 89.4% of all writes were for fewer
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Figure 4. CDF of the number of reads by request size
and of the amount of data transferred by request size.
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Figure 5. CDF of the number of writes by request ._ize
and of the amount of data transferred by request size.

than 4000 bytes, but those writes transferred only 3 % of

all data written. The number of small requests is sur-

prising due to their poor performance in CFS. 6 The

jump at 4 Kbytes indicates that some users have opti-

mized for the file-system block size, but it appears that

most users prefer ease of programming over perfor-
mance.

The figures show spikes in the number of small

requests as well as in the data transferred by f-Mbyte

requests. While the spikes of small requests occurred

throughout the tracing period, one trace alone (proba-

bly one job alone) contributed the spike at I Mbyte.

Although the specific position of the spikes is likely due

to the effect of individual applications, we believe that

the preponderance of small request sizes is the natural

result of parallelization by distributing file data across

many processors, and would be found in other work-

loads using a similar file-system interface.

SEQUEN'rIAIXFY

A common characteristic of file workloads, particularly

scientific workloads, is that files are accessed sequen-
tially. We define a sequential request to be one that is at

a higher file offset than the previous request from the

same compute node, and a consecutive request to be a

sequential request that begins where the previous

request ended. Figures 6 and 7 show the amount of

sequential and consecutive access to files with more than

one request in our workload.

The most notable features of these graphs are the

spikes at 0% and 100%; most files were either entirely

sequential (or consecutive) or not at all. Not surpris-

ingly, access to read-write files was primarily nonse-

quential. By far, most read-only and write-only files

were 100% sequential. Most (86%) write-only files were

100% consecutive, but that was largely due to the fact

that most write-only files were written only by one

processor. Only 29% of read-only files, however, were

100% consecutive. The remainder (nonconsecrtive,

sequential read-only files) were the result of interleaved
access, where successive records of the file are accessed

by different nodes; from the perspective of an individ-

ual node, some bytes must be skipped between one

request and the next.

I/O-REQUEST INTERVALS

We define the number of bytes skipped to be the inter-
val me. Consecutive accesses have interval size 0. The

number of different interval sizes used in each file, across

all nodes that access that file, is shown in Table 3. A sur-

prising number of files were read or written in one

request per node (that is, there were no intervals). Over

0.8

"_ 0.6-
t-
O

_0.4
0.2

i Read/write

I

0

Write-only\

Read-only

2o 40 loo
% Accessessequential

Figure 6. CDF of sequential accessto files on a per-
node basis.
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r J I
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% Accesses consecutive

Figure 7. CDF of consecutive access to files on a per-
node basis.
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Table3.Thenumberof differentintervalsizes
usedineachfileacrossallparticipatingnodes.
Zerorepresentsthosecaseswhereonlyone

accesswasmadeto afile,pernode.

NO. OF SIZES No. OF FILES PERCENT OF TOTAL FILES

0 23,291 36.5
1 37,148 58.2
2 2561 4.0
3 105 0.2
4+ 674 1.0

Table 4. The number of different request sizes
used in each file across all compute nodes. Files

with zero different sizes were opened and
closed without being accessed.

NO. OF SIZES No. OF FILES PERCENT OF TOTAL FILES

0 2480 3.9
1 25,523 40.0
2 32,779 51.4
3 2510 3.9
4+ 487 0.8

99% of the 1-interval-size files were consecutive accesses

(in other words, every interval had size 0). The remain-

der of 1-interval-size files, along with the 2-interval-size

files, represent 5% of all files, and indicate another form

of highly regular access pattern. Only 1.2% of all files

had 3 or more different interval sizes, and their regu-

larity. (if any) was more complex.

To get a better feel for this regularity, we also counted
the number of different request sizes used in each file, as

shown in Table 4. More than 90% of the files were

accessed with only one or two request sizes. Combin-

ing the regularity of request sizes with the regularity of

interval sizes, many applications clearly used regular,

structured access patterns.

STRIDED ACCESS

A series of requests to a file is a simp/e-strided access pat-

tern if each request is the same size, and if the offset of

the file pointer is incremented by the same amount

between each request. This would correspond, for exam-

ple, to the series of I/O requests generated by a node with-

in an application reading a column of data from a matrix
stored in row-major order. A portion of the file accessed

with a strided pattern is a stridedsegmem. A nested-strided

access pattern is recursivelv similar to a simple-strided

access pattern, in that it is composed ofstrided segments

separated by regular strides in the file.

Higher-level analysis revealed that well over 90% of
the accesses in the traced workload were part of either a

simple- or a nested-strided access pattern caused by the
distribution of data across multiple compute nodes. 7 Of

the files in the workload, 26% were accessed (at least in

part) in a strided fashion, and nearly 1/3 of those were
accessed in a nested-strided fashion. Of the remaining

files, 99% either had too few accesses to exhibit any pat-

tern, ,*'ere only accessed by a single node, or were accessed

in a consecutive pattern. Thus, less than 1% of all files

were accessed in an irregular, parallel access pattern.

SYNCHRONIZATION

Given the regular request sizes and interval sizes shown
in Tables 3 and 4, Intel's I/O modes would seem to be '

helpful. Our traces show, however, that over 99% of the
files used mode 0; that is, less than 1% used modes 1, 2,

or 3. Tables 3 and 4 give a hint as to why: although there

were few different request sizes and interval sizes, there

were often more than one, something not easily sup-

ported by the automatic file modes. It may also be that
these modes were slower than mode 0, so that pro-

g'rammers chose not to use them.

SHARING

A file is shared if more than one job or process opens it.

If the opens overlap in time, the file is concurrently shared.
It is write-shared if one of the opens involves writing the

file. In uniprocessor and distributed-system workloads,

concurrent sharing is known to be rare. 4 In a parallel

file system, concurrent file sharing among processes

within a job is presumably the norm, while concurrent

file sharing between jobs is likely to be rare. Indeed, in

our traces we saw a great deal of file sharing within jobs,

and no concurrent file sharing between jobs. The inter-

esting question is b0w the individual bytes and blocks of

the files were shared. Figure 8 shows the percentage of

files (that were concurrently opened by multiple nodes)

with varying amounts of byte and block sharing. There

was more sharing for read-only files than for write-only

or read-write files, which is not surprising given the

complexity of coordinating write sharing. Indeed, 70%

of read-only files had 100% of their bytes shared, while

90% of write-only files had no bytes shared. While half

of all read-write files (not shown in Figure 8) were 100%

byte-shared, 93% of them were 100% block-shared,

0.8

"_ 0.6
e...
o

_ 0.4

ii

0.2

......." Write/bytes

i"s-" Read/bytes

__d----J

Read/blocks ..... _0 o 2'o 8o 8o lOO
Percent shared

Figure 8. CDF of file sharing between nodes in read-
only and write-only files at byte and block granularity.
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greater than 75% hit rate, but 30% of

the jobs had a 0% hit rate. Further, for
those jobs where a cache was benefi-

cial, a single one-block buffer per

compute node was usually sufficient.

100 A single buffer could maintain a high
hit rate in patterns with a small request

size (which was common; see Figures
4 and 5) and a short (perhaps zero)

interval size. Clearly there wa_ spatial
locality in our workload, and not much

temporal locality, or multiple buffers

would have helped more. (Multiple

buffers were useful in very few jobs,
apparently" those that were interspersing reads from

more than one file. In those cases, a single buffe:-perfile

would have been appropriate.) In short, it appears that

a one-block buffer per compute node, per file, may be

useful for read-only files, but a careful performance
analysis is still necessary.

Figure 9. Results of compute-node caching simulation. Hit rates differed
from job to job, with three distinct clumps, indicating that the cache
either helped or did not. One buffer was as good as many buffers.

which would stress a cache consistency protocol, if

present. Overall, the amount of block sharing implies

strong interprocess spatial locality, and suggests that
caching might be successful.

CACHING

Buffeting and caching are common in traditional file

systems, and -- with the right policies -- can be sue-

cessful in multiprocessor file systems. One advantage of
buffers is to combine several small requests (which were

common in this workload) into a few larger requests that
can be more efficiendy served by disk hardware. Indeed,

with redundant disk arrays common on today's multi-

processors (such as the Intel Paragon and the KSR-2),

it is even more important to avoid small requests at the

disk level. Fortunately, the small requests seen in Figures

4 and 5, when coupled with small interval size, lead to

spatial locality. Other potential benefits may come from

temporal or interprocess locality in the access pattern.

In a distributed-memory machine, it is possible to place
a buffer cache at the compute nodes, at the I/O nodes, or
both. We evaluated all three with trace-driven simulation.

Compute-node caching

The amount of block sharing in write-only and read-

write files show that any attempt to maintain write
buffers at the compute nodes would necessitate a cache

consistency protocol, so we restricted our effort to read-

only files. The results of a simple trace-driven simula-

tion of a compute-node cache of 4-Kbyte (one block),

read-only buffers with least recently used replacement

are shown in Figure 9. We consider a hit to be any
request that wasfu//y satisfied from the local buffer (that
Is, with no request sent to an I/O node).

Caching success, as indicated by a high hit rate, was

limited to a subset of the jobs: 40% of the jobs had a

I/O-node caching

Given the apparent interprocess locality, I/O-node
caching should be successful. To find out, we ran a trace-

driven simulation of I/O-node caches, with 4-Kbyte
buffers managed by either a least recently used or FIFO
replacement policy. These I/O-node caches served all

compute nodes, all files, and all jobs, according to cur best
guess of the event ordering within our traces. We a2_umed
the file was striped in a round-robin fashion at a one-block

granularity. No compute-node cache was used.

Figure I 0 shows the results of the simulation With

least-recently-used (LRU) replacement, a small cache

(4000 4-Kbyte buffers over all I/O nodes) was sufficient

to reach a 90% hit rate. With FIFO replacement, nearly
20,000 buffers were needed to obtain a 90% hit rate,

because FIFO does not give preference to blocks with
high locality. It made little difference whether the

buffers were focused on a few I/O nodes or spread over

many (that is, the hit rates were similar; performance is
another issue). The success of such a small cache, cou-

pled with the apparent lack of intraprocess locality in

many jobs (see Figure 9), reconfirms the presence of
interprocess spatial locality.

As a final test, we simulated the combination oi a sin-

gle buffer per compute node and a cache at each of 10

I/O nodes. The result was a only a 3 % reduction in the

UO-node hit rate when each UO node had a small cache

of 50 buffers. This further suggests that most of tl'_e hits

in the I/O-node cache were indeed a result of inter-
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"1"process locality because, as Figure 9 40-

shows, the limited intraprocess locali-

ty was filtered out by the compute- 20-
node cache.

In constrast, Miller and Katz's trac-

ing study s found little benefit from 0 0

caching, although it did Show a bene-

fit from prefetching and write-behind.
Both their workload and ours involve

sequential access patterns; the differ-

ence is that the small requests in our

access pattern lead to intraprocess spa-

tial locality, and the distribution of a

sequential pattern across parallel com-

pute nodes leads to interprocess spatial locality, both of

which could be successfully captured by caching.

( LRU

.?f??S 777''"

FIFO

;)'

5000 I I10,000 15,000 20,000 25,000

Number of 4K buffers in system

Figure 10. Results of I/O-node caching simulation. Each line represents a
complete run of the simulation with a fixed number of I/0 nodes
ranging from 1 to 20.

lthough this workload had many charac-

teristics in common with those in previ-
ous studies of scientific applications and

file systems (large file sizes, sequential
access, little inter-job concurrent sharing),

parallelism had a significant effect on some workload

characteristics (smaller request sizes, and lots of intra-

job concurrent file sharing) and added some new char-

acteristics (nonconsecutive sequential access and inter-

process spatial locality). A multiprocessor used for

scientific applications will not be well served by a file

system ported from a distributed system, which was
tuned for a different set of workload characteristics. In

particular, parallelism leads to new, interleaved access

patterns with no temporal locality, and high interprocess

spatial locality at the UO node.

Compute-node caches are probably best implemented

as a single buffer per file (but only if carefully managed

for consistency). I/O-node caches can effectively com-

bine small requests from many compute nodes, avoid-

ing extraneous disk I/O and raising the potential for

large disk I/Os, a significant benefit when the I/O nodes

serve redundant disk arrays (which favor large transfers)
rather than individual disks. Replacement policies other

than least-recently-used or FIFO can optimize for

sequential access and interprocess locality, rather than
traditional spatial and temporal locality, s

Ultimately, we believe that the file-system interface

must change. The current interface forces the pro-

grammer to break down large parallel I/O activities into

small, noncontiguous requests. While compute-node

and I/O-node caching can help, it would be better to

support strided 1/(9 requests from the programmer's inter-

face to the compute node, and from the compute node

to the I/O node. A strided request can express a regular
request and interval size (which were common in our

workload), effectively increasing the request size, low-

ering overhead, and perhaps eliminating the need for

compute-node buffers. The Cray file system is an exam-

ple of a system that supports strided requests.

Some of our results may be specific to workloads on

Intel CFS file systems, or to NASAAmes' workload (com-

putational fluid dynamics). Although the exact numbers
are workload-specific, we believe that our eondusions are

applicable to scientific workloads running on loosely cou-

pled MIMD multiprocessors with a CFS-like interface --

that is, an interface that encourages interleaved access and

an independent file pointer for each node. This category

includes many current multiprocessors.

We plan to continue collecting traces from other

machines and environments to broaden and deepen the

experimental data, and strengthen the generality of our

conclusions. One such project has already produced
results. 9 We may also convert these and other results

into a meaningful, synthetic benchmark of parallel I/0.

We will use this new knowledge to design a better multi-

processor file system, and use the traces in trace-driven

simulations of new policies for caching, prefetching,

load balancing, paging, and so forth. We also plan to

evaluate new I/O architectures.Z/_z
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