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Abstract

A finite-state vector quantizer is a finite-state machine that can be viewed as a
collection of memoryless full-searched vector quantizers, where each input vector is en-
coded using a vector quantizer associated with the current encoder state; the current
state and selected codeword determine the next encoder state. It is generally assumed
that the state codebooks are unstructured and have the same cardinality leading to
a fixed-rate scheme [1]. In this paper, we present two variable-rate variations of the
scheme in [1] with the possibility of using structured as well as unstructured state
codebooks. In the first scheme, we let the state codebook sizes be different for different
states, implying different rate distribution among the states. In the second scheme,
in addition to this flexibility, we use pruned tree-structured vector quantizers as the
state quantizers, i.e., we let each of the state quantizers be a variable-rate encoder.
For encoding sampled speech data, both of these schemes perform significantly better
than the fixed-rate scheme of [1]. The second scheme gives the best performance of
all; performance improvements of up to 4.25 dB at the rate of 0.5 bits/sample are
obtained over the scheme in [1].

We also consider the 2-D extension of the above mentioned schemes and describe
two low bit rate image coding systems based on these schemes. The first system
subtracts the mean from each input block and then encodes the mean-subtracted
block by means of the 2-D versions of fixed-rate and variable-rate finite-state vector
quantizer; the block-mean is separately encoded in an efficient manner by exploiting
the high correlation present in the means of adjacent blocks. In the second system, a
prediction is made on each pixel using a 5**-order predictor and the residual is again
encoded using the 2-D versions of the fixed-rate and variable-rate finite-state vector
quantizer. At a bit rate of 0.3 bits per pixel, a peak signal-to-noise ratio in excess
of 31 dB is achieved for encoding the 512 x 512 version of “Lena” using the schemes
employing variable-rate finite-state vector quantizers.

T This work was supported in part by National Science Foundation grants NSFD MIP-86-57311 and
NSFD CDR-85-00108 and in part by a grant from General Electric Company.

iCurrently on sabbatical leave at Ecole Nationale Superieure des Telecommunications, Paris, France.






1 Introduction

In the last decade an extensive amount of work has been done on vector quantization
(VQ) as a means for data compression [2]-[6]. The main motivation behind the use of
VQ was the result by Shannon [7] that VQ can attain performance close to the “best
possible” in the rate-distortion theoretic sense in the limit when the block length goes to
infinity. In a practical situation, however, we can only consider finite block lengths, and
practical VQ systems fall short of achieving the best, while still performing much better
than scalar quantizers. The main reason for the superior performance of V() over scalar
quantization is that VQ exploits the correlation between the components of the vector, while
scalar quantization does not. Although the performance of the VQ at a given rate can be
improved by increasing the vector dimension, the resulting complexity places a practical
limit on how large a block size can be used. An alternative way to improve the performance
of VQ (besides increasing the block size) for a given rate is to incorporate memory in the
VQ structure [2]. One such technique is finite-state vector quantization (FSVQ) [1], [2],
[8], which is basically a time varying V(Q. There is a super-codebook that contains a very
large number of codevectors and there is an internal state which accurately represents a
small region (with a small sized subset of the super-codebook covering this region) that
contains the source vector at any given time. Thus FSVQ achieves the efficiency of a large
rate codebook at a relatively small rate.

In {1], the FSVQ was introduced and used to encode two sources with memory, namely
the 1%*-order Gauss-Markov source and sampled speech waveform; performance improve-
ments were observed as compared to the ordinary memoryless VQ (LBG-VQ). Then in
[8], a technique based on adaptive stochastic automata theory was introduced that led to
an improved design algorithm for FSV(Q and an application of FSV(Q) was made to voice
coding. Several schemes based on FSV(Q have also been reported in the image coding lit-
erature. In [9] and [10], FSVQ was used to encode still images where the state was used to
exploit the correlation in the spatial domain; over 50% saving in bit rate is achieved over
LBG-VQ. In [11] and [12], FSVQ was used in coding image sequences where the state is de-
fined to exploit temporal correlation; again a saving of over 50% is achieved over intraframe
LBG-VQ.

In the FSV(Q systems mentioned above, the state codebooks are all assumed to have the
same cardinality and hence the same bit rate. This, in a loose sense, implies that all the
states are treated with approximately equal degree of fidelity. Such a restriction limits the
performance of the FSVQ which has the potential of doing better. In this paper, we have

relaxed this assumption and have considered an FSV() scheme with different codebook sizes
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for different states while constraining the average bit rate. This modification has resulted
in performance improvements (in some cases substantial) in terms of signal-to-noise ratio.
We have also considered the possibility of using structured VQs such as the tree-searched
VQ (TSVQ) [13] and optimally pruned unbalanced TSVQ (UTSVQ) [14] as the state
guantizers. In fact, the scheme using UTSVQ) as state quantizers and with the flexibility
of having variable bit rate assignment among the states performs the best amongst all the
schemes considered in this paper, as will be shown by the simulation results.

In order to facilitate the presentation and avoid using long names for different kinds of
systems described in this paper, we will use appropriately defined acronyms. Furthermore,
as an aid to remember the correspondence between different acronyms and their respective
systems, we provide the notation tree of Figure 1. In this figure, FSVQ refers jointly
to fixed-rate as well as variable-rate finite-state vector quantization; fixed-rate FSVQ is
denoted by FR-FSVQ while variable-rate FSV(Q is referred to by VR-FSVQ. Furthermore,
FR-FSVQ with LBG-VQ as state quantizers is called F'S-VQ and when TSVQs are used
as state quantizers then the FR-FSV(Q system is referred to as FS-TSVQ. Similarly, VR-
FSVQ with LBG-VQ is called VFS-VQ and the one with TSV() as state quantizers is
named VFS-TSVQ; finally, we use VFS-UTSVQ to denote VR-FSVQ with UTSVQs as
state quantizers.

This paper can be basically divided into two parts. In the first part, we describe the
1-dimensional (1-D) versions of various FR- and VR-FSVQs mentioned above and use them
to encode sampled speech and a synthetic source described in Section 4. In the second part
of the paper, we consider 2-dimensional (2-D) extensions of various I'SVQ systems and
their application to low bit rate image coding. It is shown by means of simulations that
the image coding systems using VR-FSVQ give good performance results at low bit rates
of 0.25-0.30 bits/pixel.

The rest of the paper is organized as follows. In Section 2, we provide the definition
and design algorithm for FR-FSVQ with both structured and unstructured codebooks.
The description and design algorithm for VR-FSV(Q is provided in Section 3, while the
simulation results of the various FSVQ based systems on 1-D sources like sampled speech
waveform and a switched Gauss-Markov source are given in Section 4. Following that, we
consider 2-D extensions of FR-FSVQ and VR-FSVQ in Section 5 and describe two low bit
rate image coding systems based on 2-D FSVQ systems in Section 6. Section 7 provides the

simulation results on images and finally a summary and conclusions are given in Section 8.



2 Fixed-Rate Finite-State Vector Quantization

In this section, we briefly provide the description and design algorithm of FR-FSVQ with
both structured and unstructured state codebooks. We first provide the definition and de-
sign algorithm for FR-FSVQ with unstructured codebooks (denoted by FS-VQ). Following
that, we will consider FR-FSVQ with tree-structured codebooks (denoted by FS-TSVQ).

2.1 Definition of FS-VQ

An L-dimensional K-state FS-VQ [1] is specified by a state space § = {1,2,..., K}, an
initial state sp and three mappings:

(1) a: R* x § — N: finite-state encoder,

(2) B: N xS — A: finite-state decoder,

(3) f: N x8 — S: next state function.
Here, N 2 {1,2,..., N} is the finite channel alphabet of size N and A is the reproduction
space.

Let {x,}22, denote the input vector sequence, where x, € RY. Similarly let {u,},,
{sn}22, and {X,}2, denote the channel symbol sequence, state sequence and reproduc-
tion vector sequence, respectively. With initial state sg, the input process determines the

sequence of channel symbols, reproduction vectors and states according to:

Up = (X, 8n), n=0,1,..., (1.a)
Xp = ﬁ(umsn)a n= 07 ]’ 3 (1 b)
Sn+1 = f(un,8n), n=0,1,.... (1.c)

Note that the next state depends only on the present state and the output channel symbol,
and therefore, given the initial state and correct channel symbol sequence, the decoder can
track the state sequence. The collection Cy 2 {B(u,k),u € N'} is the codebook associated
with state k; obviously, A= UX., Ci. For a given state space S and a channel alphabet A,
the mapping 3 can be stored as a look-up table for a given F'S-VQ. The rate of an FS-VQ
is given by R = log, N, bits/vector.

The encoder mapping is specified in terms of a distortion function that is used to
measure the performance of the FS-VQ. The distortion measure d : R* x A — [0, 00)
assigns a non-negative cost d(x,%) to reproducing the input vector x as X. Then the

encoder is specified by the minimum distortion rule [1]

a(x, k) = arg n'élj\rfl d(x, B(u,k)), Yk € S. (2)
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An FS-VQ can be interpreted as a set of K LBG-VQs (one LBG-VQ associated with
each state), each of codebook size N [2], [3]. The current input vector is vector-quantized
using the LBG-VQ associated with the current state of the system; the current state and

channel symbol determine the next state.

2.2 Design Algorithm of FS-VQ

Given a training sequence {x,, n =0, 1,...} and a distortion measure, the design algorithm
for an L-dimensional, K-state FS-VQ of rate R = log, N, bits/vector consists of designing:
(a) the state codebooks Ci for FS-VQ, each of size N, and (b) the next-state function
f(u,k),u € N, k € S. Following [1], the design algorithm can be described in four steps

as described below.

1. Design an LBG-VQ [3] with K codevectors for the given training sequence. We refer
to this VQ as the state-label VQ, C = {c(k),k € S}.

2. For each state k of the FS-VQ, design an initial reproduction codebook C; =
{B(u, k),u € N'} using the LBG algorithm [3] on the subtraining sequence composed
of all successors to vectors which are represented by k if quantized by the state-label
VQ, i.e., the subsequence {x, : k = argminses d(x,-1,¢(s))}. Thus each codebook
Ci 1s designed to be good for vectors which will occur next if the FS-VQ) is currently
in the ideal state k.

3. The ideal state k in step (2) depends on the input vector and therefore the decoder at
the receiver side will not be able to track the ideal state sequence. In order to enable
the decoder to track the state sequence (without transmitting any overhead infor-
mation), we choose the next state as the label which best matches the reproduction
of the current input vector rather than the current input vector itself. Thus given
the state labels c(k) and the decoder § designed in step (2), we define a next-state
function f by

flu, k) = argrsréiéld(ﬂ(u, k),c(s)), ke S,ueN. (3)

4, Attempt to improve the state codebooks {Ci, k € S} of the FS-VQ by encoding the
training sequence using the next-state function obtained in step (3) and updating each

codevector by replacing it by the centroid of the cell associated with that codevector.
Also update the state-label VQ C similarly [1].

In most cases further improvements are possible by iterating steps (3) and (4). The algo-

rithm described above does not necessarily converge and in fact it does not even guarantee
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improved performance at each step of iteration. However, the FS-VQs designed with this
algorithm exhibit substantial gain over LBG-VQs in both waveform coding and vocoding
applications [1], [8].

2.3 FR-FSVQ Based on Tree-Structured Vector Quantizer

A finite-state tree-structured vector quantizer (FS-TSVQ) is specified in a manner very
similar to FS-VQ. Associated with each state, we now have a TSVQ rather than an LBG-
VQ. The encoding is accordingly done in a tree-structured manner. In particular, the
encoder mapping « : RF x & - N for FS-TSVQ differs from that of the FS-VQ; rather
than computing the index of the minimum-distortion codevector in the state codebook,
we now encode the input vector using the state TSV(Q and the output channel symbol
is the index of the codeword resulting from the TSVQ encoding. The main advantage of
this scheme is the complexity reduction in the encoding obtained due to the structured
nature of the state codebooks without much loss in performance. The design algorithm for
FS-TSVQ is very similar to that of FS-VQ given in Subsection 2.2. The only difference lies
in the encoding procedure as mentioned above and in step (2) of the algorithm, where we
now design a TSVQ for each state instead of an LBG-VQ. As in the case of FS-VQ, the
design algorithm for FS-TSVQ does not necessarily converge and there is no guaranteed
performance improvement at each step of iteration.

In the FS-VQ design algorithm presented by Foster et al [1], all the state codebooks are
assumed to have the same cardinality and in order to design a rate R, bits/vector FS-VQ,
the cardinality of each state codebook is assumed to be 2%. In the next section, we drop this
assumption and present a modified FS-VQ system (and also a modified FS-TSVQ system),
in which the state codebook sizes are allowed to vary from state to state; this leads to
performance gains (in some cases substantial). We also consider a second variation of the
FS-VQ system in which UTSVQs obtained by optimal pruning of complete TSVQs [14] are

used as state VQs and state rates are not constrained to be the same for all the states.

3 Variable-Rate Finite-State Vector Quantization

So far, the state VQs were assumed to have the same cardinality (and hence the same bit
rate). Roughly speaking, this assumption implies that the source vectors are encoded with
more-or-less the same degree of fidelity regardless of the state. This assumption may be
unnecessarily restrictive in certain applications where some types of source vectors should

be quantized more finely than some others (e.g., in speech coding silence periods can be



quantized quite coarsely). In what follows we relax this assumption and let the rates of

state VQs vary from state to state subject to a constraint on the average encoding rate.

3.1 Definition of VR-FSVQ

A VR-FSVQ is specified by a state space S = {1,2,..., K}, an initial state so and three
mappings as follows:

(1) @ : RF x & = N(S): finite-state encoder,

(2) B: N(S) x S — A: finite-state decoder,

(3) f: N(S) xS — S: next state function.
Here the channel alphabet depends on the state (M (k) for state k) and, in general, is
different for each state. Hence the system becomes a variable-rate system. Accordingly,
the rate of the system is defined by B = Y.k, Pyby, bits/vector, where by is the average
rate of the quantizer associated with state k£ and Py is the probability of occurrence of
state k. The operation of VR-FSV(Q is the same as that of FR-FSVQ. It can again be
interpreted as a set of K state quantizers, one associated with each state and the bit rate
of the quantizer associated with state k is b;. The current input vector is encoded using
the quantizer associated with the current state of the system; the current state and the

channel symbol determine the next state. In the sequel, we will refer to the variable-rate

versions of FS-VQ and FS-TSVQ by VFS-VQ and VFS-TSVQ, respectively.

3.2 Design of VFS-VQ

A VFS-VQ differs from an FS-VQ due to the fact that now the bit rates associated with
different state codebooks are not constrained to be same. As a consequence, state code-
book sizes become an additional set of variables in the design stage of VFS-VQ. Once the
codebook sizes associated with states are determined, the design algorithm for VFS-VQ can
be described along the lines of the design algorithm for FS-VQ. The bit-rate assignment
(codebook size determination) is done using the concept of optimal pruning of TSVQ [14]
described next. Following that, we describe the bit assignment algorithm and the complete

design algorithm for VFS-VQ.

3.2.1 Optimal Pruning of a TSVQ

Consider a complete binary T'SVQ of rate ! bits/vector. Corresponding to this TSVQ), there
is a complete binary tree of depth [ with 2! leaves. Associated with each interior node (not

including the root node) and leaf of the tree, there is a codevector (reproduction level), a



probability and a conditional expected distortion. By pruning off various branches of the
tree, a variable-rate TSVQ or an unbalanced TSVQ (UTSVQ) is obtained. The codebook
of the UTSVQQ is the set of the codevectors associated with the leaves of the pruned tree.
The quantizer’s average rate is the sum, over all the leaves, of the leaf probability times
the length from the root to the leaf. The quantizer’s average distortion is the sum, over all
the leaves, of the leaf probability times the conditional expected distortion associated with
the leaf.

Now suppose 7 is a large tree corresponding to a complete (completeness is not manda-
tory) TSVQ, then every pruned subtree P of 7 (P =< 7T) defines a UTSVQ with average
rate {(P) and average distortion §(P). The operational distortion-rate performance defined
by

D(R) = min{6(P)/U(P) < B} @

specifies the optimal trade-off between rate and distortion over all pruned subtrees of 7.
A reinterpreted version of an algorithm developed in the context of classification and re-
gression trees [15] is presented in [14] which traces out the convex-hull of the operational
distortion-rate performance. The algorithm given in [14] is quite general and if é is any
monotone decreasing real-valued function defined on trees (i.e., if P; < P; < T, then
0(P1) = 6(Pz)) and ¢ is any monotone increasing real-valued function defined on trees,

then the algorithm gives the optimal trade-off between £ and é over all pruned subtrees of
7.

3.2.2 Bit Rate Assignment Algorithm

Suppose we are given K sets of collection of codebooks {Ci,: = 1,2,...,M}, k € S,
one set associated with each state. Let the rate and average distortion associated with Cj
be given by Ry; and Dy g, ;, respectively. Also let Ryy < Rpo < ... < Rpmy, Vk € S.
Then, Dire, 2 Dipry, 2 -+ 2 Diry sy, , Yk € S. Given the set of codebooks {Ci, 0 =
1,2,..., My}, k € S, we want to choose a codebook of bit rate by from each set as the state
codebook of the VFS-VQ), i.e., determine the bit rate assignment map (6,65, ...,5%) (not

necessarily integers) that minimizes the average distortion given by

K

D=3 P.Dy,, (5.a)
k=1
subject to
K
Z Pkbk S bavga (5b)
k=1



and

bk c {Rk,l, Rk,z, ey Rk,Mk}- (5C)

The above bit assignment problem can be solved using the idea of optimal pruning of
a TSVQ as follows: We first construct a tree 7 (see Figure 2) the root node of which has
K children, one per state, and the subtree rooted at each child k is a unary tree of length
Mj, . Thus we have K branches, each associated with a state, coming out of the root node
of the tree. Let each node of the branch associated with state k correspond to a codebook
from {C}, 1 =1,2,..., M} and hence to a rate-distortion pair; the node closest to the root
of the tree has rate 1 bit/vector (and distortion Dy;) and in increasing order the node
farthest from the root node has rate Ry ps, (and distortion Dk:Rk,Mk)'

Let P be a pruned subtree of 7 with the branch associated with state k of length Ij.
Corresponding to this pruned tree P, we construct a VFS-VQ system with C,lf as the state
codebook associated with state k, Vk € S. We assume for the moment that the next-state
function is given to us; the problem of determining the next-state function is considered in
the next subsection. Then the rate of the VFS-VQ associated with P is given by

K

{P)=>" PRy, (6)

k=1
and the average distortion is given by

K
6(P) = Z Pkaka,lk . (7)

k=1
The optimal pruning algorithm of [14], when applied to the tree 7 constructed above

gives the optimal pruned subtree P* and hence the bit rate assignment map (6,83, . .., b%)
that minimizes 6(P) subject to ¢(P) < by, over all P <X 7.

3.2.3 Design Algorithm for VFS-VQ

Let Dy, denote the average distortion incurred in state & when the rate of the quantizer
associated with state k is by bits/vector. Then we wish to minimize the average distortion
given by
K
D =Y PiDyy,, (8)
k=1
subject to a constraint on the average rate described by

K
Z Pkbk S bav97 (9)

k=1



by appropriately designing the bit assignment map (b3,03,...,b%), the state codebooks
{Ck, k € 8} for VFS-V(Q and the next state function. An additional constraint implicitly

assumed is that the rate (in bits/vector) associated with each state quantizer is constrained

to be an integer. The design algorithm consists of the following steps:

1.

For the given training sequence, design the state-label VQ, C = {c(k),k € S}, using
the LBG algorithm [3].

For each state k, construct the subtraining sequence consisting of the subsequence
{x, : k = argminses d(Xn-1,¢(s))}. Then, for each state k, design LBG-VQs of
rates 1,2,... ,bpaz s ! bits/vector. We denote the set of VQs by {Ci,k € S,: =
1,2,..., My = bz}

Find the optimum bit assignment map (b7, 8,...,b%) using the algorithm described
in Subsection 3.2.2. The state codebook used for state £ will be Cz’t = {B%(u, k),u €
{1,2,...,2%}} for VFS-VQ, where (3% is the finite state decoder, associated with
state k, with channel alphabet {1,2,...,2%}.

As in the case of FS-VQ, the next-state function f is defined as

flu, k) = argmin,es d(B%(u, k), c(s)), k€ S,u € {1,2,...,2%}. (10)

Encode the entire training sequence using the next-state function f and the state
codebooks {Cz’:, k € S8} for VFS-VQ. After encoding, update the state-label VQ by
replacing each c(k) by the conditional centroid of the cell associated with it. As a
result of encoding, each state k has a subtraining sequence associated with it given by
the subsequence {x, : k = f(a(Xn-1,8n-1),8n-1)}. It differs from the subsequences

of step (2) due to the introduction of the next-state function in the encoding process.

For all k € S, update the codebooks {Ci,i € {1,2,...,bnazr}} by encoding the
training sequence associated with state k and replacing each reproduction level of Ci
by the conditional centroid of the cell associated with the codevector. Then repeat
steps (3), (4), (5) and (6) for some predetermined number of iterations or until conver-
gence. Then among all quantizers obtained select the one with the best rate-distortion

performance.

lbmax,k is determined based on the size of the subtraining sequence associated with the state k. It is

determined such that each quantizer bin is richly populated so that the codevector associated with that
bin is a meaningful representative of the training vectors assigned to that bin.
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As in the case of FS-VQ, the design algorithm does not necessarily converge and it
does not even guarantee improvement at each step of iteration. However, the system
obtained using this algorithm performs better than FS-V(Q as will be shown by the results

in Section 4.

3.3 VR-FSVQ Based on TSVQ

As in the fixed-rate case, we can describe a VR-FSVQ based on TSVQ (VFS-TSVQ) as a
VFS-VQ in which each state LBG-VQ is replaced by a TSVQ. Again the advantage of VFS-
TSVQ over VFS-VQ is the computational complexity reduction without much performance
loss. The design algorithm for VFS-TSVQ is the same as described in Subsection 3.2.3
except that step (6) in the algorithm is replaced by the following step (6'):

6.  TFor all k € S, redesign the TSVQ codebooks {Ci,i € {1,2,...,bnasr}} by using the
training sequence associated with state k. Then repeat steps (3), (4), (5) and (6)
for some predetermined number of iterations or until convergence. Then among all

quantizers obtained select the one with the best rate-distortion performance.

In the step 6 of the design algorithm of VFS-VQ), the state codebooks are not redesigned;
they are just updated (each codevector is replaced by the centroid of its respective encoding
cell) once. In case of designing VFS-TSVQ, however, state codebooks are redesigned in
step 6', which is practical due to the lower computational complexity of designing TSVQ
as compared to designing LBG-VQ of the same rate.

3.3.1 VR-FSVQ Based on UTSVQs

In another variation of the FS-V() scheme, we consider a system in which the state quan-
tizers are optimally pruned UTSVQs obtained using the algorithm in [14]. We also have
the flexibility of having different rates for different states. The main motivation behind
using such a scheme was the superior performance of the optimally pruned UTSVQ over
LBG-VQ along with the additional advantage of fast encoding due to the tree-searched
method. In this scheme, even for a given state, the quantizer is a variable-rate encoder; for
VFS-VQ (VFS-TSVQ) the rate varies between states but is fixed within each state. We
refer to the new scheme as VFS-UTSVQ. The system is formally described in the same
way as VFS-TSVQ. The design algorithm is also similar to that of VFS-TSVQ with step
(2) modified in the following way:

2. For each state k, we design a complete TSVQ of rate ?)maz,k, where ?)mw,k is deter-

mined in the same way as bjq45% 15 determined in the design of VI'S-TSVQ. Then,
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using the optimal pruning algorithm of [14] on each of the complete state TSVQs, we
obtain K sets of collection of optimally pruned UTSVQs. The rate of the optimally
pruned UTSVQs associated with state k varies from 1 bit/vector to i)max,k bits/vector
and takes finitely many values which are not necessarily integers; the fact that rates
are not constrained to be integers as in VFS-VQ (VFS-TSVQ) leads to an additional
improvement factor. Then we apply the bit assignment algorithm on the collection of

K sets of optimally pruned UTSVQs to obtain the optimal bit rate assignment map
(03,05, ...,0%).

The remaining steps of the algorithm are identical to the design algorithm of VFS-TSVQ.
Again, the algorithm is suboptimal but the final system obtained using this algorithm gives

performance gains over all other schemes considered in this paper.

4 Simulation Results for 1-D Sources

We performed extensive simulations to compare the variable-rate FSVQ systems described
in this paper with the FS-VQ scheme described in [1]. The performance comparisons were
made for two kinds of 1-D sources: (i) a synthetic switched Gauss-Markov (G-M) source and
(ii) sampled speech waveform. The algorithms described in the previous sections were used
to design F'S-VQ, FS-TSVQ, VFS-VQ, VFS-TSVQ and VFS-UTSVQ. Since the algorithms
did not necessarily converge, we carried out 20 iterations for each scheme and chose the
best case. The performance measure used is the signal-to-quantization-noise ratio (SQNR)
in dB. All results are obtained for vector dimension L = 8 and number of states K = 8, 16

and 32. In the sequel, we denote by b the average bit rate per sample.

4.1 Results on the Synthetic Source

For a simple stationary source such as the 15-order G-M source with correlation coeflicient
0.9, we found experimentally that FR-FSVQ achieved a gain of about 1 dB over LBG-VQ
in terms of SQNR. However, the performance of all VR-FSV(Q schemes were found to be
quite close to that of FR-FSVQ. For this simple source, it is observed that the performance
of FS-VQ is within 1.0-1.6 dB of the rate-distortion function for the rates considered in this
paper and therefore, we do not expect the variable-rate versions of FSVQ to achieve any
significant gain over FS-VQ. Similar observations were made in a slightly different context
by [14] for this G-M source. Therefore, for benchmarking purposes, we have considered a
synthetic, more complex switched source in which at the beginning of each switching period

a hidden mechanism chooses, according to a Markovian transition, between two 1%¢-order
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G-M sources with different variances; in [14], a similar switched source (however, with
memoryless subsources) was considered. For the example given here, the switch transition

probability matrix is chosen as

( Poo Poa ) 3 ( 0.98 0.02 )

P1o Pia 0.02 0.98

where p; ; is the probability of switching from subsource i to j, V 7,7 = 0,1. For both
G-M subsources, the correlation coeflicients were taken to be 0.9; the variances of the two
sources were chosen to be different by a factor of 1000. The training sequence consisted of
150,000 vectors. For testing, a different sequence of 150,000 vectors was used.

Table 1 shows the performance of FS-VQ. The LBG-VQ performance results are also
included in the table for comparison. For K = 8, FS-VQ performs better than LBG-VQ
by about 0.6-0.9 dB and the gain increases with K. Table 2 summarizes the performance
of FS-TSVQ and TSVQ. As compared to FS-VQ, FS-TSVQ performs slightly worse due
to the use of TSVQ in place of LBG-VQ.

Tables 3 and 4 summarize the performance of VFS-VQ and VFS-TSVQ, respectively.
In these and subsequent tables, the numbers in parentheses indicate the achieved bit rate
while b is the design bit rate. The performance improvements of the VFS-VQ (VFS-TSVQ)
over the FS-VQ (FS-TSVQ) schemes are evident. Finally, Table 5 contains the performance
results for VFS-UTSVQ, which performs the best among the five schemes. As compared
to the second best scheme VFS-VQ, it achieves about 0.15-0.5 dB gain in terms of SQNR.
Also, for comparison purposes, we have included the results of UTSVQ [14]. As a result of

using finite-state vector quantization, a gain of over 1.5 dB in terms of SQNR is achieved

over UTSVQ.

4.2 Results on Sampled Speech

The training sequence used consisted of five minutes of speech sampled at 8 KHz and
uttered by five male and three female speakers.

The performance of FS-VQ) is summarized in Table 6. Also for comparison, we include
the performance results of LBG-VQ. As observed in [1], the FS-V(Q scheme outperforms
the LBG-VQ by over 2 dB and the gain increases with the number of states. Table 7
summarizes the performance of FS-TSVQ. In this case, as compared to FS-VQ, a slight
degradation of performance can be observed. In general, however, the trend is similar to
that of F'S-VQ. In most cases, FS-TSVQ yields a SQNR within 1.0 dB of FS-VQ.

Table 8 summarizes the performance of VFS-VQ for different values of b and K. Com-
parison of Tables 6 and 8 indicates that at the same bit rate, VFS-VQ outperforms FS-VQ,
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in general, by about 2.5 dB. Note that the discrepancy between the desired rate and the
achieved rate decreases with the increase in the number of states; when the number of
states is relatively small, the number of achievable points on the convex-hull given by the
pruning algorithm in [14] is small.

The performance of VFS-TSVQ is illustrated in Table 9. It should be noted that
the difference between the performance of VFS-TSVQ and VFS-VQ is smaller than the
difference between FS-TSVQ and FS-VQ. The reason resides in the limitation on the size
of the largest LBG-VQ (2048 codevectors in codebook) needed for VFS-VQs; this limitation
is less severe for TSVQs.

Finally, we include the performance results of VFS-UTSVQ in Table 10. This system
gives the best performance results among all the schemes considered in this paper. For
all values of K considered here, VFS-UTSVQ outperforms FS-VQ by at least 3 dB and
by as much as 4.25 dB for b = 0.5 bits/sample and higher. In order to visually compare
the performance of the different systems, their rate-distortion performance on the training
sequence are illustrated in Figure 3, clearly demonstrating the superior performance of the
variable-rate based schemes.

The performance of various FSVQ schemes on an out-of-training test sequence is sum-
marized in Tables 11-15. The test sequence was 67 seconds of speech uttered by a male
speaker and sampled at 8 KHz. These results are also depicted in Figure 4. Study of these
tables shows that even for out-of-training data, variable-rate FSVQs outperform their fixed-
rate counterparts. It is important to note that in the variable-rate schemes, while the SQNR
degrades for the out-of-training sequence, the actual bit rate is also lower than the design
rate b. Comparison at the same bit rate (see Fig. 4) shows a gain of as much as 3 dB for
VFS-UTSVQ and 2.4 dB for VFS-VQ and VFS-TSVQ over the fixed-rate FSVQs. For the
variable-rate schemes, a simple feedback mechanism can be used to sense the instantaneous
output rate and adjust the bit rate accordingly by adjusting the encoder structure slightly; a
feature that does not exist in a fixed-rate system. More interestingly, for the VFS-UTSVQ
system, the bit rate adjustment can be achieved simply by adding/pruning branches of
state codebooks. This is an additional important advantage over other variable-rate FSVQ

systems (besides giving better performance at the same rate).

5 Extension to 2-D and Image Coding Applications

In this section, we consider the 2-D extensions of the FSV(Q schemes. We first describe the
2-D versions of FR-FSVQ and their design algorithm and then proceed to discuss the 2-D
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extensions of VR-FSVQ).

5.1 Extension of FR-FSVQ to 2-D

In the case of a 2-D source such as an image, each input vector is typically a 2-D block
(matrix of size | X I) and unlike the 1-D case, it has more than one adjacent preceding
neighbor. For efficient encoding of an input vector x,, it is essential to exploit the cor-
relation with the adjacent vectors in the north (x,_r) and west (x,-1) directions, where
L is the number of blocks in an image row (see Figure 5). In an FSVQ system, this is
done by appropriately defining the state variable. To define the state variable, we associate
with each input vector x,, an index v, € {1,2,..., K} % and say that x, is in “substate”
v, iff v, is the index associated with x,. We then define the state s, associated with x,
as a two-component vector ® s, = (v,_y,v,_r), where v,_; and v,_y, are, respectively, the
substates associated with the west (x,-1) and north (x,_1) neighbors of x,. Note that s,
can be equivalently described by an index k = K(vy,—1 — 1)+ v, with k € {1,2,..., K?}.

With the state variable defined as above, an (I x [)-dimensional (K x K)-state FS-
VQ (FS-TSVQ) is specified by a state space S = {1,2,...,K} x {1,2,..., K} and three
mappings:

(1) @ : R™ x S — N : finite-state encoder,

(2) B: N xS — A: finite-state decoder,

3)f 2 (fi,f2); fs N xS —{1,2,...,K}, i = 1,2: next state function.

Here, N/ 2 {1,2,..., N} is the channel alphabet of size N and A is the reproduction space.
This definition is a 2-D extension of the 1-D FS-VQ (FS-TSVQ) given in [1], [16]. Note that
the next-state map f has two components f; and f; determining the substates associated
with the west and north neighbors, respectively. The collection Cx 2 {B(u, k),u € N} is
the codebook associated with state k; obviously, A= Uf:zl Ck-

Let {x,}%, denote the input vector sequence, where x,, € R is obtained from sam-
pled image data. Similarly, let {u,}22,, {8,}32, and {%X,}52, denote the channel symbol
sequence, state sequence and reproduction vector sequence, respectively. With the sub-
state sequence of the first row vector and the first column vector of the image given, the

input process determines the sequence of channel symbols, reproduction vectors and states

2For instance, v, can be the index of the the codevector in a size K codebook {c(w),we {1,2,...,K}}
such that x, is closest to ¢(v,) in Euclidean distance. The precise definition of the substate is given in the
next subsection.

3Since the vectors in the first row and first column do not have either a west or a north neighbor, we
do not associate any state with these vectors and only define a substate for all such vectors.
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according to:

U, = a&(Xu,Sn), (11.a)

Xn = B(tn,Sn), (11.b)
Sp+1 = (fl(unaSn)7f2(un+1—Lasn+l-L))a

n=m(L+1),m(L+2),..., m=12,.... (11.c)

The rate of an FS-VQ (FS-TSVQ) is given by R = log, N, bits/vector. The FS-VQ

encoder is specified by the minimum distortion rule
a(x, k) = arg nrg} d(x, B(u, k)), Vk € {1,2,...,K*}, (12)

where d is the distortion measure, while for FS-TSVQ the encoding is done in a tree-

structured manner.

5.2 Design Algorithm for 2-D FR-FSVQ

Given a training sequence {X,, n = 0,1,...} and a distortion measure, the design algorithm
for an (Ix 1)-dimensional, (K x K)-state FS-VQ (FS-TSVQ) of rate R = log, NV, bits/vector
consists of designing:

(a) the state codebooks Cj, for FS-VQ (FS-TSVQ), each of size N, and

(b) the next-state function f(u,k),u € N, k € {1,2,...,K?}.
The design algorithm is an extension of the 1-D algorithm given in Section 2.2 and can be

described in the following four steps.

1. Design an LBG-VQ with K codevectors for the given training sequence. We refer to
this VQ as the substate-label VQ, C = {c(v),v € {1,2,...,K}}. We say that an
input vector x, is associated with an ideal substate & if

ky = arg ve{{l,];,.r.l.,l(} d(x,,c(v)). (13)

2. For each state index k € {1,2,...,K?} of the FS-VQ (IF'S-TSVQ), design an ini-
tial reproduction codebook Cp = {B(u,k),u € N} using the LBG algorithm [3]
on the subtraining sequence {x, : k; = argminyeqi2,. .k} d(Xn-1,¢(v)) and ky =
arg minye(y 2,..k} d(Xn-1,¢(v))}, where (k1, ky) is the pair associated with k (i.e.,
k = K (ki — 1)+ ky). Thus each codebook Cj is designed to be good for vectors whose

west and north neighbors are associated with substates k; and ko, respectively.
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3. In order to enable the decoder to track the state sequence, we let the state sequence
depend on the reproduction vector of the input vector rather than on the input vector
itself. Thus given the substate-labels c¢(v) and the decoder 3 designed in step (2), we
define the mappings f; and f, and hence the next-state function f = (fi, f2) by *

filusB) = ol B) = arg_min d(B, k), (o), b € (1,2, K2 u € . (1)
v&l,2..,,

4. Attempt to improve the state codebooks {Cx, k € {1,2,..., K?}} of the FS-VQ (FS-

TSVQ) by encoding the training sequence using the next-state function obtained in

step (3) and updating each codevector by replacing it by the centroid of the cell
associated with that codevector. Also update the substate-label VQ C similarly.

5.3 Description of 2-D VR-FSVQ

The 2-D FS-VQ (FS-TSVQ) system discussed so far is a fixed-rate system. The 2-D
version of VR-FSVQ is specified by a state space § = {1,2,..., K} x {1,2,..., K} and
three mappings as follows:

(1) a: R¥ x & — N(S) : finite-state encoder,

(2) B:N(S) x & — A: finite-state decoder,

(3) f 2 (f1, f2); fit N(S)x S — {1,2,..., K}, i =1,2: next state function.
Here the channel alphabet depends on the state (N(k) for state k) and, in general, is
different for each state. The rate of the system is given by R = Z{c‘:l Py by, bits/vector,
where by, is the average bit rate of the vector quantizer associated with state k and Py is
the probability of occurrence of state k. Asin the 1-D case, the state vector quantizers can
be LBG-VQ, TSVQ or UTSVQ.

Let Dy, denote the average distortion incurred in state k when the rate of the quantizer
associated with state k is by bits/vector. Then we wish to minimize the average distortion

given by
I\f?
D =" P.Dyy,, (15)

k=1

subject to a constraint on the average rate described by

K?

Z Pkbk S bavga (16)

k=1

*for FS-TSVQ, the encoding is done in a tree-structured manner.
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by appropriately designing the the bit assignment map (b7, 83, . . ., bj2), the state codebooks
{Cr,k € {1,2,...,K?}} and the next-state function. The design algorithms given for VR-
FSVQ for the 1-D case can be easily extended to 2-D in a manner similar to the case of
FR-FSVQ. The details are omitted here.

While the 1-D versions of FSV() have been successfully applied to encoding of sampled
speech [1], [16], direct application of 2-D versions of FSV(Q on image data presents certain
design problems. In what follows, we describe these problems and propose two methods to
tackle them.

6 System Description

When the LBG algorithm [3] is used to design a small-sized LBG-V(Q using a training
sequence of images, the majority of the codevectors in the LBG-VQ correspond to the con-
stant background vectors of different grey-levels and other feature vectors such as the edge
vectors are either averaged out or masked by the background vectors [17]. Therefore in step
(1) of the design algorithm for 2-D FR-FSVQ, the majority of the substate-labels (i.e., the
codevectors in the substate-label VQ) will correspond to the constant background vectors
and the states will then correspond to the various combinations of constant background.

To account for the various grey-levels of background requires a very large number of
states. To alleviate this problem and more importantly to avoid the masking of edge vectors
by background vectors, we have considered two methods. In the first method we subtract
off the block-mean from each input vector and encode the block-mean and the residual
separately [17]. Since the block-means of adjacent vectors are highly correlated, they can
be encoded with a small number of bits; the residual is encoded using 2-D FS-VQ and
VFS-UTSVQ. We will use ME-FS-VQ and ME-VFS-UTSVQ to denote, respectively, the
systems in which FS-VQ and VFS-UTSVQ are used to encode the residual signal. In the
second method we use a predictor [18] to make a prediction of each pixel of the input vector
based on the knowledge of the already encoded neighboring vectors and then encode the
residual using the above mentioned FSVQs. We will refer to the system using FS-VQ by
PR-FS-VQ, while PR-VFS-UTSVQ will be used for the system with VFS-UTSVQ.

As a result of block-mean subtraction or prediction, all constant background vectors
will result in residual vectors close to the zero grey-level and they can be classified by using
fewer number of states. The rest of the states can be devoted to other feature vectors.
As compared to other vectors, the residual vectors corresponding to the near zero grey-

level background can be encoded using relatively smaller number of bits while achieving
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comparable distortion making the residual vector sequence more amenable to variable-

length coding. Details of the two systems are provided in the following subsections.

6.1 Encoding of Block-Mean

Typical real-world images exhibit high pixel-to-pixel correlation. For a vector of size 4 x
4 (the vector size considered throughout this paper for images), the block-mean of an
input vector is also highly correlated with the block-mean of the adjacent vectors. As a
consequence, the block-mean can, in turn, be efficiently encoded by a VQ. However, due
to the complexity associated with the VQs, we cannot design a very large size codebook.
For instance, in order to achieve a rate of 1 bit/sample (for blocks of size 4 x 4 of block-
means), the number of codewords needed is 2'%, which is prohibitively large. To alleviate
this problem, the block-mean is encoded in two steps: First, 4 x 4 blocks of block-mean are
vector quantized using an LBG-VQ) of small size and then the difference is encoded using
an entropy-constrained block transform coding system. The entropy-constrained block
transform coding system is similar to the system described in [19]. The only difference
lies in the computation of the variances associated with the transform coefficients. In the
present system depending on the codevector used to encode the block-mean vector we
have a set of variances of the transform coefficients estimated by using a training sequence

different from the test sequence.

6.2 Description of the Predictor

We used the 5%"-order predictor proposed in [18] to make the block prediction. Each pixel Y
in an input vector (Figure 6) is predicted using only five other pixels. The predicted value
of Y is given by Y = aX, where X = [X, X3, X35, X4, X5]. X7 and X, are the two closest
pixels in the same row of the vector in the west, X3 is the lower right pixel of the upper
left diagonal subblock and X, and X5 are the two closest pixels in the same column of the
north neighbor vector. The vector of linear prediction coefficients a is chosen to minimize
the mean squared-error between Y and V' according to a = R'd [20]. Here R = E(XTX)
and d = E(XY). Spatial stationarity is assumed for computing the correlation matrix.
We use the actual values of X to compute a but once a is computed Y is always estimated

based on the reconstructed version of X as in any DPCM system.
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6.3 Encoding of the Residual Signal

We have used FS-VQ and VFS-UTSVQ for encoding the residual signal {X,} obtained after
block-mean subtraction or using 5"-order prediction. When an input vector is encoded
by means of an FSV(Q), both linear and nonlinear dependence of the input vector on its
neighbors can be exploited by the FSVQ. The use of block-mean subtraction or a linear
predictor removes linear dependence of the input vector on its neighbors to a certain extent;
however the residual vector still retains the nonlinear dependence and even some linear
dependence (due to the use of a coarse predictor to keep overhead information low) on its
neighbors that can be efficiently exploited by the use of FSVQ on the residual sequence.

The FS-VQ is designed for {X,} by using the algorithm described in Subsection 5.2
and the encoding is done according to equations (11.a), (11.b) and (11.c). The simulation
results are presented in the next section.

As for the VFS-UTSVQ), we have considered two kinds of UTSVQs. In the first case, we
design a complete TSV(Q) and then use the optimal pruning algorithm of [14] to obtain the
UTSVQ of the desired rate. In the second case, we use the greedy algorithm of [21] to grow
an unbalanced tree (instead of a complete TSVQ of the same rate) and then use the pruning
algorithm of [14] to design the UTSVQ. For the reasons described in [21], the second type
of UTSVAQ), in general, gives better performance. We will refer to the ME-VFS-UTSVQ
system based on the first and the second kind of UTSVQs by ME-VFS-UTSVQ1 and ME-
VFS-UTSVQ2, respectively. Corresponding names for the prediction based systems are
PR-VFS-UTSVQ1 and PR-VFS-UTSVQ2, respectively. The simulation results for various

systems are given in the next section.

7 Simulation Results on Images

The performance results are reported in terms of the peak signal-to-noise ratio (PSNR) in
dB and the overall average bit rate per pixel (including the overhead) denoted by b. The
design values selected were | = 4 and K = 4. This corresponds to a vector dimension of
16 and the number of states is 16. The database used for training various kinds of FSVQ
systems consisted of 19 monochrome images of size 480 x 512 and the test image chosen

was the 512 x 512 version of “Lena” not included in the training sequence.

7.1 Performance Results of ME-FS-VQ and ME-VFS-UTSVQ

The VQs designed using the residual training sequence obtained by subtracting off the

block-mean from each input vector will have zero-mean codevectors. As a consequence,
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for the squared-error distortion measure, it is easy to check that the overall distortion of
ME-FS-VQ and ME-VFS-UTSVQ systems is equal to the sum of distortions that result
from encoding the block-mean and the residual signal. Therefore, the problem of encoding
the block-mean and that of encoding the residual can be treated separately.

The block-mean was encoded using the system that consisted of a VQ followed by
entropy-constrained block transform coding described briefly in the Subsection 6.1. The
block-mean corresponding to the adjacent vectors are grouped together in block sizes of
4 x 4 and vector quantized with a V() consisting of 8 codevectors. The remaining bits were
allocated to entropy-constrained block transform coding. We allocated —11—'3 to % bits/pixel
to encode the block-mean. For smaller values of b, the bit rate allocated for block-mean
encoding was kept close to % bits/pixel since any further increase in the bit rate for block-
mean encoder resulted in a relatively small decrease in the overall distortion as the major
contribution to the overall distortion came from the encoding of the residual. On the other
hand, for higher values of b, distortion arising out of the encoding of the residual signal is
reduced substantially and the distortion resulting from block-mean encoding starts playing
an equally important role in contributing to the overall distortion. As a consequence, the
bit rate associated with the block-mean encoder is increased to as much as -21469 for b= 0.38
bits/pixel; any further increase in the bit rate for block-mean encoding results in a very
small decrease in overall distortion.

The residual sequence was encoded using FS-VQ and VFS-UTSVQ. Table 16 illustrates
the results for various systems at different bit rates. The term in the parentheses is the
value of the bit rate per pixel actually achieved by the system, while the desired value is
given by b. We have also provided the results for the case when the residual sequence is
encoded using an LBG-VQ (ME-VQ) for comparison purposes. Table 16 shows that on the
average, ME-FS-VQ performs better than ME-VQ by about 0.8 dB at all bit rates shown
in the table and ME-VFS-UTSVQ1 improves the performance by about 1 dB over ME-FS-
VQ. The best performance is attained by ME-VFS-UTSVQZ2; it outperforms ME-VQ by
about 3 dB at b = 0.31 bits/pixel achieving a PSNR of 31.66 dB. The reconstructed image
at b = 0.31 bits/pixel using ME-VFS-UTSVQ2 is shown in Figure 7.b; Figure 7.a shows

the original image.

7.2 Performance Results of PR-FS-VQ and PR-VFS-UTSVQ

The PR-VFS-UTSVQ1 system is basically a more general version of the scheme described
in [18]. In both these systems, an error sequence is formed by using a 5t*-order predictor.

In [18], the error (residual) sequence is encoded using a UTSVQ obtained by optimally
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pruning a complete TSVQ [14]; this system can be looked upon as PR-VFS-UTSVQ1 with
just one state.

We have considered the encoding of the residual using LBG-VQ, FS-VQ and the two
types of VFS-UTSVQ. The results are summarized in Table 17. We have also simulated and
included the results of the system described in [18] (denoted by RDG) for comparison. The
bit rate b here also includes the overhead information which consists of transmitting the

actual value of each input sample in the first row vector and the first column vector of the

image (about %122 bits/pixel). Table 17 shows that use of PR-FS-VQ as opposed to PR-VQ
leads to an increase of 0.6 dB in PSNR. For b = 0.20 and 0.26 bits/pixel, PR-VFS-UTSVQ1
outperforms PR-FS-VQ by over 1.5 dB. However, this gain is reduced at higher rates. This
reduction in gain can be attributed to the limitation posed by the size of the training
sequence used. As opposed to the ME-VFS-UTSVQ systems, PR-VFS-UTSVQ2 shows
an insignificant improvement over PR-VFS-UTSVQ1 system. Both PR-VFS-UTSVQ1 and
PR-VFS-UTSVQ2 systems perform better than the system described in [18] at the rates
shown in the table and the improvement is most noticeable at b = 0.20 and 0.26 bits/pixel,
both visually and in terms of PSNR. Figure 7.c shows the reconstructed image for PR-VFS-
UTSVQ2 at b = 0.32 bits/pixel. The performance of PR-VFS-UTSVQ systems saturates
above b = 0.32 bits/pixel due to the training sequence size constraint and therefore we have

not included the results for higher rates in the table.

8 Summary and Conclusions

In this paper, we have considered several variable-rate variations of the 1-D FS-VQ scheme
described in [1]. We have also considered the extension of these schemes to 2-D. Design
algorithm for various schemes are obtained by appropriately modifying the algorithm given
in {1]. 1-D versions of FSV(Q systems are used for encoding sampled speech, while 2-
D versions are used to develop low bit rate image coding systems. It can be concluded
from our results that, in general, the variable-rate versions of FSVQ lead to performance
improvements which in certain cases are quite substantial. The best performance was
achieved by the systems based on VR-FSVQ using UTSVQs as the state quantizers for
both speech and image coding. For image coding, out of all the schemes considered, PR-
VFS-UTSVQs have the potential of doing the best.

Although the extension of fixed-rate FSVQ to VR-FSVQ leads to performance improve-
ments, the potential problems associated with any variable-rate coding system like buffer

overflow/underflow and channel error propagation will come into play. One possible method



to deal with these problems is to use the idea of the recently developed structured vector
quantizer [22], [23] to convert the variable-rate FSVQ systems into a fixed-rate system
without introducing a significant performance loss. By incorporating some delay into the
system, the codebook search and encoding algorithm of [22] can be used to encode several
vectors (say n) at a time such that the total number of bits used for the n vectors is fixed,
but the number of bits used for each vector can be allowed to be variable. This modification
will render the system, a fixed-rate encoder while at the same time offers (to some extent)
the advantages of the variable-rate systems. As a consequence, the effect of any channel
error will remain confined to only n vectors; similarly the buffer overflow/underflow prob-
lem is eliminated since the encoder is a fixed-rate system now. Work on the development

of this modification is currently underway.
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Figure 1: Notation tree.
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FS-VQ
b=375 | b=.5|b=.625
K | SQNR | SQNR | SQNR
8 7.36 8.47 9.43
16 7.41 8.57 9.55
32 7.45 8.62 9.62
IVQ] 650 | 7.74 | 8.83 |
Table 1: Performance of FS-VQ
and VQ at b = 0.375, 0.5 and
0.625 bits/sample on the Synthetic
Source.
FS-TSVQ
b=2375|b=.5|b=.625
K SQNR [ SQNR | SQNR
8 7.00 8.11 9.06
16 7.15 8.23 9.19
32 7.23 8.29 9.23
[ TSVQ] 587 | 698 | 838 |

Table 2: Performance of FS-TSVQ and
TSVQ at b = 0.375, 0.5 and 0.625
bits/sample on the Synthetic Source.

VFS-VQ

b=375|b=.5 = .625

K | SQNR | SQNR | SQNR

8 8.02 9.06 10.46

(0.38) | (0.49) | (0.63)

16 8.28 9.60 10.59

(0.38) | (0.50) | (0.63)

32 8.38 9.83 10.76

(0.39) | (0.50) | (0.63)
Table 3: Performance of VFS-
VQ at 6 = 0.375, 0.5 and

0.625 bits/sample on the Synthetic

Source.

denote actual bit rate.

30

Numbers in parentheses



VFS-TSVQ

b=.3751b=.5|b=.625

K | SQNR | SQNR | SQNR

8 7.79 8.79 9.42

(0.375) | (0.48) | (0.59)

16 7.88 9.30 9.82

(0.37) | (0.50) | (0.56)

32 8.08 9.43 9.96

(0.375) | (0.50) | (0.58)
Table 4: Performance of VFS-
TSVQ at b = 0375, 0.5 and

0.625 bits/sample on the Synthetic

Source.

denote actual bit rate.

Numbers in parentheses

VFS-UTSVQ
b=375b=5]b= 6%
K SQNR | SQNR | SQNR
8 821 | 9.71 | 10.62
(0.375) | (0.50) | (0.620)
16 836 | 9.86 | 10.78
(0.375) | (0.50) | (0.625)
32 838 | 10.00 | 10.95
(0.375) | (0.50) | (0.625)
UTSVQ | 696 | 8.62 | 9.06
(0.375) | (0.55) | (0.605)

Table 5: Performance of VFS-UTSVQ at
b = 0.375, 0.5 and 0.625 bits/sample on
the Synthetic Source. Numbers in paren-
theses denote actual bit rate.
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FSVQ
b=25|b=375| b=.5 | b= 625
K | SONR | SONR | SQNR | SQNR
8 | 3.64 | 555 | 7.29 | 8.90
16 | 3.75 | 586 | 7.68 | 9.57
32 | 389 | 6.6 | 8.70 | 10.06

|VQ| 245 | 432 | 584 | 731 |

Table 6: Performance of FS-VQ and VQ at
b = 0.25, 0.375, 0.5 and 0.625 bits/sample

on the Training Sequence.

FS-TSVQ
b=.25|b=.375|b=.5 | b=.625
K SQNR | SQNR | SQNR | SQNR
8 3.19 5.15 6.81 8.29
16 3.46 5.42 7.12 8.73
32 3.59 5.93 7.33 9.06

| TSVQ| 218 | 359 | 524 | 6.62 |

Table 7: Performance of FS-TSVQ and TSVQ at
b = 0.25, 0.375, 0.5 and 0.625 bits/sample on
the Training Sequence.

VFS-VQ
b=25b=375]b=.5 | b=.625
K | SQNR | SQNR | SQNR | SQNR
8 609 | 696 | 1045 | 11.73
(0.24) | (0.31) | (0.47) | (0.58)
16| 646 | 864 | 10.85 | 12.02
(0.25) | (0.38) | (0.52) | (0.64)
32| 734 | 876 | 1152 | 12.04
(0.25) | (0.34) | (0.50) | (0.58)

Table 8: Performance of VFS-VQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on the
Training Sequence. Numbers in parentheses
denote actual bit rate.




VFS-TSVQ
b=.25]b6=.375] b=.5|b=.625
K | SQNR | SQNR | SQNR | SQNR
8] 586 | 6.56 | 9.49 | 10.54
(0.25) | (0.32) | (0.46) | (0.58)
16| 623 | 7.98 | 10.83 | 12.09
(0.25) | (0.37) | (0.49) | (0.61)
32| 633 | 9.2 | 11.63 | 12.69
(0.25) | (0.37) | (0.53) | (0.64)

Table 9: Performance of VFS-TSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on the
Training Sequence. Numbers in parentheses
denote actual bit rate.

VFS-UTSVQ
=25 b=375] b=5 | b= 625
K | SQNR | SQNR [SQNR | SQNR
8 6.95 | 9.34 | 11.93 | 13.12
(0.25) | (0.375) | (0.49) | (0.625)
16 727 | 10.06 | 12.82 | 13.59
(0.25) | (0.385) | (0.49) | (0.625)
32 841 | 1050 | 12.94 | 13.71
(0.25) | (0.342) | (0.49) | (0.591)
UTSVQ ] 458 | 550 | 732 | 9.95
(0.29) | (0.335) | (0.47) | (0.625)

Table 10: Performance of VFS-UTSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on the
Training Sequence. Numbers in parentheses de-
note actual bit rate.
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FS-vVQ
b=25|b=375| b=.5 | b=.625
K | SQNR | SQNR | SQNR | SQNR
8 2.13 3.50 4.90 5.98
16 2.06 3.62 5.03 5.97
32 2.19 3.76 5.67 6.22

|VQ| 190 | 323 | 437 | 555 |

Table 11: Performance of FS-VQ and VQ at
b =0.25, 0.375, 0.5 and 0.625 bits/sample on
Out-of-Training Test Sequence.

FS-TSVQ
b=25]b=3156=5 |b=.625
K | SQNR | SQNR | SQNR | SQNR,
8 | 1.86 | 3.20 | 442 | 531
16 | 174 | 323 | 442 | 557
32 | 183 | 322 | 430 | 552

| VQ] 150 [ 250 | 359 | 474 |

Table 12: Performance of FS-TSVQ and
TSVQ at b = 0.25 0375, 0.5 and
0.625 bits/sample on Out-of-Training Test Se-
quence.

VEFS-VQ
b=.25b= 375 b=.5 | b=.625
K | SQNR | SQNR | SQNR | SQNR
8§ 208 | 250 | 7.27 | 7.88
(0.17) | (0.21) | (0.39) | (0.51)
16| 239 | 606 | 7.65 | 8.38
(0.18) | (0.33) | (0.47) | (0.52)
32 | 3.21 395 | 766 | 8.14
(0.19) | (0.25) | (0.42) | (0.51)

Table 13: Performance of VFS-VQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on
Out-of-Training Test Sequence. Numbers in
parentheses denote actual bit rate.
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VFS-TSVQ
b=.25|b=.375] b=. | b=.625
K | SQNR | SQNR | SQNR | SQNR
8 | 212 | 233 | 6.60 | 7.35
(0.18) | (0.22) | (0.39) | (0.51)
16| 229 | 324 | 692 | 8.04
(0.18) | (0.26) | (0.40) | (0.53)
32| 243 | 4.16 | 7.56 | 8.09
(0.19) | (0.26) | (0.43) | (0.55)

Table 14: Performance of VFS-TSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on
Out-of-Training Test Sequence. Numbers in
parentheses denote actual bit rate.

VFS-UTSVQ
b=25 b= 375 b=. | b= 625
K | SQNR | SQNR |SQNR | SQNR
8 279 | 543 | 744 | 7.95
(0.18) | (0.32) | (0.40) | (0.52)
16 3.02 | 682 | 7.89 | 8.44
(0.18) | (0.35) | (0.41) | (0.54)
32 397 | 634 | 7.96 | 8.49
(0.19) | (0.26) | (0.41) | (0.49)
UTSVQ | 229 | 3.03 | 441 | 582
(0.27) | (0.29) | (0.42) | (0.56)

Table 15: Performance of VFS-UTSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on Out-of-

Training Test Sequence. Numbers in parentheses
denote actual bit rate.
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ME-VQ [ ME-FS-VQ | ME-VFS-UTSVQL | ME-VFS-UTSVQ?2
PSNR | PSNR PSNR PSNR
0.19 | 27.35 37.99 75.64 98.73
(0.19) (0.19) (0.20) (0.20)
0.25 | 28.02 98.83 99.75 30.31
(0.25) (0.25) (0.26) (0.27)
031 | 28.58 99.56 30.75 31.66
(0.31) (0.31) (0.32) (0.32)
0.38 | 29.13 30.16 31.67 39.00
(0.38) (0.38) (0.38) (0.39)

Table 16: Performance of ME-VQ, ME-FS-VQ, ME-VFS-UTSVQ1 and
ME-VFS-UTSVQ2 at b = 0.19, 0.25, 0.31 and 0.38 bits/pixel on the
512 x 512 version of Lena. Numbers in parentheses denote actual bit rate.

PR-VQ | PR-FS-VQ | PR-VFS-UTSVQ1 | PR-VFS-UTSVQ2 | RDQ
b | PSNR | PSNR PSNR PSNR PSNR
0.20 | 27.22 27.89 29.70 29.86 29.16
(0.20) |  (0.20) (0.20) (0.20) (0.20)
0.26 | 28.62 29.11 30.64 30.74 29.80
(0.26) |  (0.26) (0.25) (0.25) (0.25)
0.32 | 29.50 30.16 31.22 31.19 31.00
(0.32) | (0.32) (0.32) (0.32) (0.32)

Table 17: Performance of PR-VQ, PR-FS-VQ, PR-VFS-UTSVQ1, PR-VFS-
UTSVQ2 and RDG at b = 0.20, 0.26, and 0.32 bits/pixel on the 512 x 512

version of Lena. Numbers in parentheses denote actual bit rate.
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