
How Network Topology
Affects Dynamic Load
Balancing
Peter Kok Keong Loh, Wen Jing Hsu, Cai Wentong, and Nadarajah Sriskanthan
Nanyang Technological University

The authors
compare the
perJbrmances of five
dynamic load-
balancing strategies.
The simulator
they ’ue developed
lets them measure
these performances
across a range of
network topologies,
including a 20
mesh, a 4 0
hypercube, a linear
array, and a
composite Fibonacci
cube.

multiprocessor network without load balancing processes
processor-generated tasks locally with little or no sharing
of computational resources. Load balancing, on the other
hand, uses a multiprocessor network‘s inherently redundant A processing power by redistributing the workload among the

processors to improve the application’s overall performance.
Load-balancing strategies fall broadly into either statzc or dynamic clas-

sifications. A network with static load balancing computes task infor-
mation, such as execution time (execution cost), from the application
before load distribution. The network distributes tasks once, before exe-
cution, and the allocation stays the same throughout the application’s
execution. A network with dynamic load balancing uses little or no a pri-
ori task information, and must satisfy changing requirements by mak-
ing task-distribution decisions during runtime. For certain applications,
dynamic load balancing is preferable, because then the problem’s vari-
able behavior more closely matches available computational resources.
But dynamic load balancing incurs communication overheads that are
topology-dependent (where topology is the interconnection structure of
the multiprocessor network).

Researchers have proposed several load-balancing strategies. l-9 How-
ever, in most cases, these researchers made performance comparisons
using either a simulated distributed computer ~ y s t e m ’ , ~ , ~ or a multi-
processor network with a specific t o p o l ~ g y . ~ , ~ . ~ We have developed a
topology-independent simulator to compare the performances of five
well-known, dynamic load-balancing strategies: the Gradient Model

Fall 1996 1063-6552/96/$4.00 0 1996 IEEE 25

Figure 1. Proximity distribution

(GM) strategy,’ the Sender-Initiated (SI) and Receiver-
Initiated (RI) the Central Job Dispatcher
(LBC)4 strategy, and the Prediction-Based (P~-ed)’,~
strategy. In this article, we compare their performances
across a series of 16-node networks of different topolo-
gies: a 4 x 4 mesh, a 4D hypercube, a linear array, and a
composite Fibonacci cube.I0

The Gradient Model strategy
In this strategy, every processor interacts only with its
immediate neighbors. Basically, lightly loaded proces-
sors inform other processors in the system of their state,
and overloaded processors respond by sending a por-
tion of their load to the nearest lightly loaded processor
in the system.

When execution begins, every processor computes
its total load. Two threshold values gauge whether a
processor is lightly, heavily, or moderately loaded. A
processor with a total load below the low water mark is
considered lightly loaded. One that exceeds the hzgh
water mark is heavily loaded, and one where the total
load is in-between is moderately loaded.

In this strategy, proximity defines the minimum dis-
tance between the current processor and the nearest
lightly loaded processor in the network (see Figure 1).
We measure interprocessor distances (and, thus, prox-
imityvalues) in terms of the number of hops, where a hop
is the distance between any two directly connected
processors. W e will assume tha t all hops are the same
length. The figure gives the proximity for each processor.

Every processor in the network initially sets its prox-
imity to d,,,, a constant equal to the network‘s diame-

ter, or the largest distance between two processors in
the network. A processor’s proximity is set to zero if it
becomes lightly loaded. All other processors P, with
nearest neighbors nl compute their proximity as

proximity(PJ = min(proximity(nj)) + 1

A processor’s proximity cannot exceed &=. A system
is saturated and does not require load balancing if all
processors report a proximity of d,,,. If a processor’s
proximity changes, that processor must notify its
immediate neighbors. Hence, lightly loaded proces-
sors, reporting a proximity of zero, initiate the load-
balancing process. The gradient map of the proximi-
ties of all processors in the system routes tasks between
overloaded and underloaded processors.

The Sender-Initiated strategy
Here, an overloaded processor (sender) trying to send a
task to an underloaded processor (receiver) initiates load
distribution. Derek Eager, Edward Lazowska, and John
Zahorjan proposed three fully distributed seiider-
initiated strategies2 The difference in these strategies
is the policy used in locating the processors to transfer
or receive tasks. In the first strategy, the network sim-
ply transfers a task to a randomly selected processor
without any information exchange between the proces-
sors aiding the decision. The second strategy is similar
but with the introduction of a threshold value to pre-
vent tasks from being transferred to an overloaded
processor. In the third strategy, the network polls a
number of randomly selected processors and compares
their load sizes. The network then transfers the task to
the processor with the smallest load.

These strategies, however, have several major disad-
vantages. They have no mechanism to ensure that the
lightly loaded processor selected is a moderate distance
away from the heavily loaded processor. Task transfers
between two distant processors can result in perfor-
mance degradation during load balancing. Further-
more, the lightly loaded processor selected on the basis
of load size might not necessarily be the best candidate,
because the polling mechanism arbitrarily polls ran-
domly selected processors. T o ensure consistency in
performance comparison with the GM and the RI
strategies, we have adopted a sender-initiated strategy,
proposed by Marc Willebeek-LeMair and Anthony
Reeves,’ which also uses only immediate neighbor state
information.

26 IEEE Parallel & Distributed Technology

This sender-initiated strategy uses a nearest-neighbor
approach with overlapping neighborhood domains to
achieve global load balancing over the network. A pre-
set threshold identifies the sender. An overloaded
processor performs load balancing whenever its load
level 1, is greater than the threshold value-that is, when
1, > &,,$. Once the sender is identified using the thresh-
old, the next step is to determine the amount of load
(number of tasks) to transfer to the sender's neighbors.
The average load LdVg in the domain is

where IP is the load of the overloaded sender, K is the
total number of immediate neighbors, and lk is the load
of Processor k . The network assigns each neighbor a
weight h k , according to

These weights are summed to determine the total defi-
ciency Hd:

K

Hd = C h k
k=l

Finally, we define the proportion of Processorp's excess
load, which is assigned to neighbor h as tik, such that

where [xi stands for the largest integer value of x. Once
the network has determined the quantity of load to
migrate, it dispatches the appropriate number of tasks.

Figure 2 shows an example of the SI strategy, where
surplus load is transferred to its underloaded neighbors.
Here, we assume that the threshold Lhigh is taken as 10.
Hence, the network identifies Processor A as the sender
and does its first calculation of the domain's average load:

0 + 5 + 20 + 7 + 8
5

= 8 Lavg =

The weight for each neighborhood processor is then as
follows:

Processor B c D E
Weight, h k 8 3 1 0

Figure 2. Example of SI strategy in a 4 x 4 mesh.

Summing these weights determines the total deficiency:

Hd = 8 + 3 + 1 + 0 = 12

The proportions of Processor A's load that are assigned
to its neighbors are

Processor B C D E
Load, ak 8 3 1 0

The final load on each processor is therefore 8.

The Receiuer-Initiated strategy
The RI strategy is like the converse of the SI strategy in
that the receiver, rather than the sender, initiates load
balancing. Moreover, the threshold value is lower in the
RI strategy. The underloaded processors in the network
handle the load-balancing overhead, which can be sig-
nificant in a heavily loaded network.

In this strategy, the network identifies, as the receiver,
a processor whose load size falls below the threshold value
L,,. The receiver handles task migration by requesting
proportional amounts of load from immediate overloaded
neighbors. The network assigns each neighbor k a weight
h,,, according to the following formula:

We sum these weights to determine the total surplus
H,. Processor p then determines a load portion tik to be
migrated from its neighbor k:

Finally, Processorp sends respective load requests to its
specific neighbors.

Figure 3 shows an example of the RI strategy, where
the network transfers surplus load from a processor's

Fall 1996 27

Figure 3. Example of RI strategy in a 4 x 4 mesh.

overloaded neighbors. W e assume here that the Liow
threshold is 6 and that Processor A is the receiver. The
network does its first calculation of the average domain
load:

14+13+2+12+9
5

= l o Lavg =

The weight for each neighborhood processor is then as
follows:

Processor B C D E
Weight, hk 4 3 2 0

W e sum these weights to determine the total surplus:

H , = 4 + 3 + 2 + 0 = 9

The proportion of load that Processor A requests from
each neighboring processor is

Processor B C D E
Load, & 4 3 2 0

W e tabulate the final load on each processor as follows:

Processor A B C D E
Load 11 10 10 10 9

The dynamic load-balancing strategies discussed so
far use local (neighboring domain) state information to
guide load distribution. The processor selection and
task-transfer policies are distributed in nature: all
processors in the network have the responsibility of
achieving global load balance. However, these strate-
gies do not try to locate the best trans,Gee?Tpartner (desti-
nation processor).

A strategy that uses global (network wide) state infor-
mation can usually identify the most suitable transfer
partner. W e now present one such ~ t r a t egy .~

The Central Task Dispatcher
strategy
In this strategy, one of the network processors acts as a
centralized job dispatcher. The dispatcher keeps a table
containing the number of waiting tasks in each proces-
sor. Whenever a task arrives at or departs from a proces-
sor, the processor notifies the central dispatcher of its
new load state.

When a state-change message is received or a task-
transfer decision is made, the central dispatcher
updates the table accordingly. The network bases load
balancing on this table and notifies the most heavily
loaded processor to transfer tasks to a requesting
processor. The network also notifies the requesting
processor of the decision. With this strategy, there
could be greater communication overheads with larger
networks, because the decision making is no longer
distributed.

In the original strategy, a processor would send a
task request when it started its operation with no local
job or when it became idle. However, in designing the
simulation environment, we introduced a threshold
value Ll,,, which is equivalent to the lower water mark
of the GM strategy. This accounts for scenarios where
some processors start off with an average load. In this
case, when a processor’s load goes below Ll,,, the net-
work embeds the state-change message with a task
request tag, so that the message serves the dual pur-
pose of table update and load request at the central
task dispatcher.

The Prediction-Based strategy
In recent years, some researchers have focused their
efforts on prediction-based, dynamic load-balancing
~trategies.’,~ These strategies stem from predicted
process requirements for achieving load balancing.

The prediction-based strategy proposed by Kumar
Goswami, Murphy Devarakonda, and Ravishankar Iyer
has demonstrated prediction of the CPU, memory, and
I/O requirements of a process, before its execution,
using a statistical pattern-recognition m e t h ~ d . ~ How-
ever, even though the predicted values are close to the
actual ones, this strategy incurs significant computation
overheads. Moreover, the prediction mechanism uses
network-dependent task identifier numbers to tabulate
the possible resource requirements.

Other researchers have proposed a strategy that uses
task-transfer probabilities to predict a processor’s load
requirements9 Probability models are more realistic,

28 IEEE Parallel & Distributed Technology

because they can capture a distributed scheduling appli-
cation's time-varying characteristics. Another advan-
tage is that the network can estimate a processor7s load
at any time without querying that processor. We have
adopted this strategy in our simulation.

This prediction-based strategy uses service time S,(t)
as the load index to perform dynamic load balancing.
Each processor estimates its own service time for the
next time interval and broadcasts this information to all
other processors. During a given time interval At, the
network can estimate the service time S,(t) by record-
ing the total time used by the processor i in servicing
tasks, and the number of task departures completed dur-
ing that interval.

Therefore, at a specific time t, we have

Sj(t) = At / di(t)

where S,(t) is the service time per task, and d,(t) is the
total number of task departures in At. Each processor
distributes this information to all other processors and
computes the mean service time S,(t):

sl(t)+S2(f)+K + S n (t)
s m (t) = n

where n is the total number of processors in the net-
work, and S,(t) is the mean service time for the network.
Each processor then determines the load status of itself
and other processors using S,(t), as follows:

S,(t) > S,(t) heavily loaded
S,(t) < S,(t) * lightly loaded

The next step involves determining W(t), the ratio of
excess service time to the mean service time, on each
heavily loaded processor i:

Finally, each processor i computes and maintains a list
of task-transfer probabilities between itself and all other
underloaded processorsj in the network:

Figure 4. The simulator's system configuration

where L is the total number of lightly loaded proces-
sors. The heavily loaded processor selects the lightly
loaded processor with the highest transfer probability.
The number of tasks to be transferred is proportional
to W,(t).

Simulation model
W e have developed a simulator based on a study by
Songnian Zhou,S which other researchers have further
verified and examined.j," W e employ a trace-driven
simulation approach. In this approach, job traces are
collected from a production distributed computer sys-
tem and used to simulate a loosely coupled multi-
processor network. The distributed system, consisting
of a Unix-based VAX-1 U780 host, supports both
research and academic applications of staff and students.

T o ensure that the measurements applied to homo-
geneous processors, we restricted the trace-collection
efforts to one host. Figure 4 shows the simulator's
configuration.

The task scheduler implements the corresponding
dynamic load-balancing strategy. It also randomly dis-
tributes tasks in the network of virtual processors initially
and handles the runtime migration of tasks. The task
scheduler inserts tasks to be migrated back into the task
queue for rescheduling in a different virtual processor.

Dynamic load balancing involves two basic types of
overhead costs. First, the network must measure the
processors7 current load levels, and exchange messages
so that other processors recognize them. Second, the
network must make placement decisions and transfer
tasks between the processors. The simulator's design
includes the following parameters: task size, computa-
tion cost, communications cost, and task migration cost.
These vary according to the computing environment or
platform. On the basis of experimental measurements,
therefore, we set at 10 milliseconds the cost for com-
puting various values such as threshold levels or current
load levels of CPU time. We assigned a cost of 10 ms
to the transferring node, and the receiving node took

Fall 1996 29

Figure 5. Network topologies: (a) 4 x 4 mesh; (b) 4D hypercube; (c) linear array.

Figure 6. A composite Fibonacci cube.

10 ms to process the information. We assigned 100 ms
of CPU time for a task transfer for both the sending and
receiving processors, causing a 200-ms execution delay
to the task being transferred.

Zhou’s study has shown that 60 to 65% of the tasks
have execution times below 500 ms. In most cases, only
about 25% of network processors have loads a t least
10% higher than average. Hence, the tasks used for sim-
ulation have execution times ranging from 200 to 800
ms. The computer system randomly generates each
task‘s execution time. Each simulation run uses 1,600
tasks (about 100 tasks per processor node), and two ini-
tial task-distribution approaches are adopted. The first
approach simulates a stable situation, where the network
randomly assigns about 100 tasks to each processor. The
eventual outcome is that no idle processor is present in
the network, and about 25 to 35% of the total proces-
sors are overloaded.

The second task-distribution approach creates a
highly unstable network system, where some processors
are heavily loaded and others can have a task size of zero.
These scenarios let us examine the algorithmic reliabil-

ity of the load-balancing strategy and the variation in
topological parameters.

Performance metrics
In general, performance is an absolute measure
described in terms of response time, utilization, or any
other objective function specified. In our research, per-
formance analysis represents nomalizedpe$ownance and
stabilzzatzon tzme.

Normalized performance n determines the effec-
tiveness of the load-balancing strategy (such that n +
0 if the strategy is ineffective and II + 1 if the strategy
is effective). This is a comprehensive metric; it accounts
for the initial level of load imbalance as well as the load-
balancing overheads. We formally define FI as

where Tnolb is the time to complete the work on a mul-
tiprocessor network without load balancing, Topt is the
time to complete the work on one processor divided by
the number of processors in the network, and Tbal is the
time to complete the work on the multiprocessor net-
work with load balancing. When the load-balancing
time approaches the optimal time (Tbal --+ To& then n
+ 1. On the other hand, if load balancing is poor and
does not improve the network much over the case with-
out load balancing, then Tbal + Tnolb and II --+ 0.

Stabilization time or load-balancing time indicates how
long the network takes to achieve a balanced state where
no further task transfers are required. Alow stabilization
time doesn’t necessarily indicate an efficient or compre-

30 IEEE Parallel & Distributed Technology

Table 1. Network topological parameters.

NUMBER OF NODES WITH DEGREE

TOPOLOGY AavG 1 2 3 4 5 6 @A”,

4 x 4 mesh 2.67 4
4D hypercube 2.13
Fibonacci cube 2.41 5
Linear array 5.67 2 14

hensive strategy. It could also indicate that, because of
inadequate information, the load-balanced network is
suboptimal. Such a network can still have an unevenly
distributed workload even though the imbalance is insuf-
ficient to trigger load-redistribution activities.

Our objective here is not to select the best algorithm
but to compare the variations in performance of each
strategy over different network topologies. In particular,
we are interested in the effects of topological parameters,
such as interprocessor distances and connectivity, on load-
balancing performance with varylng load levels.

Network topologies
We compare the performances of the five dynamic load-
balancing strategies on a 4 x 4 mesh, a 4D hypercube, a
linear array, and the Fibonacci cube. The Fibonacci cube
is both a subgraph of the hypercube and a supergraph of
several common topologies (see “Background on
Fibonacci cube” sidebar). It serves as an interesting com-
parison with the other three more common topologies,
which are illustrated in Figure 5.

The other network topologies in this research have
16 nodes. A Fibonacci cube, however, supports only&
nodes-that is, a Fibonacci number of nodes. Hence,
the linhng of node pairs with unity Hamming distance
combines the Fibonacci cubes r6, rS, and r4 to form a
composite topology of 16 nodes, as Figure 6 shows.

Topological parameters
A bop is the distance between any two directly con-
nected processors in the network. T h e distance
between two processor nodes i and j in a network G of
size Ni s the number of hops in the shortest path con-
necting i andj. The network‘s diameter is the largest
distance, in terms of the number of hops, between two
processors. Evaluating the network diameter, however,
does not give a global picture of the network, because
a small number of hops can separate many of the net-
work’s other processors even when the diameter is
large. An example of this is the 4 x 4 mesh topology,
which has a diameter of 6. The average interprocessor
distance, on the other hand, illustrates the global topo-
logical view of the network. W e define the average
processor distance Aavg as

4 3.00
4.00

8

7 2 1 1 3.13
1 88

16

___ ~ _ _ _ _ _ ~ _ _ _

where, for a 4 x 4 mesh, N = 16.
The node degree is the number of links incident on a

processor node. By the same reasoning, we define the
average node degree, denoted by Oavg, as the sum of the
node degrees divided by the number of network proces-
sors. Table 1 lists the values of these topological para-
meters for the four topologies we are considering.

Intuitively, a network topology with a smaller average
processor distance has lower communication overheads
between processor pairs. A network that has a higher
average node degree has more directly connected neigh-
bors per processor.

Simulation results (normalized
performance)
Figure 7a (stable network) and Figure 7b (unstable net-
work) illustrate the simulation results for normalized
performance versus topology. The legend for each
graph shows the representative symbols for the respec-
tive dynamic load-balancing strategy.

The normalized performances of the RI, the SI, and
the GM strategies in a stable network are better than the
LBC and the Pred strategies for mesh, hypercube, and
Fibonacci topologies (see Figure 7a). The first three
strategies use local domain (immediate connected neigh-
bors) state information and employ distributed proces-
sor selection and task-transfer policies. The LBC and the
Pred, however, use global domain (network) state infor-
mation and centralized processor selection and task trans-
fer. In the stable situation with no idle processors and a
fractional overloading (25 to 3 S%), the network localizes
load-balancing activities to arbitrary regions, favoring
distributed policies that use local domain information.

In the linear array, however, the communication over-
heads and the reduction in local-domain computational
resources incurred because of the structure’s linearity
take their toll on these strategies, causing the perfor-
mances of the RI, the SI, and the GM to fall below those
of the LBC and the Pred. The LBC strategy, using a
centralized dispatcher, is less significantly affected
by topological parameter variations for networks of

Fall 1996 31

similar size. In additlon, the higher accuracy of the trans-
fer processor identification in the LBC outweighs the
overheads incurred. Notwithstanding, there is also per-
formance degradation.

The Pred strategy, like the GM, requires periodic state
updates on processors and uses distributed processor selec-
tion and task-transfer policies. On average, however, the
processor selection of the Pred is more accurate than with
the GM, enabling the Pred to partially overcome the topo-
logical constraints and perform slightly better.

In an unstable network (see Figure 7b), the extent of
load balancing increases. The ranking changes, with the
IU strategy still maintaining the lead but now being fol-
lowed by the LBC and the Pred. Here, a processor-
selection policy of higher accuracy produces better load
balancing. The accuracy of selection heavily depends on
the domain information’s comprehensiveness, a depen-
dency that favors the global domain schemes of the LBC

and the Pred. Nevertheless, the greater communication
and computation overheads caused by the frequent state
information broadcasts and updates lets the RI strategy
maintain its lead.

The results show that in all strategies, regardless of the
network situation, network topologies with lower Aavg and
lxgher Ocivg yield better performances. A lower Aavg mini-
mizes communications overhead and therefore task migra-
tion costs. A higher O,, means more computational
resources in the local domain are available, favoring the
dissemination and exchange of local domain information.

Simulation results (stabilization
time)
Figure Sa (stable network) and Figure Sb (unstable net-
work) illustrate simulation results for stabilization time
versus topology.

For a given topology, the stabilization time required
by a load-balancing strategy depends on the loading of
processors responsible for the task transfer. For the sta-
ble situation (Figure 8a), the KI and the LBC strategies,

Table A. Fibonacci code representations.

DECIMAL NUMBER FIBONACCI NUMBER FIEONACCI CODE

0 0 000 000
1 1 000 001

1 000 01 0 3

~~

Fall 1996

where lightly loaded processors invoke task transfers,
have a longer stabilization time. This is because these
strategies employ lower threshold values than do the SI,
the GM, or the Pred strategy. The network invokes the

anunstable network.

Table 2. Execution times (ms) in a stable network.

TOPOLOGY GM SI RI LBC PRED No LB

Mesh 29,683 29,460 28,784 30,084 30,428 32,529 28,162
Hypercube 29,547 28,960 28,507 29,900 30,206 32,529 28,162
Fibonacci 29,666 29,371 28,644 29,781 30,064 32,529 28,162
Linear 30,896 30,420 30,297 30,131 30,690 32,529 28,162

~~ ~ ~~ ~ ~~ ~ ~

Table 3. Execution times (ms) in an unstable network.

TOPOLOGY GM SI RI

Mesh 31,962 31,573 30,788
Hypercube 31,815 31,515 30,334
Fibonacci 31,907 31,558 30,412
Linear 32,454 32,410 31,302

task-transfer process as long as there are processors
whose task size is above the threshold value.

Of the last three strategies, the Pred generally has the
most accurate processor-selection policy. Hence, this
strategy can stabilize more quickly than the GM. The SI
strategy, however, has the lowest stabilization time of
the three, because the sender initiates the load-balancing
only when an upper load threshold is exceeded. In the
stable situation, most processors are moderately loaded
and therefore do not exceed the upper load limit to trig-
ger load-balancing activities. However, even when a net-
work has stabilized, it might not be as effectively load-
balanced as, for example, a network balanced by the Pred
or the LBC strategy.

In the unstable network (Figure fib), the average sta-
bilization times of all strategies increase, as expected.
The relative ranlungs of all strategies remain, except for
the SI strategy. The stabilization times in the mesh, the
hypercube, and the composite Fibonacci cube degrade
more with this strategy than with the Pred or the GM
strategy.

We have mentioned previously that the load-balancing
activities in the SI strategy are sender-initiated. In the
unstable situation, more processors have load levels that
exceed the upper threshold, thereby increasing the load-
balancing time. This situation is not reflected in the lin-
ear-array network, where the load redistribution activities
in the SI occur over localized regions of the network
(explained earlier), but in the Pred and the GM they occur
network-wide. Therefore, the communication overheads
introduced by the linearity of the structure are minimized
in the case of the SI strategy.

In both stable and unstable network situations, the
stabilization times remain minimal in the hypercube and
the composite Fibonacci cube, and are maximum in the
linear array. The results support and verify our earlier
deductions of interconnection topologies with shorter
Aavg and higher 0,. The shorter average processor dis-

34

LBC PREO No LB 0 PT

31,075 31,419 35,498 28,162
30,840 31,236 35,498 28,162
30,686 31,005 35,498 28,162
31,119 31,654 35,498 28,162

tance typically minimizes stabilization times directly by
shortening the task migration path. The higher average
node degree supports strategies relying on local-domain
computational resources.

he simulaQon results show that topologies
with larger average processor distances
and lower average node connectivity
introduce significant communication
overheads during the load-balancing

process. Because of a lack of direct links between proces-
sor nodes, task transfers need to traverse, on average, more
intermediate processors before reaching the destination
node. More local-domain computational resources will
also be available if a processor has direct links to more
nodes. The situation worsens as the load imbalance
increases.

All five strategies perform best in the hypercube and
the composite Fibonacci cube. The same observation
applies to the performance of the application as a whole,
as Table 2 (stable network) and Table 3 (unstable network)
illustrate. These tables show the execution times for each
load-balancing strategy in each network topology.

This research shows that varying physical parameters
in an interconnection network topology significantly
affect the performance of a dynamic load-balancing
strategy, regardless of that strategy’s approach or the
network load levels. We are now workmg to extend our
findings to develop a fault-tolerant, variable-architecture
load-balancing platform.

ACKNO WDGMENTS

We thank Chua Chze Koon for her help in developing the simulator
and collating the simulation results. We also thank the anonymous

IEEE Parallel & Distributed Technology

referees for their useful comments and advice in improving this arti-
cle. This work is supported by the Applied Research Fund (Grant No.
RG 17/94), administered by the Ministry of Education, Singapore.

REFERENCES
1. F.C.H. Lin and R.M. Keller, “The Gradient Model Load Bal-

ancing Method,” IEEE Trans. Software Eng., Vol. 13, No. l , Jan.
1987, pp. 32-38.

2. D.L. Eager, E.D. Lazowska, and J. Zahorjan, “A Comparison of
Receiver Initiated and Sender Initiated Adaptive Load Sharing,”
Pelfomance Evaluation, Vol. 6, 1986, pp. 53-68.

3. F.J. Muniz and E.J. Zaluska, “Parallel Load-Balancing: An Exten-
sion to the Gradient Model,” Paidlel Computing, Vol. 2 1, 1995,
pp. 287-301.

4. 11.-C. Lin and C.S. Raghavendra, “A Dynamic Load Balancing
Policy with a Central Job Dispatcher (LBC),” IEEE Trans. Soft-
ware Eng., Vol. 8 , No. 2 , Feb. 1992, pp. 148-158.

5. K.K. Goswatni, M. Devarakonda, and R.K. Iyer, “Prediction-
Based Dynamic Load-Sharing Heuristics,” IEEE Trans. Parallel
a i d Distributed Systems, Vol. 4, No. 6, June 1993, pp. 638-648.

6. M.A. Iqbal, J.H. Saltz, and S H . Bokhari, “A Comparative Analy-
sis of Static and Dynamic Load Balancing Strategies,” ACMPer-
jbmanceEvaluation Revision, Vol. 11, No. 1,1985, pp. 1040-1047.

7. M.H. Willebeek-LeMair and A.P. Reeves, “Strategies for
Dynamic Load Balancing on Highly Parallel Computers,” IEEE
Traizs. Purullel and Distributed Sy.rtems, Vol. 4, No. 9, Sept. 1993,
pp. 979-993.

8. S. Zhou, “A‘T‘race-Driven Simulation Study of Dynamic Load
Balancing,” IEEE Tm7s. SofmareEng., Vol. 14, No. 9, Sept. 1988,
pp. 1327-1341.

9. D.J. Evans and W.U.N. Butt, “Dynamic Load Balancing Using
Task-Transfer Probabilities,” Parallel Computing, Vol. 1 9, No.
8, Aug. 1993, pp. 897-916.

10. W.-J. Hsu, “Fibonacci Cubes: A New Interconnection Topol-
ogy,” IEEE Trans. Parallel and Distributed Systems, Vol. 4, No. 1,
Jan. 1993, pp. 3-12.

11. 0. Kremien and J. Kramer, “Methodical Analysis of Dynamic
Load Balancing,” I I E E Tram. l’aarallel and Distributed Systems,
Vol. 3, NO. 6, NOV. 1993, pp. 747-760.

Peter Kok Keong Loh heads the Parallel Processing Laboratory in
the School of Applied Science a t Nanyang Technological University,
Singapore. His research interests include multiprocessor fault toler-
ance, parallel architectures, and parallel software. H e received his
B.Eng. in 1985 and MS in 1989, both in electrical engineering, from
the National University of Singapore. He also obtained an MS in com-
puter science (parallel processing) from the Victoria University of
Manchester, UK, in 1992. He is a member ofthe IEEE. Readcrs can
contact Loh at askkloh@nttivax.ntu.ac.sg.

Wen Jing Hsu is a senior lecturer at Nanyang Technological Uni-
versity in the Division of Software Systems. H e has published actively
in the areas of parallel processing, algorithms, and advanced computer

Fall 1996

Scheduling Divisible
loads in Parallel and
Distributed Systems
by II Bharadwaj, D. Ghose,
c! Man;, and T: Robertazzi

Contents: The System Model
Load Distribution in Linear

Networks Load Distribution
in Tree and Bus Networks

Optimality Conditions for
Load Distribution Analytical

Results for Linear Networks Optimal Sequencing
and Arrangement in Single-Level Tree Networks

Asymptotic Performance Analysis: Linear Tree
Networks Efficient Utilization of Front-Ends in
Linear Networks Multi-Installment Load Distribu-
tion in Single-Level Tree Networks Multi-Install-
ment Load Distribution in Linear Networks

Multi-Job Load Distribution i n Bus Networks

Catalog # BP07521 - $40.00 Members / $50.00 List
3 12 pages. Hardcover. August 1996. 1SBN 0-8 186-752 1-7.

C ~ ~ P U T E R
CS Online Catalog:

www.computer.org

___ -

SOCIETY@

architectures. H c received a BS in 1975, an MS in 1978, and a PhD
in 1983, all in computer science, from the National Chiao Tung Uni-
versity. Hc received the General Electric Faculty Development Fund
Grant in 1988 and the McDonnell Research Grant in 1990. Readers
can contact Jing at aswjhsu@ntuvax.ntu.ac.sg.

Cai Wentong is a lecturer in the School of Applied Science at
Nanyang Technological University, His research interests include
visual-programming tools for parallel processing, parallel discrete-
event simulation, clustcr and heterogeneous computing, parallelizing
compilers, data-parallel programming, and architecture-independent
parallel computation. H e received his BS in 1985 and MS in 1987
from Nankai University, People’s Republic of China, and his PhD
froin the University of Exeter, UK, in 1990, all in computer science.
Wentong joined Queen’s University in Canada in 1991 as a postdoc-
toral research fcllow. Readers can contact Wentong at aswtcai@
ntuvax.ntu.ac.sg.

Nadarajah Sriskanthan is a senior lecturer in the School of Applied
Science at Nanyang Technological University. He received a BS in
electrical engineering from the University of London in 1972 and an
MS in electronic-equipment design from the Cranfield Institute of
Technology, UK, in 1979. His research interests include the devel-
opment of novel parallel architectures and the applications of coin-
puter interfacing techniques. Readers can contact Sriskanthan a t
nil@ntuvax.ntu.ac.sg.

Readers can contact all the authors a t the Division of Computing Sys-
tems, School of Applied Science, Nanyang ‘Technological University,
Nanyang Avenue, Singapore 2263, Singapore.

35

