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The authors 
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perJbrmances of five 
dynamic load- 
balancing strategies. 
The simulator 
they ’ue developed 
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these performances 
across a range of 
network topologies, 
including a 20 
mesh, a 4 0  
hypercube, a linear 
array, and a 
composite Fibonacci 
cube. 

multiprocessor network without load balancing processes 
processor-generated tasks locally with little or no sharing 
of computational resources. Load balancing, on the other 
hand, uses a multiprocessor network‘s inherently redundant A processing power by redistributing the workload among the 

processors to improve the application’s overall performance. 
Load-balancing strategies fall broadly into either statzc or dynamic clas- 

sifications. A network with static load balancing computes task infor- 
mation, such as execution time (execution cost), from the application 
before load distribution. The network distributes tasks once, before exe- 
cution, and the allocation stays the same throughout the application’s 
execution. A network with dynamic load balancing uses little or no a pri- 
ori task information, and must satisfy changing requirements by mak- 
ing task-distribution decisions during runtime. For certain applications, 
dynamic load balancing is preferable, because then the problem’s vari- 
able behavior more closely matches available computational resources. 
But dynamic load balancing incurs communication overheads that are 
topology-dependent (where topology is the interconnection structure of 
the multiprocessor network). 

Researchers have proposed several load-balancing strategies. l-9 How- 
ever, in most cases, these researchers made performance comparisons 
using either a simulated distributed computer ~ y s t e m ’ , ~ , ~  or a multi- 
processor network with a specific t o p o l ~ g y . ~ , ~ . ~  We  have developed a 
topology-independent simulator to compare the performances of five 
well-known, dynamic load-balancing strategies: the Gradient Model 
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Figure 1.  Proximity distribution 

(GM) strategy,’ the Sender-Initiated (SI) and Receiver- 
Initiated (RI) the Central Job Dispatcher 
(LBC)4 strategy, and the Prediction-Based (P~-ed)’,~ 
strategy. In this article, we compare their performances 
across a series of 16-node networks of different topolo- 
gies: a 4 x 4 mesh, a 4D hypercube, a linear array, and a 
composite Fibonacci cube.I0 

The Gradient Model strategy 
In this strategy, every processor interacts only with its 
immediate neighbors. Basically, lightly loaded proces- 
sors inform other processors in the system of their state, 
and overloaded processors respond by sending a por- 
tion of their load to the nearest lightly loaded processor 
in the system. 

When execution begins, every processor computes 
its total load. Two threshold values gauge whether a 
processor is lightly, heavily, or moderately loaded. A 
processor with a total load below the low water mark is 
considered lightly loaded. One that exceeds the hzgh 
water mark is heavily loaded, and one where the total 
load is in-between is moderately loaded. 

In this strategy, proximity defines the minimum dis- 
tance between the current processor and the nearest 
lightly loaded processor in the network (see Figure 1). 
We  measure interprocessor distances (and, thus, prox- 
imityvalues) in terms of the number of hops, where a hop 
is the distance between any two directly connected 
processors. W e  will assume tha t  all hops are the same 
length. The figure gives the proximity for each processor. 

Every processor in the network initially sets its prox- 
imity to d,,,, a constant equal to the network‘s diame- 

ter, or the largest distance between two processors in 
the network. A processor’s proximity is set to zero if it 
becomes lightly loaded. All other processors P, with 
nearest neighbors nl compute their proximity as 

proximity(PJ = min(proximity(nj)) + 1 

A processor’s proximity cannot exceed &=. A system 
is saturated and does not require load balancing if all 
processors report a proximity of d,,,. If a processor’s 
proximity changes, that processor must notify its 
immediate neighbors. Hence, lightly loaded proces- 
sors, reporting a proximity of zero, initiate the load- 
balancing process. The  gradient map of the proximi- 
ties of all processors in the system routes tasks between 
overloaded and underloaded processors. 

The Sender-Initiated strategy 
Here, an overloaded processor (sender) trying to send a 
task to an underloaded processor (receiver) initiates load 
distribution. Derek Eager, Edward Lazowska, and John 
Zahorjan proposed three fully distributed seiider- 
initiated strategies2 The  difference in these strategies 
is the policy used in locating the processors to transfer 
or receive tasks. In the first strategy, the network sim- 
ply transfers a task to a randomly selected processor 
without any information exchange between the proces- 
sors aiding the decision. The  second strategy is similar 
but with the introduction of a threshold value to pre- 
vent tasks from being transferred to an overloaded 
processor. In the third strategy, the network polls a 
number of randomly selected processors and compares 
their load sizes. The network then transfers the task to 
the processor with the smallest load. 

These strategies, however, have several major disad- 
vantages. They have no mechanism to ensure that the 
lightly loaded processor selected is a moderate distance 
away from the heavily loaded processor. Task transfers 
between two distant processors can result in perfor- 
mance degradation during load balancing. Further- 
more, the lightly loaded processor selected on the basis 
of load size might not necessarily be the best candidate, 
because the polling mechanism arbitrarily polls ran- 
domly selected processors. T o  ensure consistency in 
performance comparison with the GM and the RI 
strategies, we have adopted a sender-initiated strategy, 
proposed by Marc Willebeek-LeMair and Anthony 
Reeves,’ which also uses only immediate neighbor state 
information. 
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This sender-initiated strategy uses a nearest-neighbor 
approach with overlapping neighborhood domains to 
achieve global load balancing over the network. A pre- 
set threshold identifies the sender. An overloaded 
processor performs load balancing whenever its load 
level 1, is greater than the threshold value-that is, when 
1, > &,,$. Once the sender is identified using the thresh- 
old, the next step is to determine the amount of load 
(number of tasks) to transfer to the sender's neighbors. 
The average load LdVg in the domain is 

where IP is the load of the overloaded sender, K is the 
total number of immediate neighbors, and lk is the load 
of Processor k .  The network assigns each neighbor a 
weight h k ,  according to 

These weights are summed to determine the total defi- 
ciency Hd: 

K 

Hd = C h k  
k=l 

Finally, we define the proportion of Processorp's excess 
load, which is assigned to neighbor h as tik, such that 

where [xi stands for the largest integer value of x. Once 
the network has determined the quantity of load to 
migrate, it dispatches the appropriate number of tasks. 

Figure 2 shows an example of the SI strategy, where 
surplus load is transferred to its underloaded neighbors. 
Here, we assume that the threshold Lhigh is taken as 10. 
Hence, the network identifies Processor A as the sender 
and does its first calculation of the domain's average load: 

0 + 5 + 20 + 7 + 8 
5 

= 8  Lavg = 

The weight for each neighborhood processor is then as 
follows: 

Processor B c D E 
Weight, h k  8 3 1 0 

Figure 2. Example of SI strategy in a 4 x 4 mesh. 

Summing these weights determines the total deficiency: 

Hd = 8 + 3 + 1 + 0 = 12 

The proportions of Processor A's load that are assigned 
to its neighbors are 

Processor B C D E 
Load, ak 8 3 1 0 

The  final load on each processor is therefore 8. 

The Receiuer-Initiated strategy 
The RI strategy is like the converse of the SI strategy in 
that the receiver, rather than the sender, initiates load 
balancing. Moreover, the threshold value is lower in the 
RI strategy. The underloaded processors in the network 
handle the load-balancing overhead, which can be sig- 
nificant in a heavily loaded network. 

In this strategy, the network identifies, as the receiver, 
a processor whose load size falls below the threshold value 
L,,. The receiver handles task migration by requesting 
proportional amounts of load from immediate overloaded 
neighbors. The network assigns each neighbor k a weight 
h,,, according to the following formula: 

We  sum these weights to determine the total surplus 
H,. Processor p then determines a load portion tik to be 
migrated from its neighbor k:  

Finally, Processorp sends respective load requests to its 
specific neighbors. 

Figure 3 shows an example of the RI strategy, where 
the network transfers surplus load from a processor's 
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Figure 3. Example of RI strategy in a 4 x 4 mesh. 

overloaded neighbors. W e  assume here that the Liow 
threshold is 6 and that Processor A is the receiver. The 
network does its first calculation of the average domain 
load: 

14+13+2+12+9 
5 

= l o  Lavg = 

The weight for each neighborhood processor is then as 
follows: 

Processor B C D E 
Weight, hk 4 3 2 0 

W e  sum these weights to determine the total surplus: 

H , = 4 + 3 + 2 + 0  = 9  

The proportion of load that Processor A requests from 
each neighboring processor is 

Processor B C D E 
Load, & 4 3 2 0 

W e  tabulate the final load on each processor as follows: 

Processor A B C D E 
Load 11 10 10 10 9 

The dynamic load-balancing strategies discussed so 
far use local (neighboring domain) state information to 
guide load distribution. The  processor selection and 
task-transfer policies are distributed in nature: all 
processors in the network have the responsibility of 
achieving global load balance. However, these strate- 
gies do not try to locate the best trans,Gee?Tpartner (desti- 
nation processor). 

A strategy that uses global (network wide) state infor- 
mation can usually identify the most suitable transfer 
partner. W e  now present one such ~ t r a t egy .~  

The Central Task Dispatcher 
strategy 
In this strategy, one of the network processors acts as a 
centralized job dispatcher. The  dispatcher keeps a table 
containing the number of waiting tasks in each proces- 
sor. Whenever a task arrives at  or departs from a proces- 
sor, the processor notifies the central dispatcher of its 
new load state. 

When a state-change message is received or a task- 
transfer decision is made, the central dispatcher 
updates the table accordingly. The  network bases load 
balancing on this table and notifies the most heavily 
loaded processor to transfer tasks to a requesting 
processor. The  network also notifies the requesting 
processor of the decision. With this strategy, there 
could be greater communication overheads with larger 
networks, because the decision making is no longer 
distributed. 

In the original strategy, a processor would send a 
task request when it started its operation with no local 
job or when it became idle. However, in designing the 
simulation environment, we introduced a threshold 
value Ll,,, which is equivalent to the lower water mark 
of the GM strategy. This accounts for scenarios where 
some processors start off with an average load. In this 
case, when a processor’s load goes below Ll,,, the net- 
work embeds the state-change message with a task 
request tag, so that the message serves the dual pur- 
pose of table update and load request at the central 
task dispatcher. 

The Prediction-Based strategy 
In recent years, some researchers have focused their 
efforts on prediction-based, dynamic load-balancing 
~trategies.’,~ These strategies stem from predicted 
process requirements for achieving load balancing. 

The  prediction-based strategy proposed by Kumar 
Goswami, Murphy Devarakonda, and Ravishankar Iyer 
has demonstrated prediction of the CPU, memory, and 
I/O requirements of a process, before its execution, 
using a statistical pattern-recognition m e t h ~ d . ~  How- 
ever, even though the predicted values are close to the 
actual ones, this strategy incurs significant computation 
overheads. Moreover, the prediction mechanism uses 
network-dependent task identifier numbers to tabulate 
the possible resource requirements. 

Other researchers have proposed a strategy that uses 
task-transfer probabilities to predict a processor’s load 
requirements9 Probability models are more realistic, 
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because they can capture a distributed scheduling appli- 
cation's time-varying characteristics. Another advan- 
tage is that the network can estimate a processor7s load 
at any time without querying that processor. We  have 
adopted this strategy in our simulation. 

This prediction-based strategy uses service time S,(t) 
as the load index to perform dynamic load balancing. 
Each processor estimates its own service time for the 
next time interval and broadcasts this information to all 
other processors. During a given time interval At, the 
network can estimate the service time S,(t) by record- 
ing the total time used by the processor i in servicing 
tasks, and the number of task departures completed dur- 
ing that interval. 

Therefore, at a specific time t, we have 

Sj(t) = At / di(t) 

where S,(t) is the service time per task, and d,(t) is the 
total number of task departures in At. Each processor 
distributes this information to all other processors and 
computes the mean service time S,(t): 

sl(t)+S2(f)+K + S n ( t )  
s m  ( t )  = n 

where n is the total number of processors in the net- 
work, and S,(t) is the mean service time for the network. 
Each processor then determines the load status of itself 
and other processors using S,(t), as follows: 

S,(t) > S,(t) heavily loaded 
S,(t) < S,(t) * lightly loaded 

The next step involves determining W(t), the ratio of 
excess service time to the mean service time, on each 
heavily loaded processor i: 

Finally, each processor i computes and maintains a list 
of task-transfer probabilities between itself and all other 
underloaded processorsj in the network: 

Figure 4. The simulator's system configuration 

where L is the total number of lightly loaded proces- 
sors. The  heavily loaded processor selects the lightly 
loaded processor with the highest transfer probability. 
The number of tasks to be transferred is proportional 
to W,(t). 

Simulation model 
W e  have developed a simulator based on a study by 
Songnian Zhou,S which other researchers have further 
verified and examined.j," W e  employ a trace-driven 
simulation approach. In this approach, job traces are 
collected from a production distributed computer sys- 
tem and used to simulate a loosely coupled multi- 
processor network. The distributed system, consisting 
of a Unix-based VAX-1 U780 host, supports both 
research and academic applications of staff and students. 

T o  ensure that the measurements applied to homo- 
geneous processors, we restricted the trace-collection 
efforts to one host. Figure 4 shows the simulator's 
configuration. 

The  task scheduler implements the corresponding 
dynamic load-balancing strategy. It also randomly dis- 
tributes tasks in the network of virtual processors initially 
and handles the runtime migration of tasks. The  task 
scheduler inserts tasks to be migrated back into the task 
queue for rescheduling in a different virtual processor. 

Dynamic load balancing involves two basic types of 
overhead costs. First, the network must measure the 
processors7 current load levels, and exchange messages 
so that other processors recognize them. Second, the 
network must make placement decisions and transfer 
tasks between the processors. The  simulator's design 
includes the following parameters: task size, computa- 
tion cost, communications cost, and task migration cost. 
These vary according to the computing environment or 
platform. On the basis of experimental measurements, 
therefore, we set at 10 milliseconds the cost for com- 
puting various values such as threshold levels or current 
load levels of CPU time. We  assigned a cost of 10 ms 
to the transferring node, and the receiving node took 
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Figure 5. Network topologies: (a) 4 x 4 mesh; (b) 4D hypercube; (c) linear array. 

Figure 6. A composite Fibonacci cube. 

10 ms to process the information. We  assigned 100 ms 
of CPU time for a task transfer for both the sending and 
receiving processors, causing a 200-ms execution delay 
to the task being transferred. 

Zhou’s study has shown that 60 to 65% of the tasks 
have execution times below 500 ms. In most cases, only 
about 25% of network processors have loads a t  least 
10% higher than average. Hence, the tasks used for sim- 
ulation have execution times ranging from 200 to 800 
ms. The  computer system randomly generates each 
task‘s execution time. Each simulation run uses 1,600 
tasks (about 100 tasks per processor node), and two ini- 
tial task-distribution approaches are adopted. The  first 
approach simulates a stable situation, where the network 
randomly assigns about 100 tasks to each processor. The 
eventual outcome is that no idle processor is present in 
the network, and about 25 to 35% of the total proces- 
sors are overloaded. 

The  second task-distribution approach creates a 
highly unstable network system, where some processors 
are heavily loaded and others can have a task size of zero. 
These scenarios let us examine the algorithmic reliabil- 

ity of the load-balancing strategy and the variation in 
topological parameters. 

Performance metrics 
In general, performance is an absolute measure 
described in terms of response time, utilization, or any 
other objective function specified. In our research, per- 
formance analysis represents nomalizedpe$ownance and 
stabilzzatzon tzme. 

Normalized performance n determines the effec- 
tiveness of the load-balancing strategy (such that n + 
0 if the strategy is ineffective and II + 1 if the strategy 
is effective). This is a comprehensive metric; it accounts 
for the initial level of load imbalance as well as the load- 
balancing overheads. We  formally define FI as 

where Tnolb is the time to complete the work on a mul- 
tiprocessor network without load balancing, Topt is the 
time to complete the work on one processor divided by 
the number of processors in the network, and Tbal is the 
time to complete the work on the multiprocessor net- 
work with load balancing. When the load-balancing 
time approaches the optimal time (Tbal --+ To& then n 
+ 1. On the other hand, if load balancing is poor and 
does not improve the network much over the case with- 
out load balancing, then Tbal + Tnolb and II --+ 0. 

Stabilization time or load-balancing time indicates how 
long the network takes to achieve a balanced state where 
no further task transfers are required. Alow stabilization 
time doesn’t necessarily indicate an efficient or compre- 
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Table 1. Network topological parameters. 

NUMBER OF NODES WITH DEGREE 

TOPOLOGY AavG 1 2 3 4 5 6 @A”, 

4 x 4 mesh 2.67 4 
4D hypercube 2.13 
Fibonacci cube 2.41 5 
Linear array 5.67 2 14 

hensive strategy. It could also indicate that, because of 
inadequate information, the load-balanced network is 
suboptimal. Such a network can still have an unevenly 
distributed workload even though the imbalance is insuf- 
ficient to trigger load-redistribution activities. 

Our objective here is not to select the best algorithm 
but to compare the variations in performance of each 
strategy over different network topologies. In particular, 
we are interested in the effects of topological parameters, 
such as interprocessor distances and connectivity, on load- 
balancing performance with varylng load levels. 

Network topologies 
We compare the performances of the five dynamic load- 
balancing strategies on a 4 x 4 mesh, a 4D hypercube, a 
linear array, and the Fibonacci cube. The Fibonacci cube 
is both a subgraph of the hypercube and a supergraph of 
several common topologies (see “Background on 
Fibonacci cube” sidebar). It serves as an interesting com- 
parison with the other three more common topologies, 
which are illustrated in Figure 5. 

The  other network topologies in this research have 
16 nodes. A Fibonacci cube, however, supports only& 
nodes-that is, a Fibonacci number of nodes. Hence, 
the linhng of node pairs with unity Hamming distance 
combines the Fibonacci cubes r6, rS, and r4 to form a 
composite topology of 16 nodes, as Figure 6 shows. 

Topological parameters 
A bop is the distance between any two directly con- 
nected processors in the network. T h e  distance 
between two processor nodes i and j in a network G of 
size Ni s  the number of hops in the shortest path con- 
necting i andj. The  network‘s diameter is the largest 
distance, in terms of the number of hops, between two 
processors. Evaluating the network diameter, however, 
does not give a global picture of the network, because 
a small number of hops can separate many of the net- 
work’s other processors even when the diameter is 
large. An example of this is the 4 x 4 mesh topology, 
which has a diameter of 6. The  average interprocessor 
distance, on the other hand, illustrates the global topo- 
logical view of the network. W e  define the average 
processor distance Aavg as 

4 3.00 
4.00 

8 

7 2 1 1 3.13 
1 88 

16 

___ ~ _ _ _ _ _  ~ _ _ _  

where, for a 4 x 4 mesh, N =  16. 
The node degree is the number of links incident on a 

processor node. By the same reasoning, we define the 
average node degree, denoted by Oavg, as the sum of the 
node degrees divided by the number of network proces- 
sors. Table 1 lists the values of these topological para- 
meters for the four topologies we are considering. 

Intuitively, a network topology with a smaller average 
processor distance has lower communication overheads 
between processor pairs. A network that has a higher 
average node degree has more directly connected neigh- 
bors per processor. 

Simulation results (normalized 
performance) 
Figure 7a (stable network) and Figure 7b (unstable net- 
work) illustrate the simulation results for normalized 
performance versus topology. The  legend for each 
graph shows the representative symbols for the respec- 
tive dynamic load-balancing strategy. 

The normalized performances of the RI, the SI, and 
the GM strategies in a stable network are better than the 
LBC and the Pred strategies for mesh, hypercube, and 
Fibonacci topologies (see Figure 7a). The  first three 
strategies use local domain (immediate connected neigh- 
bors) state information and employ distributed proces- 
sor selection and task-transfer policies. The LBC and the 
Pred, however, use global domain (network) state infor- 
mation and centralized processor selection and task trans- 
fer. In the stable situation with no idle processors and a 
fractional overloading (25 to 3 S%), the network localizes 
load-balancing activities to arbitrary regions, favoring 
distributed policies that use local domain information. 

In the linear array, however, the communication over- 
heads and the reduction in local-domain computational 
resources incurred because of the structure’s linearity 
take their toll on these strategies, causing the perfor- 
mances of the RI, the SI, and the GM to fall below those 
of the LBC and the Pred. The  LBC strategy, using a 
centralized dispatcher, is less significantly affected 
by topological parameter variations for networks of 
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similar size. In additlon, the higher accuracy of the trans- 
fer processor identification in the LBC outweighs the 
overheads incurred. Notwithstanding, there is also per- 
formance degradation. 

The Pred strategy, like the GM, requires periodic state 
updates on processors and uses distributed processor selec- 
tion and task-transfer policies. On average, however, the 
processor selection of the Pred is more accurate than with 
the GM, enabling the Pred to partially overcome the topo- 
logical constraints and perform slightly better. 

In an unstable network (see Figure 7b), the extent of 
load balancing increases. The ranking changes, with the 
IU strategy still maintaining the lead but now being fol- 
lowed by the LBC and the Pred. Here, a processor- 
selection policy of higher accuracy produces better load 
balancing. The accuracy of selection heavily depends on 
the domain information’s comprehensiveness, a depen- 
dency that favors the global domain schemes of the LBC 

and the Pred. Nevertheless, the greater communication 
and computation overheads caused by the frequent state 
information broadcasts and updates lets the RI strategy 
maintain its lead. 

The results show that in all strategies, regardless of the 
network situation, network topologies with lower Aavg and 
lxgher Ocivg yield better performances. A lower Aavg mini- 
mizes communications overhead and therefore task migra- 
tion costs. A higher O,, means more computational 
resources in the local domain are available, favoring the 
dissemination and exchange of local domain information. 

Simulation results (stabilization 
time) 
Figure Sa (stable network) and Figure Sb (unstable net- 
work) illustrate simulation results for stabilization time 
versus topology. 



For a given topology, the stabilization time required 
by a load-balancing strategy depends on the loading of 
processors responsible for the task transfer. For the sta- 
ble situation (Figure 8a), the KI and the LBC strategies, 

Table A. Fibonacci code representations. 

DECIMAL NUMBER FIBONACCI NUMBER FIEONACCI CODE 

0 0 000 000 
1 1 000 001 

1 000 01 0 3 

~~ 
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where lightly loaded processors invoke task transfers, 
have a longer stabilization time. This is because these 
strategies employ lower threshold values than do the SI, 
the GM, or the Pred strategy. The network invokes the 
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Table 2. Execution times (ms) in a stable network. 

TOPOLOGY GM SI RI LBC PRED No LB 

Mesh 29,683 29,460 28,784 30,084 30,428 32,529 28,162 
Hypercube 29,547 28,960 28,507 29,900 30,206 32,529 28,162 
Fibonacci 29,666 29,371 28,644 29,781 30,064 32,529 28,162 
Linear 30,896 30,420 30,297 30,131 30,690 32,529 28,162 

~~ ~ ~~ ~ ~~ ~ ~ 

Table 3. Execution times (ms) in an unstable network. 

TOPOLOGY GM SI RI 

Mesh 31,962 31,573 30,788 
Hypercube 31,815 31,515 30,334 
Fibonacci 31,907 31,558 30,412 
Linear 32,454 32,410 31,302 

task-transfer process as long as there are processors 
whose task size is above the threshold value. 

Of the last three strategies, the Pred generally has the 
most accurate processor-selection policy. Hence, this 
strategy can stabilize more quickly than the GM. The SI 
strategy, however, has the lowest stabilization time of 
the three, because the sender initiates the load-balancing 
only when an upper load threshold is exceeded. In the 
stable situation, most processors are moderately loaded 
and therefore do not exceed the upper load limit to trig- 
ger load-balancing activities. However, even when a net- 
work has stabilized, it might not be as effectively load- 
balanced as, for example, a network balanced by the Pred 
or the LBC strategy. 

In the unstable network (Figure fib), the average sta- 
bilization times of all strategies increase, as expected. 
The relative ranlungs of all strategies remain, except for 
the SI strategy. The stabilization times in the mesh, the 
hypercube, and the composite Fibonacci cube degrade 
more with this strategy than with the Pred or the GM 
strategy. 

We have mentioned previously that the load-balancing 
activities in the SI strategy are sender-initiated. In the 
unstable situation, more processors have load levels that 
exceed the upper threshold, thereby increasing the load- 
balancing time. This situation is not reflected in the lin- 
ear-array network, where the load redistribution activities 
in the SI occur over localized regions of the network 
(explained earlier), but in the Pred and the GM they occur 
network-wide. Therefore, the communication overheads 
introduced by the linearity of the structure are minimized 
in the case of the SI strategy. 

In both stable and unstable network situations, the 
stabilization times remain minimal in the hypercube and 
the composite Fibonacci cube, and are maximum in the 
linear array. The results support and verify our earlier 
deductions of interconnection topologies with shorter 
Aavg and higher 0,. The shorter average processor dis- 

34 

LBC PREO No LB 0 PT 

31,075 31,419 35,498 28,162 
30,840 31,236 35,498 28,162 
30,686 31,005 35,498 28,162 
31,119 31,654 35,498 28,162 

tance typically minimizes stabilization times directly by 
shortening the task migration path. The higher average 
node degree supports strategies relying on local-domain 
computational resources. 

he simulaQon results show that topologies 
with larger average processor distances 
and lower average node connectivity 
introduce significant communication 
overheads during the load-balancing 

process. Because of a lack of direct links between proces- 
sor nodes, task transfers need to traverse, on average, more 
intermediate processors before reaching the destination 
node. More local-domain computational resources will 
also be available if a processor has direct links to more 
nodes. The situation worsens as the load imbalance 
increases. 

All five strategies perform best in the hypercube and 
the composite Fibonacci cube. The same observation 
applies to the performance of the application as a whole, 
as Table 2 (stable network) and Table 3 (unstable network) 
illustrate. These tables show the execution times for each 
load-balancing strategy in each network topology. 

This research shows that varying physical parameters 
in an interconnection network topology significantly 
affect the performance of a dynamic load-balancing 
strategy, regardless of that strategy’s approach or the 
network load levels. We  are now workmg to extend our 
findings to develop a fault-tolerant, variable-architecture 
load-balancing platform. 
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